RU2509319C1 - Способ радиолокационного определения времени окончания активного участка баллистической траектории - Google Patents

Способ радиолокационного определения времени окончания активного участка баллистической траектории Download PDF

Info

Publication number
RU2509319C1
RU2509319C1 RU2012143010/07A RU2012143010A RU2509319C1 RU 2509319 C1 RU2509319 C1 RU 2509319C1 RU 2012143010/07 A RU2012143010/07 A RU 2012143010/07A RU 2012143010 A RU2012143010 A RU 2012143010A RU 2509319 C1 RU2509319 C1 RU 2509319C1
Authority
RU
Russia
Prior art keywords
estimate
range
time
velocity
radial velocity
Prior art date
Application number
RU2012143010/07A
Other languages
English (en)
Inventor
Пётр Зотеевич Белоногов
Александр Иванович Стучилин
Эфир Иванович Шустов
Original Assignee
Закрытое акционерное общество Научно-исследовательский центр "РЕЗОНАНС" (ЗАО НИЦ "РЕЗОНАНС")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество Научно-исследовательский центр "РЕЗОНАНС" (ЗАО НИЦ "РЕЗОНАНС") filed Critical Закрытое акционерное общество Научно-исследовательский центр "РЕЗОНАНС" (ЗАО НИЦ "РЕЗОНАНС")
Priority to RU2012143010/07A priority Critical patent/RU2509319C1/ru
Application granted granted Critical
Publication of RU2509319C1 publication Critical patent/RU2509319C1/ru

Links

Images

Abstract

Изобретение относится к устройствам траекторной обработки радиолокационной информации. Достигаемый технический результат изобретения - повышение вероятности определения времени окончания активного участка (АУТ) баллистической траектории за счет исключения измерений угла места и азимута из обрабатываемых выборок. Для этого на вход устройства определения времени окончания АУТ подают данные измерений дальности и радиальной скорости ракеты через одинаковые интервалы времени, равные периоду обзора радиолокационной станции, вычисляют произведения дальности на радиальную скорость, формируют фиксированную выборку типа «скользящего окна» значений произведений дальности на радиальную скорость, находят оценку скорости изменения произведения дальности на радиальную скорость путем оптимального взвешенного суммирования выборки значений произведений дальности на радиальную скорость, вычисляют среднеквадратическую ошибку (СКО) оценки, вычисляют отношение оценки скорости к СКО этой оценки, в каждом новом положении «скользящего окна» сравнивают отношение оценки скорости к СКО этой оценки с заданным порогом, решение об окончании АУТ принимают в момент времени, когда величина полученного отношения превышает заданный порог, величину которого выбирают в соответствии с требуемой вероятностью определения времени окончания АУТ. 3 ил., 6 табл.

Description

Изобретение относится к устройствам траекторной обработки радиолокационной информации и может быть использовано в РЛС и в автоматизированных системах управления радиолокационных подразделений.
Задачу определения времени окончания активного участка траектории (АУТ) необходимо решать для того, чтобы не допустить появления методических ошибок определения параметров баллистической траектории. В частности, координаты точки падения ракет малой и средней дальности полета могут определяться с недолетом или перелетом от нескольких десятков до нескольких сотен километров.
В качестве примера рассмотрим траекторию ракеты типа «Скад» с дальностью стрельбы 300 км. Параметры этой траектории приведены в таблице 1:
время от момента пуска t;
измеряемые полярные координаты: дальность r, угол места ε, азимут β, радиальная скорость r ˙
Figure 00000001
;
преобразованные координаты: высота z=rsinε, декартовы горизонтальные координаты х=rcosεsinβ и y=rcosεcosβ, произведение дальности на радиальную скорость r r ˙
Figure 00000002
;
модуль скорости V.
Активный участок траектории заканчивается на 65-ой секунде полета ракеты. Координаты ракеты измеряются в РЛС метрового диапазона (РЛС МДВ) «Резонанс-НЭ». Среднеквадратические ошибки (СКО) измерения координат в РЛС «Резонанс-НЭ»: дальности σr=300 м, радиальной скорости σ r ˙ = 1,5
Figure 00000003
м/с, угла места и азимута σβε=90 мин. РЛС находится в точке падения ракеты. (Вооружение ПВО и РЭС России. Альманах. М.: Издательство НО «Лига содействия оборонным предприятиям», 2011. - С.356-361).
Таблица 1
t, c r, км r ˙
Figure 00000001
, м/с
r r ˙
Figure 00000004
, м/с
ε, град β, град z, км x, y, км V, м/c АУТ
35 297,83 -350,5 -104,39 0,16 45 0.52 210,566 598
40 295,84 -446,3 -132,03 0,67 45 3,46 209,145 729
45 293,35 -497,1 -145,82 1,28 45 6,55 207,349 877
50 290,28 -674,2 -195,71 2,0 45 10,13 205,101 1044
55 286,58 -808,7 -231,76 2,86 45 14,3 202,343 1234
60 282,17 -957,7 -270,23 3,87 45 19,04 199,039 1452
65 277,15 -1011 -280,14 5,04 45 24,35 195,189 1528
70 272,13 -994,1 -270,52 6,23 45 29,53 191,258 1496 ПУТ
75 267,2 -979,2 -261,64 7,4 45 34,41 187,337 1465
80 262,34 -966 -253,42 8.56 45 39,05 183,409 1436
85 257,54 -954,4 -245,8 9,72 45 43,48 179,465 1407
Для анализа величины методических ошибок прогноза точки падения ракеты вычислим оценки модуля скорости V ^
Figure 00000005
в различных точках на активном и на пассивном участках баллистической траектории по выборкам типа «скользящего окна» из пяти измерений декартовых координат xi, yi, zi:
V ^ = V ^ z 2 + V ^ x 2 + V ^ y 2
Figure 00000006
где оценки скорости изменения высоты V ^ z
Figure 00000007
, и горизонтальных координат V ^ x
Figure 00000008
, V ^ y
Figure 00000009
вычислялись по формулам:
V ^ z = 1 T 0 i = 1 n z i η V ( i ) ,
Figure 00000010
V ^ x = 1 T 0 i = 1 n x i η V ( i ) ,
Figure 00000011
V ^ y = 1 T 0 i = 1 n y i η V ( i ) ;
Figure 00000012
где
η V ( i ) = 6 n ( n 2 1 ) ( n 2 4 ) [ ( n + 1 ) ( n + 2 ) ( 6 n 7 ) 2 i ( 16 n 2 19 ) + 30 i 2 ( n 1 ) ]
Figure 00000013
- весовой коэффициент оценки скорости маневрирующей цели в реальном режиме времени;
Т0 - период обзора РЛС;
n - количество измерений в выборке. (Кузьмин С.З. Цифровая обработка радиолокационной информации. - М: «Радио и связь», 1967, С.305-306).
Результаты расчетов, приведенные в таблице 2, показали, что модуль скорости и составляющие вектора скорости определяются с методическими ошибками, если в выборке имеются измерения, произведенные на АУТ, то есть при включенном ракетном двигателе. Ошибки устраняются, если в выборке отсутствуют измерения, произведенные на АУТ, и она состоит только из измерений, произведенных после выключения двигателя, то есть на пассивном участке траектории (ПУТ). В приведенном примере методические ошибки устраняются через 15 секунд после окончания АУТ. При увеличении длительности «скользящего окна» (объема выборки) будет соответственно увеличиваться время появления методических ошибок после окончания АУТ. При этом значения оценок скорости ракеты в точках, находящихся на АУТ, меньше истинных значений, а в точках, находящихся на ПУТ, больше истинных значений скорости. По этой причине дальность до точки падения, вычисленная по формуле L = V 2 sin 2 ϑ g + z c t g ϑ
Figure 00000014
, будет определяться с недолетом, либо с перелетом. В приведенной формуле ϑ - угол наклона траектории, g - ускорение силы тяжести. (Жаков А.М., Пигулевский Ф.А. Управление баллистическими ракетами. - М: «Военное издательство», 1965, С.15).
Таблица 2
Участок АУТ ПУТ
Время полета, м/с 55 60 65 70 75 80 85 90
Оценка скорости, м/с 1216 1422 1614 1655 1559 1444 1407,4 1379,5
Истинная скорость, м/с 1234 1452 1528 1496 1465 1436 1407 1380
Методич. ошибка
δ V ^ n = V ^ n V и с т
Figure 00000015
, м/с
-18(-312) -30(-106) +94 +159 +88 +7,3 +0,4 -0,5
Примечание: в скобках приведена разность между оценкой модуля скорости на АУТ и значением максимальной скорости (Ммакс=1528 м/с) в конце АУТ.
В приведенном примере при измерении скорости ракеты за 5 секунд до окончания АУТ, то есть на 60-й секунде полета, координаты точки падения будут определяться с недолетом около 47-ми км. Если измерять скорость через 5 секунд после выключения двигателя, то перелет будет равен 45-ти км.
Таким образом, для исключения методических ошибок прогноза точки падения определение (оценивание) начальных параметров движения ракеты должно производиться после выключения ракетного двигателя, то есть в точке, находящейся на пассивном участке траектории, а измерения координат ракеты, произведенные до выключения ракетного двигателя, то есть на АУТ, не должны использоваться. Поэтому выборки значений измеренных координат, по которым вычисляются параметры движения ракеты (модуль скорости, угол наклона траектории к горизонту, курс и три координаты), должны формироваться после определения времени окончания АУТ.
Известны способы определения времени окончания АУТ средствами разведки инфракрасного и оптического диапазона по факелу ракетного двигателя. (Колгашкин Ю.Г. Комплексы самолетного базирования для обнаружения стартующих БР средней и малой дальности. / Международная конференция по проблемам глобальной защиты от баллистических ракет. М.: МАК «Вымпел» 1993. С.126-128).
Из радиолокационных способов аналогами заявляемому способу являются способы определения момента окончания маневра. Это связано с тем, что на АУТ ракета совершает маневр большой интенсивности. Вначале ракета движется вертикально вверх. Затем, на участке выведения, ракета движется по дуге и угол наклона траектории изменяется от 90° до расчетного значения для заданной дальности полета. Двигатель выключается, когда скорость достигнет заданной величины. Поэтому на АУТ скорости изменения высоты и горизонтальных декартовых координат увеличиваются с переменными ускорениями, величины которых зависят от силы тяги двигателя и в несколько раз больше ускорения силы тяжести. На ПУТ ракета становится неманеврирующей целью, так как летит по баллистической кривой с постоянным вертикальным ускорением, равным ускорению силы тяжести. Величина скорости изменения горизонтальных декартовых координат практически не изменяется, так как горизонтальные составляющие ускорения примерно равны нулю. Таким образом, устройства, реализующие способы определения времени окончания АУТ, и устройства, реализующие способы обнаружения маневра, должны решать одинаковую задачу - обнаружение факта изменения характера движения ракеты. (Жаков А.М., Пигулевский Ф.А. Управление баллистическими ракетами. - М: «Военное издательство», 1965, С.10-11).
Известны способы обнаружения времени окончания маневра путем сравнения оценок ускорения декартовых координат со среднеквадратической ошибкой (СКО) этих оценок. (Кузьмин С.З. Цифровая обработка радиолокационной информации. - М: «Радио и связь», 1967, С.310-311). Решение об окончании маневра и, следовательно, об окончании АУТ, принимается в момент времени, когда оценки ускорения декартовых координат становятся меньше СКО этих оценок. Основным недостатком этих способов являются высокие требования к точности измерения угла места и азимута. Поэтому в РЛС, размеры антенн которых соизмеримы с длиной волны и величины ошибок измерения угла места и азимута достигают значений до нескольких градусов, оценки ускорений меньше СКО как на активном, так и на пассивном участке и определить границу между ними практически невозможно.
Наиболее близким по своей сущности к заявляемому способу, то есть прототипом, является способ определения времени окончания АУТ по абсолютной величине приращения скорости изменения декартовой координаты. (Кузьмин С.З. Цифровая обработка радиолокационной информации. - М: «Радио и связь», 1967, С.347). Для этого находят оценки скорости изменения декартовой координаты, например координаты х, в текущем обзоре V ^ x ( N )
Figure 00000016
и в предыдущем обзоре V ^ x ( N 1 )
Figure 00000017
по одинаковым выборкам типа «скользящего окна» значений координаты и вычисляют их разность, то есть абсолютную величину приращения скорости:
| Δ V x | = | V ^ x ( N ) V ^ x ( N 1 ) |
Figure 00000018
.
Затем делят эту абсолютную величину приращения скорости на среднеквадратическую ошибку оценки скорости σ V x
Figure 00000019
и сравнивают с некоторым наперед заданным порогом или числом a в каждом новом положении «скользящего окна».
Таким образом, устройство определения времени окончания АУТ способом-прототипом представляет собой пороговое устройство и работает по следующему алгоритму:
если | Δ V x | σ V x > a
Figure 00000020
- ракета находится на активном участке траектории, то есть имеется маневр;
если | Δ V x | σ V x a
Figure 00000021
- ракета находится на пассивном участке траектории, то есть маневр отсутствует.
По аналогичному правилу определяется время окончания АУТ при использовании абсолютного приращения оценки скорости изменения второй горизонтальной декартовой координаты | Δ V y | = | V ^ y ( N ) V ^ y ( N 1 ) |
Figure 00000022
:
если | Δ V y | σ V y > a
Figure 00000023
- ракета находится на активном участке траектории, то есть имеется маневр;
если | Δ V y | σ V y a
Figure 00000024
- ракета находится на пассивном участке траектории, то есть маневр отсутствует.
По своей сущности данный алгоритм является алгоритмом выбора гипотезы модели движения ракеты. Гипотеза 1 - ракета на АУТ, то есть маневрирующая цель. Вероятность правильного выбора гипотезы 1 равна вероятности того, что абсолютное приращение скорости изменения декартовой координаты больше СКО оценки этой скорости | Δ V y | σ V y
Figure 00000025
. Данная вероятность рассчитывается по следующей формуле:
p А У Т ( | Δ V | σ V ^ ) = p А У Т ( | Δ V | σ V ^ ) = | Δ V | σ V ^ | Δ V | σ V ^ e t 2 / 2 d t
Figure 00000026
Вероятность правильного выбора гипотезы 2 равна вероятности того, что | Δ V y | σ V y
Figure 00000027
, рассчитывается по следующей формуле:
p П У Т ( | Δ V | σ V ^ ) = p П У Т ( σ V ^ | Δ V | ) = σ V ^ | Δ V | σ V ^ | Δ V | e t 2 / 2 d t
Figure 00000028
Вероятность определения времени окончания АУТ будет равна минимальной величине вышеприведенных вероятностей, то есть p А У Т М И Н
Figure 00000029
либо p П У Т М И Н
Figure 00000030
. (Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся ВТУЗОВ. М:. «Наука», 1980, С.92-93).
Число значений декартовых координат в обрабатываемой выборке (в «скользящем окне») не должно превышать 4-5, чтобы не увеличивалось запаздывание выявления факта окончания АУТ.
Так как скорости изменения горизонтальных декартовых координат практически не изменяются на пассивном участке, то их оценки и СКО этих оценок вычисляются по формулам для линейной траектории:
Figure 00000031
,
Figure 00000032
.
Весовые коэффициенты оценки скорости на линейной траектории вычисляются по формуле: η V ( i ) = 12 i 6 6 i n ( n 2 1 )
Figure 00000033
(Кузьмин С.З. Цифровая обработка радиолокационной информации. - М.: «Радио и связь», 1967, С.301).
Значения СКО оценок вычисляются по формулам:
Figure 00000034
, σ V ^ y = σ y T 0 12 n ( n 2 1 )
Figure 00000035
(Там же, С.308).
Формулы вычисления СКО измерения координат имеют вид:
σ x = ( r cos ε cos β σ β ) 2 + ( r sin ε sin β σ ε ) 2 + ( cos ε sin β σ r ) 2
Figure 00000036
,
σ y = ( r cos ε sin β σ β ) 2 + ( r sin ε cos β σ ε ) 2 + ( cos ε cos β σ r ) 2
Figure 00000037
.
Ошибки измерения дальности σr можно не учитывать, так как их влияние несущественно. Ошибки измерения угла места σε оказывают существенное влияние на СКО оценок, если высота БЦ zср=rсрsinεср соизмерима с величиной горизонтальных декартовых координат. В остальных случаях доминирующее влияние оказывают ошибки измерения азимута σβ. При этом СКО σx, а следовательно, и σ V ^ x
Figure 00000038
, принимают максимальные значения при азимуте, равном нулю, и минимальные значения - при азимуте, равном 90°. СКО σ V ^ y
Figure 00000039
, наоборот, максимальны при азимуте 90° и минимальны при азимуте 0°. При азимуте, равном 45°, СКО одинаковы, то есть σ V ^ x = σ V ^ y
Figure 00000040
. Поэтому для определения времени окончания АУТ при азимутах БЦ меньше 45° целесообразно использовать СКО σ V ^ y
Figure 00000041
, а при азимутах больше 45° - СКО σ V ^ x
Figure 00000042
.
В качестве примера в таблицах 3-5 приведены значения абсолютного приращения оценок скорости изменения декартовой координаты y|ΔVy| за период обзора РЛС, СКО σ V ^ y
Figure 00000043
и величины отношений | Δ V y | σ V ^ y
Figure 00000044
, рассчитанные по выборкам типа «скользящего окна» из 3-х значений декартовой координаты y при ошибках измерения угловых координат в РЛС МДВ «Резонанс-НЭ», равным σεβ=90 мин. В таблице 3 приведены результаты расчетов при азимуте 10°, в таблице 4 - при азимуте 45°, в таблице 5 - при азимуте 0°. В качестве исходных данных использовались данные таблицы 1. За начало отсчета времени принят момент окончания АУТ на 65-й секунде полета ракеты.
Как видно из данных таблицы 3 и 4, при азимутах ракеты от 10° до 45° величина приращений оценок скорости изменения декартовой координаты y за период обзора РЛС |ΔVy| меньше СКО оценок скорости σ V ^ y
Figure 00000045
как на активном, так и на пассивном участках, поэтому граница между ними, а значит и время окончания АУТ, определяется с низкой вероятностью. Вероятность p А У Т ( | Δ V | σ V ^ )
Figure 00000046
и, следовательно, вероятность правильного определения времени окончания АУТ при азимуте 10° не превышает 0,5, а при больших азимутах приближается к нулю. Аналогичное соотношение |ΔVx| и σ V ^ x
Figure 00000047
наблюдается при азимутах от 45° до 80°.
Повышать точность оценок скорости за счет увеличения объема выборок нецелесообразно, так как длительность «скользящего окна» становится соизмеримой с продолжительностью АУТ ракет малой и средней дальности. Кроме того, увеличивается запаздывание выявления факта окончания АУТ.
Таблица 3
Участок Активный участок Пассивный участок
Время, сек -10 0 +5 +10 +15 +20
|ΔVy|, м/с 134 153 87 10 1 3
σ V ^ y
Figure 00000048
при β=10°, м/с
187 195 201 209 215 225
| Δ V y | σ V ^ y
Figure 00000049
0,7 0,8 0,4 0,05 0,005 0,013
Таблица 4
Участок Активный участок Пассивный участок
Время, сек -10 0 +5 +10 +15 +20
|ΔVy|, м/с 96 110 63 7 0,7 1,5
σ V ^ y
Figure 00000050
при β=45°, м/с
750 726 707 700 686 672
| Δ V y | σ V ^ y
Figure 00000051
0,13 0,15 0,09 0,01 0,001 0,02
Задача решается только при азимутах близких 0° или 90. В этом случае на величину СКО оценки скорости изменения горизонтальных декартовых координат доминирующее влияние оказывают ошибки измерения угла места.
Таблица 5
Участок Активный участок Пассивный участок
Время, сек. -10 0 +5 +10 +15 +20
|ΔVy|, м/с 136 155 116 17 1 3
σ V ^ y
Figure 00000052
при β=0°, м/с
67 99 116 126 143 159
| Δ V y | σ V ^ y
Figure 00000053
2 1,5 1 0,13 0,007 0,02
На графиках фиг.1 показаны значения |ΔVy| и σ V ^ y
Figure 00000054
, вычисленные по данным измерений в РЛС «Резонанс - НЭ», в различных точках траектории ракеты «Скад» при азимутах 0° и 10°.
Таким образом, основным недостатком прототипа, являются низкие вероятности определения времени окончания АУТ при грубых измерениях азимута и угла места. Поэтому в РЛС МДВ, либо в других РЛС, размеры антенны которых соизмеримы с длиной волны, использовать данный способ практически невозможно.
Техническим результатом настоящего изобретения является разработка нового способа, при использовании которого повышается вероятность определения времени окончания АУТ за счет исключения измерений азимута и угла места из обрабатываемых выборок.
В предлагаемом изобретении вычисляют оценки скорости изменения произведения дальности ri на радиальную скорость r i
Figure 00000055
путем оптимального
взвешенного суммирования фиксированной выборки типа «скользящего окна» значений произведений дальности на радиальную скорость r i r ˙ i
Figure 00000056
:
U ˙ ^ ( r i r ˙ i ) = 1 T 0 i = 1 n r i r ˙ i η V ( i ) .
Figure 00000057
При анализе различных типов баллистических траекторий была выявлена следующая закономерность: оценки U ^ ( r i r i )
Figure 00000058
отрицательны на активном участке траектории и положительны на пассивном участке. Данная закономерность показана на графике фиг.2. Поэтому, так же, как в прототипе, вычисляются СКО оценок:
σ U ˙ ^ ( r i r ˙ i ) = σ ( r i r ˙ i ) T 0 12 n ( n 2 1 ) ,
Figure 00000059
σ ( r i r ˙ i ) = ( r i σ r ˙ ) 2 + ( r ˙ i σ r ) 2 ,
Figure 00000060
где ri, r ˙ i
Figure 00000061
- измеренные значения дальности и радиальной скорости;
σr, σ r ˙
Figure 00000062
- среднеквадратические ошибки измерения дальности и радиальной скорости.
Полученные оценки U ˙ ^ ( r i r ˙ i )
Figure 00000063
делят на величину среднеквадратической ошибки этих оценок σ U ˙ ^ ( r i r ˙ i )
Figure 00000064
. В каждом новом положении «скользящего окна» сравнивают полученные отношения U ˙ ^ ( r i r ˙ i ) σ U ˙ ^ ( r i r ˙ i )
Figure 00000065
с порогом а. Решение об окончании АУТ и о начале ПУТ принимают в момент времени, когда отношение U ˙ ^ ( r i r ˙ i ) σ U ˙ ^ ( r i r ˙ i )
Figure 00000066
становится больше числа а:
если U ˙ ^ ( r i r ˙ i ) σ U ˙ ^ ( r i r ˙ i ) < a
Figure 00000067
- ракета на активном участке траектории;
если U ¨ ^ ( r i 2 ) σ U ¨ ^ ( r i 2 ) a
Figure 00000068
- ракета на пассивном участке траектории.
В отличие от прототипа, величина СКО оценки зависит только от ошибок измерения радиальной скорости и дальности. При этом доминирующее влияние оказывают ошибки измерения радиальной скорости. Ошибки измерения радиальной скорости и дальности не зависят от размеров антенны и могут быть уменьшены до нескольких метров в секунду и до нескольких десятков или сотен метров.
В качестве примера в таблице 6 приведены значения оценок скорости изменения произведения дальности на радиальную скорость U ˙ ^ ( r i r ˙ i )
Figure 00000069
, СКО их определения σ U ˙ ^ ( r i r ˙ i )
Figure 00000070
по выборкам из 3-х измерений радиальной скорости и дальности, произведенных в РЛС метрового диапазона «Резонанс-НЭ» ( σ r ˙ = 1,5
Figure 00000071
м/с, σr=300 м), а также величины отношений | U ˙ ^ ( r i r ˙ i ) | σ U ˙ ^ ( r i r ˙ i ) .
Figure 00000072
Таблица 6
Участок Активный участок Пассивный участок
Время, сек -10 -5 0 +5 +10 +15 +20 +25
U ˙ ^ ( r i r ˙ i ) ,
Figure 00000073
км22
-8,59 -7,45 -4,84 -0,03 +1,83 +1,71 +1,58 +1,47
σ U ˙ ^ ( r i r ˙ i ) ,
Figure 00000074
км22
0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07
| U ˙ ^ ( r i r ˙ i ) | σ U ˙ ^ ( r i r ˙ i )
Figure 00000075
123 106 70 0,4 26 24 22 21
Как видно из данных таблицы 6, значения оценок скорости изменения произведения дальности на радиальную скорость U ˙ ^ ( r i r ˙ i )
Figure 00000076
меньше нуля (отрицательны) на активном участке и больше нуля (положительны) на пассивном участке траектории. При этом оценки U ˙ ^ ( r i r ˙ i )
Figure 00000077
на пассивном участке траектории превышают значения СКО σ U ˙ ^ ( r i r ˙ i )
Figure 00000078
более чем в двадцать раз. На АУТ абсолютная величина оценок более чем в сто раз превышает величину СКО этих оценок. Поэтому, даже при увеличении ошибок измерения радиальной скорости в 10 раз, вероятности правильного выбора гипотезы 1, то есть p А У Т ( | U ˙ ^ ( r i r ˙ i ) | σ U ˙ ^ ( r i r ˙ i ) )
Figure 00000079
, и гипотезы 2, то есть p П У Т ( | U ˙ ^ ( r i r ˙ i ) | σ U ˙ ^ ( r i r ˙ i ) ) , практически равны единице. Поэтому величину порога а можно выбирать в интервале от 2-х до 3-х и время окончания АУТ будет определяться также с вероятностью, близкой единице.
Принцип работы устройства определения времени окончания АУТ заявляемым способом по выборке из трех значений произведений дальности на радиальную скорость поясняется схемой, приведенной на фиг.3. В состав устройства входят блок 1 преобразования измеренных полярных координат, то есть вычисления произведений дальности на радиальную скорость, блок 2 оценивания первого приращения произведений дальности на радиальную скорость за период обзора, блок 3 деления оценки первого приращения на период обзора и вычисления оценки скорости изменения произведений дальности на радиальную скорость, блок 4 вычисления среднеквадратической ошибки оценки скорости изменения произведения дальности на радиальную скорость, блок 5 деления оценки скорости на среднеквадратическую ошибку и пороговое устройство 6.
На вход блока 1 устройства подаются через равные промежутки времени, равные периоду обзора РЛС, данные измерений радиальной скорости и дальности, и вычисляются произведения дальности на радиальную скорость r i r ˙ i
Figure 00000081
. Значение произведения дальности на радиальную скорость в текущем обзоре r 1 r ˙ 1
Figure 00000082
подается на вход первой линии задержки блока 2 оценивания первого приращения произведений дальности на радиальную скорость, а в предыдущем обзоре r 2 r ˙ 2
Figure 00000083
не используются, так как весовой коэффициент равен нулю. Значение произведения дальности на радиальную скорость r 3 r ˙ 3
Figure 00000084
, задержанное на время, равное двум периодам обзора (2Т0), умножается на весовой коэффициент, равный (+0,5) и одновременно с текущим взвешенным значением произведения дальности на радиальную скорость поступает на вход сумматора. Подобная схема для оптимального оценивания параметров приведена на 303-й странице упомянутой монографии Кузьмина С.З. «Цифровая обработка радиолокационной информации». При увеличении количества измерений в «скользящем окне» до числа n необходимо использовать (n-1) линий задержки, умножителей, а также заранее вычислить соответствующие числу n весовые коэффициенты. При реализации способа на цифровой вычислительной машине (ЦВМ) вычисление и запоминание значений произведений дальности на радиальную скорость производится в оперативном запоминающем устройстве, заранее вычисленные весовые коэффициенты хранятся в долговременном запоминающем устройстве, а операции суммирования и умножения производятся в арифметическом устройстве. Сигнал с выхода сумматора поступает на вход делителя 3, где производится деление на период обзора, в результате чего получается оценка скорости изменения произведения дальности на радиальную скорость. Полученная оценка делится на величину среднеквадратической ошибки определения этой оценки, вычисленной в блоке 4 по данным измерений дальности и радиальной скорости. Полученный результат подается на пороговое устройство 6, где сравнивается с порогом, величина которого зависит от заданной вероятности определения времени окончания АУТ.
При превышении величины отношения U ˙ ^ ( r i r ˙ i ) σ U ˙ ^ ( r i r ˙ i )
Figure 00000085
заданного порога принимается решение об окончании активного участка и о начале пассивного участка баллистической траектории. После принятия такого решения информация о времени окончания АУТ выдается потребителем на устройства (системы) определения параметров движения ракеты по выборкам радиолокационных измерений, произведенных на пассивном участке траектории, то есть после выключения ракетного двигателя. В результате этого параметры движения ракеты и ее траектория рассчитываются без методических ошибок, появляющихся при наличии в обрабатываемых выборках измерений, произведенных на АУТ.
Заявляемое изобретение соответствует условиям новизны и изобретательского уровня. Признаками изобретения, совпадающими с признаками прототипа, являются операции преобразования измеренных полярных координат, вычисление оценок скорости изменения преобразованных координат и значений СКО этих оценок, деление оценок на СКО и принятие решения об окончании активного участка траектории по результатам сравнения величины отношения оценки скорости к СКО этой оценки с величиной заданного порога.
Новизна заключается в следующем:
формируются фиксированные выборки произведений дальности на радиальную скорость, а не выборки значений декартовых координат;
вычисляются оценки скорости изменения произведения дальности на радиальную скорость, а не оценки скорости изменения горизонтальных декартовых координат;
с порогом сравниваются значения отношения оценки скорости к СКО этой оценки, а не отношения абсолютной величины приращения оценок скоростей изменения декартовых координат в соседних обзорах к СКО оценки скорости;
решение об окончании АУТ принимают при превышении заданного порога величиной отношения оценки скорости к СКО этой оценки, а не в момент времени, когда отношение абсолютной величины приращения оценок скоростей изменения декартовых в соседних обзорах к СКО оценки скорости становится меньше заданного порога.
Промышленная применимость заявляемого изобретения подтверждается возможностью определения времени окончания АУТ с помощью РЛС типа «Резонанс-НЭ», находящихся на вооружении ПВО, и других станций, измеряющих радиальную скорость ракеты с ошибками до 10-20 м/с.
Использование предлагаемого способа радиолокационного определения времени окончания активного участка позволит повысить вероятность определения времени окончания АУТ и устранить методические ошибки определения параметров движения ракеты, экстраполяции баллистической траектории и прогноза точки падения ракеты за счет исключения измерений дальности, азимута, угла места, радиальной скорости, произведенных на активном участке, из состава обрабатываемых выборок.

Claims (1)

  1. Способ радиолокационного определения времени окончания активного участка баллистической траектории, заключающийся в том, что производят преобразование измеренных полярных координат баллистической ракеты, формируют фиксированную выборку типа «скользящего окна» значений преобразованных координат, вычисляют оценку скорости изменения преобразованных координат и ее среднеквадратическую ошибку, вычисляют отношение оценки скорости к среднеквадратической ошибке этой оценки, решение о времени окончания активного участка принимают по результатам сравнения полученного отношения оценки скорости к среднеквадратической ошибке этой оценки в каждом новом положении «скользящего окна» с порогом, соответствующим заданной вероятности, отличающийся тем, что при преобразовании полярных координат вычисляют произведения измеренных значений дальности на измеренные значения радиальной скорости, формируют фиксированную выборку полученных произведений, оценку скорости изменения произведения дальности на радиальную скорость находят путем оптимального взвешенного суммирования выборки значений произведений дальности на радиальную скорость, а решение об окончании активного участка траектории принимают в момент времени, когда значение отношения оценки скорости изменения произведения дальности на радиальную скорость к среднеквадратической ошибке этой оценки становится больше заданного порога.
RU2012143010/07A 2012-10-10 2012-10-10 Способ радиолокационного определения времени окончания активного участка баллистической траектории RU2509319C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012143010/07A RU2509319C1 (ru) 2012-10-10 2012-10-10 Способ радиолокационного определения времени окончания активного участка баллистической траектории

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012143010/07A RU2509319C1 (ru) 2012-10-10 2012-10-10 Способ радиолокационного определения времени окончания активного участка баллистической траектории

Publications (1)

Publication Number Publication Date
RU2509319C1 true RU2509319C1 (ru) 2014-03-10

Family

ID=50192196

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012143010/07A RU2509319C1 (ru) 2012-10-10 2012-10-10 Способ радиолокационного определения времени окончания активного участка баллистической траектории

Country Status (1)

Country Link
RU (1) RU2509319C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2607358C1 (ru) * 2015-08-05 2017-01-10 Закрытое акционерное общество "Научно-исследовательский центр "Резонанс" (ЗАО "НИЦ "Резонанс") Способ радиолокационного определения модуля скорости баллистического объекта
RU2634479C2 (ru) * 2015-07-14 2017-10-31 Закрытое акционерное общество "Научно-исследовательский центр "Резонанс" (ЗАО "НИЦ "Резонанс") Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
RU2752265C1 (ru) * 2020-08-11 2021-07-26 Федеральное государственное бюджетное учреждение "3 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Способ и устройство определения момента окончания активного участка баллистической траектории по выборкам квадратов дальности
RU2793774C1 (ru) * 2022-05-17 2023-04-06 Федеральное государственное бюджетное учреждение "3 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Способ распознавания баллистической цели с использованием оценок первого и второго приращений радиальной скорости

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2180955C1 (ru) * 2001-04-12 2002-03-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Поиск" Устройство формирования времени коррекции вскрытия или отделения головной части ракеты
RU2362965C2 (ru) * 2007-03-09 2009-07-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Поиск" Устройство формирования времени коррекции отделения головной части ракеты
GB2472559A (en) * 2008-06-06 2011-02-09 Agd Systems Ltd Radar methods and apparatus
EP1925948B1 (en) * 2006-11-24 2011-04-27 Hitachi, Ltd. Radar apparatus and signal processing method
RU2429439C2 (ru) * 2009-10-30 2011-09-20 Сергей Петрович Белоконь Автоматизированная система управления высокоточным оружием
US20120200451A1 (en) * 2011-02-03 2012-08-09 Yoshikazu Shoji Radar device, radar receiver, and target detection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2180955C1 (ru) * 2001-04-12 2002-03-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Поиск" Устройство формирования времени коррекции вскрытия или отделения головной части ракеты
EP1925948B1 (en) * 2006-11-24 2011-04-27 Hitachi, Ltd. Radar apparatus and signal processing method
RU2362965C2 (ru) * 2007-03-09 2009-07-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Поиск" Устройство формирования времени коррекции отделения головной части ракеты
GB2472559A (en) * 2008-06-06 2011-02-09 Agd Systems Ltd Radar methods and apparatus
RU2429439C2 (ru) * 2009-10-30 2011-09-20 Сергей Петрович Белоконь Автоматизированная система управления высокоточным оружием
US20120200451A1 (en) * 2011-02-03 2012-08-09 Yoshikazu Shoji Radar device, radar receiver, and target detection method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КУЗЬМИН С.З. Цифровая обработка радиолокационной информации. - М.: Радио и связь, 1967, с.347. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2634479C2 (ru) * 2015-07-14 2017-10-31 Закрытое акционерное общество "Научно-исследовательский центр "Резонанс" (ЗАО "НИЦ "Резонанс") Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации
RU2607358C1 (ru) * 2015-08-05 2017-01-10 Закрытое акционерное общество "Научно-исследовательский центр "Резонанс" (ЗАО "НИЦ "Резонанс") Способ радиолокационного определения модуля скорости баллистического объекта
RU2752265C1 (ru) * 2020-08-11 2021-07-26 Федеральное государственное бюджетное учреждение "3 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Способ и устройство определения момента окончания активного участка баллистической траектории по выборкам квадратов дальности
RU2793774C1 (ru) * 2022-05-17 2023-04-06 Федеральное государственное бюджетное учреждение "3 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Способ распознавания баллистической цели с использованием оценок первого и второго приращений радиальной скорости

Similar Documents

Publication Publication Date Title
RU2510861C1 (ru) Способ радиолокационного определения времени окончания активного участка баллистической траектории
RU2524208C1 (ru) Способ радиолокационного обнаружения маневра баллистической цели на пассивном участке траектории
US9007570B1 (en) Airborne wind profiling algorithm for Doppler Wind LIDAR
RU2432580C1 (ru) Способ определения координат источника радиоизлучений при амплитудно-фазовой пеленгации с борта летательного аппарата
US8106814B2 (en) Method of estimating the elevation of a ballistic projectile
RU2540323C1 (ru) Способ определения модуля скорости баллистической цели в наземной радиолокационной станции
RU2660498C1 (ru) Способ трассового сопровождения воздушных маневрирующих источников радиоизлучения по пеленговой информации от однопозиционной системы радиотехнической разведки воздушного базирования
US20100176984A1 (en) Method of eliminating ground echoes for a meteorological radar
RU2509319C1 (ru) Способ радиолокационного определения времени окончания активного участка баллистической траектории
Persson et al. On modeling RCS of aircraft for flight simulation
CN104913743A (zh) 基于惯性测量的电力铁塔变形监测方法
CN111257867A (zh) 基于磁化等离子体非相干散射理论谱的电离层探测系统
RU2558699C1 (ru) Комплексный способ навигации летательных аппаратов
RU2617830C1 (ru) Способ пассивной однопозиционной угломерно-разностно-доплеровской локации перемещающегося в пространстве радиоизлучающего объекта и радиолокационная система для реализации этого способа
Page et al. Detection and tracking of moving vehicles with Gotcha radar systems
RU2562616C1 (ru) Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
RU2669773C1 (ru) Способ определения модуля скорости неманеврирующей аэродинамической цели по выборкам измерений дальности
Poisson et al. Moving target tracking using circular SAR imagery
RU2658317C1 (ru) Способ и устройство определения модуля скорости баллистического объекта с использованием выборки квадратов дальности
CN109188417A (zh) 采用无人机平台对扫描式辐射源进行单站被动定位的方法
RU2615783C1 (ru) Обнаружитель маневра баллистической ракеты по фиксированной выборке квадратов дальности
RU2615784C1 (ru) Способ и устройство радиолокационного обнаружения маневра баллистического объекта по выборкам квадратов дальности
RU2632476C2 (ru) Способ обнаружения маневра баллистического объекта по выборкам произведений дальности на радиальную скорость и устройство для его реализации
RU2525829C1 (ru) Радиолокационный способ выявления закона изменения угловой скорости поворота сопровождаемого воздушного объекта по последовательно принятым отражениям сигналов с перестройкой несущей частоты
RU2714884C1 (ru) Способ определения курса объекта на линейной траектории с использованием измерений его радиальной скорости

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141011

NF4A Reinstatement of patent

Effective date: 20151220

MM4A The patent is invalid due to non-payment of fees

Effective date: 20171011

NF4A Reinstatement of patent

Effective date: 20190424

MM4A The patent is invalid due to non-payment of fees

Effective date: 20201011