RU2617830C1 - Способ пассивной однопозиционной угломерно-разностно-доплеровской локации перемещающегося в пространстве радиоизлучающего объекта и радиолокационная система для реализации этого способа - Google Patents

Способ пассивной однопозиционной угломерно-разностно-доплеровской локации перемещающегося в пространстве радиоизлучающего объекта и радиолокационная система для реализации этого способа Download PDF

Info

Publication number
RU2617830C1
RU2617830C1 RU2016113834A RU2016113834A RU2617830C1 RU 2617830 C1 RU2617830 C1 RU 2617830C1 RU 2016113834 A RU2016113834 A RU 2016113834A RU 2016113834 A RU2016113834 A RU 2016113834A RU 2617830 C1 RU2617830 C1 RU 2617830C1
Authority
RU
Russia
Prior art keywords
values
radio
time
tech
output
Prior art date
Application number
RU2016113834A
Other languages
English (en)
Inventor
Альберт Леонидович Джиоев
Иван Степанович Омельчук
Дмитрий Александрович Тюрин
Геннадий Леонтьевич Фоминченко
Геннадий Геннадьевич Фоминченко
Владимир Викторович Яковленко
Original Assignee
Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") filed Critical Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС")
Priority to RU2016113834A priority Critical patent/RU2617830C1/ru
Application granted granted Critical
Publication of RU2617830C1 publication Critical patent/RU2617830C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/023Systems for determining distance or velocity not using reflection or reradiation using radio waves using impedance elements varying with distance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/04Systems for determining distance or velocity not using reflection or reradiation using radio waves using angle measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/10Systems for determining distance or velocity not using reflection or reradiation using radio waves using Doppler effect

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к области радиотехники и может использоваться в системах пассивной радиолокации, радиопеленгации и радиотехнического наблюдения для однопозиционного определения направления и скорости движения в пространстве радиоизлучающих объектов (РИО), селекции их по скорости, а также определения местоположения и траекторий движения. Достигаемый технический результат изобретения - возможность измерения направления движения РИО (курсового угла), величины модуля линейной скорости, наклонной дальности и траектории движении РИО. Указанный результат достигается за счет того, что восстанавливают, зная вид модуляции, несущую частоту принятого сигнала, формируют в соответствующие моменты времени и запоминают значения ее отсчетов, представляют результаты в виде соответствующей зависимости от времени, фильтруют полученную зависимость для уменьшения ошибок измерений, получая усредненную зависимость, выбирают из зависимости и фиксируют в заданные моменты времени требуемые для вычислений значения несущей частоты сигнала, интерполируют полученные усредненные угловые зависимости азимута и угла места, вычисляют интервалы времени прохождения объектом соответствующих азимутальных секторов, вычисляют приращения доплеровских сдвигов частоты принимаемых сигналов, вычисляют интерполированные и экстраполированные значения дальностей на интервале наблюдения, определяют критерий сохранения гипотезы о равномерном и прямолинейном движении РИО, определяют наклонные дальности и высоты по соответствующим формулам, на основании соответствующих вычислений строят траекторию движения РИО в пространстве на интервале наблюдения, проверяя справедливость гипотезы о равномерном и прямолинейном движении РИО, при этом устройством, реализующим способ, является угломерно-разностно-доплеровская радиолокационная система, выполненная определенным образом. 2 н. и 1 з.п. ф-лы, 4 ил.

Description

Изобретение относится к области радиотехники и может использоваться в системах пассивной радиолокации, радиопеленгации и радиотехнического наблюдения для однопозиционного определения направлений, скоростей движения в пространстве, координат и траекторий радиоизлучающих объектов (РИО), а также их селекции по скорости движения.
Направление на РИО обычно определяется с помощью радиопеленгаторов [1 - Бакулев П.А. Радиолокационные системы. М.: Радиотехника. 2007. 376 с. С. 267], а расстояние до него - методами активной радиолокации за счет зондирования пространства излучениями радиолокационной системы (РЛС) с использованием радиодальномеров: фазовых [1 - С. 242], частотных [1 - С. 246] или импульсных [1 - С. 252].
В пассивной радиолокации прямое измерение дальности невозможно, так как зондирующие излучения не используются. В то же время пассивная радиолокация обладает определенными преимуществами [2 - Пассивная радиолокация: методы обнаружения объектов / Под ред. проф. Р.П. Быстрова и проф. А.В. Соколова. М.: Радиотехника. 2008. 320 с. С. 6], что делает привлекательным ее применение для решения ряда практических задач. Так как пассивные РЛС функционируют скрытно, существенно затрудняется определение их дислокации и характеристик, а в условиях военных конфликтов повышается живучесть систем. Наконец, при использовании пассивных РЛС отсутствуют затраты энергии на излучение, что уменьшает сложность и стоимость систем.
Отметим, что современные подвижные объекты различного назначения - ИСЗ, корабли, самолеты, беспилотные летательные аппараты, крылатые и баллистические ракеты (при испытаниях) - всегда оснащают одним или несколькими радиопередающими устройствами для обмена между собой и командными пунктами информацией с помощью сигналов систем связи, навигации, телеметрии, передачи данных и т.д. Радиопередающие устройства вышеперечисленных объектов функционируют в диапазонах частот от 0,1 до 50,0 ГГц и обычно используют широкополосные сигналы с фазовой и/или квадратурной амплитудной модуляцией различной кратности. По излучениям этих бортовых устройств с помощью пассивных РЛС может осуществляться обнаружение перемещающихся в пространстве РИО, определение их угловых координат (УК) и слежение за объектами.
Определение расположения и траекторий движения РИО системами пассивной локации является более сложной задачей. Для ее решения обычно применяют несколько разнесенных в пространстве станций, которые с помощью системы ретрансляции данных объединяются в многопозиционную систему [3 - Кондратьев B.C., Котов А.Ф., Марков Л.Н. Многопозиционные радиотехнические системы. М.: Радио и связь. 1986. 264 с.]. При этом, по сравнению с однопозиционной системой, возрастает объем используемой аппаратуры, ее сложность и стоимость. Кроме того, разнесенный прием приводит к частичному разрушению пространственно-когерентных связей между принимаемыми сигналами. Однопозиционная локация свободна от этих недостатков, но не обеспечивает без использования дополнительных данных определение наклонной дальности, скорости и траекторий движения РИО. В связи с этим поиск способов и создание устройств эффективной однопозиционной пассивной локации, обеспечивающих определение скоростей движения, координат и траекторий перемещающихся в пространстве РИО является актуальной задачей.
Известен способ однопозиционного измерения угловой скорости объекта [4 - Алпатов Б.А., Балашов О.Е. Измерение скорости объекта в системах автоматического сопровождения объектов // Вестник РГРТУ. Рязань. 2014. №4 (выпуск 50). С. 5-10]; он является аналогом заявляемого способа. В способе [4] на основании угловых измерений определяют условную скорость объекта, пропорциональную с постоянным коэффициентом его реальной скорости, в предположении, что объект движется в пространстве равномерно и прямолинейно. При этом УК объекта измеряют в
Figure 00000001
временных моментах, отстоящих друг от друга на интервал T, затем из множества возможных параллельных траекторий движения, соответствующих измеренным УК, выбирают одну условную, на которой точки A, B и C равноудалены по времени на интервал 0,5 NT, определяют проекции координат точек A, B, C в зависимости (функциональной) от соответствующих проекций линейной скорости, и наконец, задавшись значениями координат точки C, определяют значения проекций Vx, Vy, Vz, текущей линейной скорости объекта, а также саму условную линейную скорость и экстраполированные значения УК.
Недостатком аналога [4] является невозможность определения истинных координат, скорости и траектории движения РИО в пространстве.
Наиболее близким по технической сущности к заявляемому способу является способ определения из одной точки наклонной дальности до движущейся цели [5 - патент 2557808, РФ. Способ определения наклонной дальности до движущейся цели пассивным моностатическим пеленгатором / Борисов Е.Г., Мартемьянов И.С.], принятый за прототип. В соответствии с [5] совместно обрабатывают два последовательных во времени измерения пеленгов (углов азимута β1 и β2) и мощностей РС1 и РС2 сигналов для моментов измерений t1 и t2. Учитывая, что базовая точка измерения соответствует геометрическому центру угломерной системы, а линия Ц1ЦN (траектория движения цели) соответствует точкам Ц1 и Ц2 измерения пеленга на цель в моменты времени t1 и t2, в предположении, что цель движется прямолинейно, на основании полученных значений РС1 и РС2 вычисляют величину
Figure 00000002
. Производят два последовательных измерения частот
Figure 00000003
и
Figure 00000004
принятых сигналов в моменты времени t1 и t2 соответственно, и на основании этих измерений определяют величину
Figure 00000005
; далее на основании измеренных углов азимута β1 и β2 определяют Δβ2121. После этого вычисляют дальность до цели по формуле
Figure 00000006
1
где c - скорость света;
Т=Δt12.
Анализ материалов патента [5] показал, что точностные характеристики выбранного в качестве прототипа способа определяются ошибками измерения угловых координат РИО и несущих частот излучаемых им сигналов. Так, при минимально возможных точностях измерений указанных первичных параметров, погрешность определения наклонной дальности зависит от ее значения и колеблется в пределах (5-35)%.
В реальных условиях объекты наблюдения обычно излучают модулированные сигналы с подавленной несущей, что не позволяет применять способ [5], причем мощность принимаемых сигналов подвержена флюктуациям, которые вызываются интерференцией колебаний, переотраженных элементами конструкции объекта, изменениями условий распространения и переотражениями от местных предметов. Величина флюктуаций может достигать (10-15) дБ. В этом случае погрешность измерения дальности по способу [5] при коэффициенте флюктуаций Кф=6 дБ достигает 5%, а при Кф=12 дБ достигает 2,5 раз, то есть способ становится неработоспособным.
Таким образом, недостатками прототипа [5] являются большая погрешность измерения дальности из-за флюктуаций уровня сигнала и невозможность измерения дальности в случае использования в качестве сигналов сложных модулированных излучений. Это не позволяет определить местоположение РИО, а также направления, скорости и траектории движения в пространстве.
Изобретений, решающих упомянутые проблемы путем пассивной однопозиционной локации перемещающегося РИО, авторы заявляемого способа в технической литературе не обнаружили.
Задачей, на решение которой направлен предлагаемый способ, является обеспечение возможности определения координат, направления, скорости и траекторий движения РИО в пространстве, а также селекции их по скорости на основе пассивных однопозиционных измерений УК объектов и приращений доплеровских сдвигов частоты сигналов, излучаемых радиопередающими устройствами объектов.
Для решения этой задачи предлагается способ пассивной однопозиционной угломерно-разностно-доплеровской локации перемещающегося в пространстве РИО, при котором принимают радиосигналы, констатируют обнаружение сигнала РИО и определяют его параметры - ширину спектра, среднюю частоту спектра сигнала и вид модуляции, осуществляют автосопровождение объекта по угловым координатам, измеряют в моменты времени ti=iT, где i=0, 1, 2, 3, … - номера измерений, T - интервал времени между измерениями, и запоминают значения отсчетов угловых координат (азимута β и угла места ε), а также текущего времени, соответствующего этим отсчетам, представляют результаты измерений в виде зависимостей βтек(iT) и εтек(iT), фильтруют полученные зависимости для уменьшения ошибок измерений, получая усредненные зависимости
Figure 00000007
,
Figure 00000008
, и используют эти зависимости в качестве первичных параметров при совместной обработке измерений.
Согласно изобретению, восстанавливают, зная вид модуляции, несущую частоту
Figure 00000009
принятого сигнала, формируют в моменты времени ti и запоминают значения ее отсчетов, представляют результаты в виде зависимости
Figure 00000010
, фильтруют полученную зависимость для уменьшения ошибок измерений, получая усредненную зависимость
Figure 00000011
, выбирают из зависимости
Figure 00000012
и фиксируют в заданные моменты времени ti значения несущей частоты сигнала, равные
Figure 00000013
,
где
Figure 00000014
- значение несущей частоты излучаемого сигнала;
Figure 00000015
- доплеровские сдвиги частоты несущей в моменты времени ti;
Vri - значения радиальной скорости объекта в те же моменты времени;
V - значения вектора скорости;
qi - значения курсового угла объекта;
λ - длина волны сигнала РИО;
c - скорость света.
Далее интерполируют усредненные угловые зависимости
Figure 00000016
и
Figure 00000017
, получая непрерывные функции β(t) и ε(t), извлекают из зависимости β(t), начиная с момента времени t0 и начального значения азимута β0, несколько значений азимута βk0+kΔβ, где
Figure 00000018
- номера выбранных значений азимута, Δβ - постоянная величина, и запоминают их совместно с соответствующими значениями единого времени t0, t1, t2, …, tk, фиксируют, начиная со значения β0, значения азимута βn0+nΔβ, где
Figure 00000019
- число приращений азимута, используемых при разностных вычислениях, вычисляют интервалы времени прохождения объектом азимутальных секторов Δβk,n=|βkn|, равные Δtk,n=tk-tn, интерполируют усредненную частотную зависимость
Figure 00000020
, получая непрерывную функцию
Figure 00000021
, вычисляют приращения доплеровских сдвигов частоты принимаемых сигналов
Figure 00000022
на интервалах Δtk,n, достаточно малых для справедливости предположения о равномерности и прямолинейности движения РИО со скоростью V на постоянной высоте H, когда горизонтальная скорость объекта Vг=V (при движении объекта по криволинейной траектории осуществляется ее кусочно-линейная аппроксимация на интервалах Δtm>Δtk,n), а его положение в сферической системе координат определяется текущими значениями:
- наклонной дальности Dтек, проекцией которой на плоскость горизонта является горизонтальная дальность dтек;
- азимута βтек, отсчитываемого против часовой стрелки от основного направления, совпадающего с осью Ox, до вектора горизонтальной дальности dтек;
- угла места εтек между наклонной и горизонтальной дальностями, связанными соотношением Dтек=dтекcosεтек;
- путевого угла Q, отсчитываемого против часовой стрелки от основного направления до горизонтальной проекции вектора скорости V при постоянном значении высоты H;
- курсового угла qтек, отсчитываемого против часовой стрелки от горизонтальной проекции вектора скорости до вектора горизонтальной дальности, причем qтектек+α, Q+qтектек+180°, Q=180°-α, где α - угол между вектором скорости Vг и осью 0x; определяют горизонтальные составляющие приращений доплеровских сдвигов частоты как
Figure 00000023
,
находят, задавая значения k=2 и 4, n=0 и 2, приращения доплеровских сдвигов частоты на интервалах Δt2,0, Δt4,2, Δt4,0 по формулам
Figure 00000024
,
Figure 00000025
,
Figure 00000026
,
вычисляют величину отношения
Figure 00000027
,
находят, решая полученное уравнение, значение tgα и вычисляют величину угла
Figure 00000028
,
определяют текущее значение курсового угла qkk+α и, используя уравнение для приращения доплеровского сдвига частоты на интервале Δt4,0, модуль горизонтальной скорости
Figure 00000029
, а затем - расстояние, пройденное РИО за интервал времени Δt4,0, в виде
Figure 00000030
,
определяют радиус
Figure 00000031
окружности, проходящей через начало координат, хордой которой является расстояние S4,0, находят центр O' этой окружности, фиксируя точку на конце луча длиной R, проведенного из начала координат 0 под углом βЦ0+q4-90°, рассчитывают дальности d0 и d4 из соотношения
Figure 00000032
в виде
Figure 00000033
,
определяя координаты РИО в моменты времени t0 и t4 как точки пересечения окружности с центром O' и лучей длиной d0 и d4, проведенных из начала координат под углами β0 и β4, вычисляют интерполированные dk=1,2,3 и экстраполированные dk≥4 значения дальностей на интервале сохранения гипотезы о равномерном и прямолинейном движении РИО на постоянной высоте по формулам
Figure 00000034
при k=1, 2, 3 и n=4,
Figure 00000035
при k≥4 и n=4,
определяют наклонные дальности и высоты как
Figure 00000036
и
Figure 00000037
,
где
Figure 00000038
и
Figure 00000039
- значения косинуса и тангенса угла места в моменты времени tk, осуществляют построение траектории движения РИО в пространстве на начальном интервале кусочно-линейной аппроксимации, а в случае кратковременного пропадания сигнала - ее прогнозируемое значение, при этом критерием сохранения гипотезы о равномерном и прямолинейном движении РИО является выполнение неравенств
|α-αi|<Δαi, |V-Vi|<ΔVi, |H-Hi|<ΔHi,
где Δα, ΔV, ΔH - пороговые значения величин α, V, H, определяющие размеры участка кусочно-линейной аппроксимации траектории, вычисляют, в случае изменения высоты РИО, при |Hk-Hn|≥ΔH значение угла γ пикирования (кабрирования) как
Figure 00000040
, а расчеты величин α, V, D производят, используя в вышеприведенных формулах значение Vг=Vcosγ, фиксируют в момент, когда перестают выполняться неравенства |α-αi|<Δαi и |V-Vi|<ΔVi, начало маневра объекта, после чего задают новые начальные значения азимута для следующего участка кусочно-линейной аппроксимации траектории и повторяют расчеты ее параметров α, V, D, H для построения траектории движения РИО в пространстве на интервале наблюдения.
В случае, если траектория движения РИО находится в плоскости наблюдения (вертикальной), т.е. азимут объекта с течением времени не изменяется (βiT=const), после получения непрерывной функции ε(t), извлекают из нее, начиная с момента времени t0, несколько значений угла места εk0+kΔε, где
Figure 00000041
- номера выбранных значений угла места, отстоящих от начального значения ε0 на величины kΔε, запоминают их совместно с соответствующими значениями единого времени в моменты tk, вычисляют интервал времени прохождения объектом угломестных секторов Δεk,n=4Δε как Δt4,0=t4-t0, для n=0 и 4, фиксируют в моменты времени t0, t4 текущие значения несущей частоты сигнала РИО, равные
Figure 00000042
, где
Figure 00000043
, вычисляют приращение доплеровского сдвига несущей на интервале Δt4,0 как
Figure 00000044
, определяют величину модуля вектора скорости РИО на интервале времени Δt4,0 как
Figure 00000045
, а затем расстояние, пройденное радиоизлучающим объектом за интервал Δt4,0, как ΔS=VΔt4,0, а также радиус
Figure 00000046
описывающей окружности, проходящей через начало координат, у которой хордой является расстояние ΔS, определяют центр Oʺ этой окружности, фиксируя точку на конце луча длиной R', проведенного из начала координат 0 под углом εЦ=2ε0-90°+4Δε, рассчитывают дальности до объекта из соотношения
Figure 00000047
в виде
Figure 00000048
,
Figure 00000049
, а также высоты H0(4)=D0(4)sinε0(4), определяя координаты РИО как точки пересечения окружности с центром Oʺ и лучей длиной D0 и D4, проведенных из начала координат под углами ε0 и ε4, после чего осуществляют построение траектории движения РИО в пространстве, задавая значения угла места из ряда εтек(ti) и повторяя расчеты значений Δti, Vi, Di, Hi по вышеприведенным формулам, проверяя при этом справедливость гипотезы о равномерном и прямолинейном движении РИО.
Техническим результатом, достигаемым при использовании предложенного способа, является возможность определения с достаточной точностью направления движения (курсового угла), абсолютного значения линейной скорости, наклонной дальности и траектории движения радиоизлучающего объекта, что позволяет средствами пассивной однопозиционной локации решать задачи навигации, управления движением и селекции движущихся РИО.
Аналогом заявляемого устройства - пассивной угломерно-разностно-доплеровской РЛС, реализующей предложенный способ - является однопозиционная наземная радиолокационная станция [6 - патент 2217773, РФ. Способ определения координат источника радиоизлучения и радиолокационная станция для его реализации / Беляев Б.Г., Голубев Г.Н., Жибинов В.А., Кисляков В.И., Лужных С.Н.], содержащая пассивный канал обнаружения, активный канал обнаружения, а также блок вычисления координат (БВК). Пассивный канал содержит последовательно соединенные антенну и приемник, а активный канал - антенну, антенный переключатель, передатчик, приемник, устройство вычисления дальности и синхронизатор БВК, который содержит последовательно соединенные устройство измерения сдвига принимаемых сигналов во времени и вычислитель координат. При этом выходы пассивного и активного каналов обнаружения подключены ко входам БВК, а выход БВК является выходом радиолокационной станции.
Сначала в аналоге [6] производится обнаружение источника радиоизлучения пассивным каналом, при этом антенна пассивного канала ориентируется в сторону источника и принимает его прямое излучение, что позволяет по ее положению определить УК источника. Далее с помощью активного канала в пассивном режиме производится обнаружение некоего отражающего объекта (антенна активного канала принимает отраженное от него излучение) и определяются его УК. Одновременно измеряется взаимная корреляционная функция сигналов, принятых обоими каналами, позволяющая найти их временной сдвиг. Затем с помощью активного канала обнаружения в активном режиме производится измерение дальности до источника, обнаруженного в пассивном режиме. Таким образом, аналог [6] не является чисто пассивной РЛС - в нем используются методы и пассивной, и активной радиолокации.
Недостатками аналога [6] являются необходимость существования в контролируемой зоне пространства дополнительного отражающего объекта, а также введение в состав радиолокационной станции дополнительного активного канала обнаружения с передатчиком.
В качестве прототипа заявляемого устройства (пассивной однопозиционной угломерно-разностно-доплеровской РЛС), реализующего предложенный способ, выбрано устройство из патента 2557808, РФ [5]. Это устройство содержит антенну, приемное устройство, измеритель мощности, угломерное устройство, измеритель частоты и вычислительное устройство. При этом выход антенны соединен со входом приемного устройства, первый выход которого соединен со входом измерителя мощности, второй выход - со входом угломерного устройства, а третий - со входом измерителя частоты. Выход измерителя мощности, угломерного устройства и измерителя частоты соединен соответственно с первым, вторым и третьим входами вычислительного устройства, выход которого является выходом устройства-прототипа.
Устройство из патента [5] работает следующим образом. Принятый антенной сигнал подается на вход приемного устройства, осуществляющего процедуру обнаружения и усиления сигналов до требуемого уровня. С первого выхода приемного устройства сигналы поступают в измеритель мощности, где оценивается мощность принятого сигнала. Со второго выхода приемного устройства сигналы поступают в угломерное устройство, где оцениваются УК объекта. С третьего выхода приемного устройства сигналы поступают в измеритель частоты, где оценивается частота принятого сигнала. Данные с выходов измерителя мощности, угломерного устройства и измерителя частоты подаются в вычислительное устройство, осуществляющего обработку двух последовательных во времени измерений пеленгов (углов азимута β1 и β2) и мощностей PC1 и PC2 сигналов, принимаемых автономной угломерной системой для рассматриваемых моментов измерений t1 и t2, учитывая, что базовая точка измерения соответствует геометрическому центру автономной угломерной системы, а линия Ц1ЦN (траектория движения цели) соответствует точкам Ц1 и Ц2 измерения пеленга на цель в моменты времени t1 и t2, предполагая, что цель движется прямолинейно. На основании полученных значений PC1 и PC2 вычисляют величину
Figure 00000050
, дополнительно производят два последовательных измерения частот
Figure 00000051
и
Figure 00000052
принятого сигнала в моменты времени измерений t1 и t2 соответственно, и определяют величину
Figure 00000053
, а на основании измеренных углов азимута β1 и β2 определяют Δβ2121. После этого вычисляют дальность до цели по формуле
Figure 00000054
,
где c - скорость света;
T=Δt12.
Недостатками устройства-прототипа [6] являются большая погрешность измерения дальности в случае флюктуаций уровней сигнала и невозможность измерения дальности при использовании в качестве сигналов сложных модулированных излучений.
Задачей, на решение которой направлено создание пассивной однопозиционной угломерно-разностно-доплеровской РЛС, реализующей предложенный способ, является обеспечение возможности определения направления и скорости движения, местоопределения и траектории движения РИО в пространстве с достаточной точностью при приеме флюктуирующих сигналов, а также селекции объектов по скорости на основе только пассивных однопозиционных измерений.
Для решения указанной задачи предлагается пассивная однопозиционная угломерно-разностно-доплеровская РЛС, содержащая последовательно включенные антенно-фидерную систему и радиоприемную систему, соединенную своими первым и вторым выходами со входами соответственно измерителя мощности и параметров сигналов и угломерного устройства, выходы которых соединены с первым, вторым, третьим и четвертым входами устройства вычисления, управления и синхронизации.
Согласно изобретению, в РЛС дополнительно введены устройство восстановления несущей частоты сигнала, устройство формирования отсчетов несущей, устройство формирования отсчетов угловых координат, устройство формирования отсчетов времени, устройство регистрации данных, измеритель приращений частоты, угловых координат и времени, вычислитель курсового угла, скорости и приращений положения и вычислитель линий положения, причем выход устройства формирования отсчетов времени подключен к пятому входу устройства вычисления, управления и синхронизации, а шестой и седьмой выходы устройства вычисления, управления и синхронизации соединены с первым и вторым входами устройства восстановления несущей, выход которого через УФОН подключен к первому входу устройства регистрации данных, второй вход устройства формирования отсчетов несущей подключен к восьмому выходу устройства вычисления, управления и синхронизации, соединенному также с управляющим входом устройства формирования отсчетов угловых координат, к первому и второму сигнальным входам которого подключены девятый и десятый выходы устройства вычисления, управления и синхронизации, при этом третий и четвертый выходы устройства формирования отсчетов угловых координат соединены с одиннадцатым и двенадцатым входами устройства вычисления, управления и синхронизации, а пятый и шестой выходы устройства формирования отсчетов угловых координат - со вторым и третьим входами устройства регистрации данных, выход которого соединен с последовательно включенными измерителем приращений частоты, угловых координат и времени, вычислителем курсового угла, скорости и приращений положения и вычислителем линий положения, причем выход вычислителя линий положения соединен с пятнадцатым входом устройства вычисления, управления и синхронизации, тринадцатый выход устройства вычисления, управления и синхронизации подключен к четвертому входу устройства регистрации данных, а четырнадцатый выход устройства вычисления, управления и синхронизации - к третьему входу измерителя приращений частоты, угловых координат и времени, второй выход которого соединен со входом данных устройства регистрации данных, а шестнадцатый выход устройства вычисления, управления и синхронизации является выходом системы.
Техническим результатом применения предложенного устройства является возможность однопозиционного измерения в пассивном режиме направления движения РИО (курсового угла), величины модуля линейной скорости, наклонной дальности и траектории движении РИО, что позволяет решать задачи навигации, управления движением и селекции движущихся РИО.
Предложенные способ и устройство не известны в современной радиотехнике, а также не известны источники информации, содержащие сведения об аналогичных технических решениях, имеющих признаки, сходные с признаками, отличающими заявляемые решения от прототипов, а также свойства, совпадающие со свойствами заявляемых решений. Поэтому можно считать, что предложенные изобретения обладают существенными отличиями, вытекающими из известных решений неочевидным образом и, следовательно, соответствуют критериям «новизна» и «изобретательский уровень».
Достижение заявленного технического результата поясним с помощью следующих фигур, на которых представлены:
- геометрия задачи в сферической системе координат (фигура 1);
- процесс взаимодействия пассивной однопозиционной угломерно-разностно-доплеровской локационной системы и РИО в горизонтальной плоскости (фигура 2);
- геометрия задачи для случая, когда траектория движения РИО расположена в вертикальной плоскости наблюдения (фигура 3);
- схема электрическая структурная системы, реализующей предложенный способ (фигура 4).
На фигуре 1 пассивная однопозиционная угломерно-разностно-доплеровская локационная система находится в начале 0 сферической системы координат, а РИО движется в пространстве по траектории A0F со скоростью V на постоянной высоте H.
При реализации предложенного способа выполняется следующая последовательность операций.
Принимают радиосигналы, констатируют обнаружение сигнала РИО и определяют его параметры - ширину спектра, среднюю частоту спектра сигнала и вид модуляции. Осуществляют автосопровождение объекта по угловым координатам. Измеряют в моменты времени ti=iT, где i=0, 1, 2, 3, … - номера измерений, T - интервал времени между измерениями, и запоминают значения отсчетов угловых координат (азимута β и угла места ε), а также текущего времени, соответствующего этим отсчетам - 1.
Представляют результаты измерений в виде зависимостей βтек(iT) и εтек(iT). Фильтруют полученные зависимости для уменьшения ошибок измерений, получая усредненные зависимости
Figure 00000055
,
Figure 00000056
, и используют эти зависимости в качестве первичных параметров при совместной обработке измерений - 2.
В соответствии с изобретением, восстанавливают, зная вид модуляции, несущую частоту
Figure 00000057
принятого сигнала, формируют в моменты времени ti и запоминают значения ее отсчетов, представляют результаты в виде зависимости
Figure 00000010
, фильтруют полученную зависимость для уменьшения ошибок измерений, получая усредненную зависимость
Figure 00000058
.
Выбирают из зависимости
Figure 00000059
и фиксируют в заданные моменты времени ti значения несущей частоты сигнала, равные
Figure 00000060
,
где
Figure 00000061
- значение несущей частоты излучаемого сигнала;
Figure 00000062
- доплеровские сдвиги частоты несущей в моменты времени ti;
Vri - значения радиальной скорости объекта в те же моменты времени;
V - значения вектора скорости РИО1 (1Движение РИО на рассматриваемом участке считается равномерным и прямолинейным; если движение происходит по криволинейной траектории, то, как показано на фигуре 1, осуществляется ее кусочно-линейная аппроксимация.);
qi - значения курсового угла объекта;
c - скорость света;
λ - длина волны сигнала РИО - 4.
Интерполируют усредненные угловые зависимости
Figure 00000063
и
Figure 00000064
, получая непрерывные функции β(t) и ε(t). Извлекают из зависимости β(t), начиная с момента времени t0 и начального значения азимута β0, несколько значений азимута βk0+kΔβ, где
Figure 00000065
- номера выбранных значений азимута, Δβ - постоянная величина - приращение азимута, и запоминают их совместно с соответствующими значениями единого времени t0, t1, t2, …, tk. Фиксируют, начиная со значения β0, значения азимута βn0+nΔβ, где
Figure 00000066
- число приращений азимута, используемых при разностных вычислениях, и вычисляют интервалы времени прохождения объектом азимутальных секторов Δβk,n=|βkn|, равные Δtk,n=tk-tn - 5.
Интерполируют усредненную частотную зависимость
Figure 00000067
, получая непрерывную функцию
Figure 00000068
.
Вычисляют приращения доплеровских сдвигов частоты принимаемых сигналов
Figure 00000069
на интервалах Δtk,n, достаточно малых для справедливости предположения о равномерности и прямолинейности движения РИО со скоростью V на постоянной высоте H, когда горизонтальная скорость объекта Vг=V (при движении объекта по криволинейной траектории осуществляется ее кусочно-линейная аппроксимация на интервалах Δtm>Δtk,n), а его положение в сферической системе координат определяется текущими значениями:
- наклонной дальности Dтек, проекцией которой на плоскость горизонта является горизонтальная дальность dтек;
- азимута βтек, отсчитываемого против часовой стрелки от основного направления, совпадающего с осью Ox, до вектора горизонтальной дальности dтек;
- угла места εтек между наклонной и горизонтальной дальностями, связанными соотношением Dтек=dтекcosεтек;
- путевого угла Q, отсчитываемого против часовой стрелки от основного направления до горизонтальной проекции вектора скорости V при постоянном значении высоты H;
- курсового угла qтек, отсчитываемого против часовой стрелки от горизонтальной проекции вектора скорости до вектора горизонтальной дальности, причем qтектек+α, Q+qтектек+180°, Q=180°-α, где α - угол между вектором скорости Vг и осью 0x.
Определяют горизонтальные составляющие приращений доплеровских сдвигов частоты как
Figure 00000070
.
Геометрическая интерпретация приведенных выше соотношений представлена на фигуре 2.
Далее находят, задавая значения k=2 и 4, n=0 и 2, приращения доплеровских сдвигов частоты на интервалах Δt2,0, Δt4,2, Δt4,0 по формулам
Figure 00000071
,
Figure 00000072
,
Figure 00000073
.
Вычисляют величину отношения
Figure 00000074
и, решая полученное уравнение, находят значение tgα, откуда получают величину угла
Figure 00000075
.
Определяют в соответствии с фигурой 2 текущее значение курсового угла как qkk+α. Используя уравнение для приращения доплеровского сдвига частоты на интервале Δt4,0, находят модуль горизонтальной скорости
Figure 00000076
, а затем - расстояние, пройденное РИО за интервал времени Δt4,0, в виде
Figure 00000077
.
После этого определяют радиус
Figure 00000078
окружности, проходящей через начало координат, хордой которой является расстояние S4,0, и находят центр O' этой окружности, фиксируя точку на конце луча длиной R, проведенного из начала координат 0 под углом βЦ0+q4-90° - 11.
Затем рассчитывают дальности d0 и d4 из соотношения
Figure 00000079
в виде
Figure 00000080
, определяя координаты РИО в моменты времени t0 и t4 как точки пересечения окружности с центром O' и лучей длиной d0 и d4, проведенных из начала координат под углами β0 и β4 - 12.
Далее вычисляют интерполированные dk=1,2,3 и экстраполированные dk≥4 значения дальностей на интервале сохранения гипотезы о равномерном и прямолинейном движении РИО на постоянной высоте по формулам
Figure 00000081
при k=1, 2, 3 и n=4,
Figure 00000082
при k≥4 и n=4,
после чего определяют наклонные дальности и высоты как
Figure 00000083
и
Figure 00000084
,
где
Figure 00000085
и
Figure 00000086
- значения косинуса и тангенса угла места в моменты времени tk - 13.
Затем осуществляют построение траектории движения РИО в пространстве на начальном интервале кусочно-линейной аппроксимации, а в случае кратковременного пропадания сигнала - ее прогнозируемое значение, при этом критерием сохранения гипотезы о равномерном и прямолинейном движении радиоизлучающего объекта является выполнение неравенств
|α-αi|<Δαi, |V-Vi|<ΔVi, |H-Hi|<ΔHi,
где Δα, ΔV, ΔH - пороговые значения величин α, V, H, определяющие размеры участка кусочно-линейной аппроксимации траектории. В случае изменения высоты РИО вычисляют при |Hk-Hn|≥ΔH значение угла γ пикирования (кабрирования) как
Figure 00000087
, а расчеты величин α, V, D производят, используя в вышеприведенных формулах значение Vг=Vcosγ - 14.
В момент, когда перестают выполняться неравенства |α-αi|<Δαi и |V-Vi|<ΔVi, фиксируют начало маневра объекта, после чего задают новые начальные значения азимута для следующего участка кусочно-линейной аппроксимации траектории и повторяют расчеты ее параметров α, V, D, H для построения траектории движения радиоизлучающего объекта в пространстве на интервале наблюдения - 15.
Геометрия задачи, когда траектория движения РИО находится в плоскости наблюдения (вертикальной), т.е. его азимут с течением времени не изменяется, представлена на фигуре 3. В этом случае для построения траектории движения РИО выполняется следующая последовательность операций.
После получения непрерывной функции ε(t), извлекают из нее, начиная с момента времени t0, несколько значений угла места εk0+kΔε, где
Figure 00000088
- номера выбранных значений угла места, отстоящих от начального значения ε0 на величины kΔε, и запоминают их совместно с соответствующими значениями единого времени в моменты tk. Вычисляют интервал времени прохождения объектом угломестных секторов Δεk,n=4Δε как Δt4,0=t4-t0, для n=0 и 4, фиксируют в моменты времени t0, t4 текущие значения несущей частоты сигнала РИО, равные
Figure 00000089
, где
Figure 00000090
, вычисляют приращение доплеровского сдвига частоты несущей на интервале Δt4,0 как
Figure 00000091
.
Далее определяют величину модуля вектора скорости РИО на интервале времени Δt4,0 как
Figure 00000092
, а затем расстояние, пройденное радиоизлучающим объектом за интервал Δt4,0, как ΔS=VΔt4,0, а также радиус
Figure 00000093
описывающей окружности, проходящей через начало координат, у которой хордой является расстояние ΔS. Определяют центр Oʺ этой окружности, фиксируя точку на конце луча длиной R', проведенного из начала координат 0 под углом εЦ=2ε0-90°+4Δε - 17.
Затем рассчитывают дальности до объекта из соотношения
Figure 00000094
в виде
Figure 00000095
,
Figure 00000096
, а также высоты H0(4)=D0(4)sinε0(4), определяя координаты радиоизлучающего объекта как точек пересечения окружности с центром Oʺ и лучей длиной D0 и D4, проведенных из начала координат под углами ε0 и ε4 - 18.
После этого осуществляют построение траектории движения РИО в пространстве, задавая значения угла места из ряда εтек(ti) и повторяя расчеты значений Δti, Vi, Di, Hi по вышеприведенным формулам, проверяя при этом справедливость гипотезы о равномерном и прямолинейном движении радиоизлучающего объекта - 19.
Примером реализации предложенного способа является пассивная однопозиционная угломерно-разностно-доплеровская РЛС, структурная схема которой приведена на фигуре 4, где приняты следующие обозначения:
1 - антенно-фидерная система (АФС);
2 - радиоприемная система (РПС);
3 - измеритель мощности и параметров сигналов (ИМПС);
4 - угломерное устройство (УМУ);
5 - устройство вычисления, управления и синхронизации (УВУС);
6 - устройство восстановления несущей (УВН);
7 - устройство формирования отсчетов несущей (УФОН);
8 - устройство формирования отсчетов угловых координат (УФОУК);
9 - устройство формирования отсчетов времени (УФОВ);
10 - устройство регистрации данных (УРД);
11 - измеритель приращений частоты, угловых координат и времени (ИПЧ-УК-В);
12 - вычислитель курсового угла, скорости и приращений положения (ВКУ-С-ПП);
13 - вычислитель линий положения (ВЛП).
Заявляемое устройство - пассивная однопозиционная угломерно-разностно-доплеровская РЛС - содержит (фигура 4) последовательно включенные антенно-фидерную систему и радиоприемную систему, соединенную своими первыми и вторым выходами со входами соответственно ИМПС и УМУ, выходы которых соединены с первым, вторым, третьим и четвертым входами УВУС.
В заявляемую РЛС дополнительно введены устройство формирования отсчетов времени, устройство восстановления несущей частоты сигнала, устройство формирования отсчетов несущей, устройство формирования отсчетов угловых координат, устройство регистрации данных, измеритель приращений частоты, угловых координат и времени, вычислитель курсового угла, скорости и приращений положения и вычислитель линий положения, причем выход устройства формирования отсчетов времени подключен к пятому входу устройства вычисления, управления и синхронизации, а шестой и седьмой выходы устройства вычисления, управления и синхронизации соединены с первым и вторым входами устройства восстановления несущей, выход которого подключен к первому входу устройства регистрации данных через устройство формирования отсчетов несущей, второй вход устройства формирования отсчетов несущей подключен к восьмому выходу устройства вычисления, управления и синхронизации, соединенному также с управляющим входом устройства формирования отсчетов угловых координат, к первому и второму сигнальным входам которого подключены девятый и десятый выходы устройства вычисления, управления и синхронизации, при этом третий и четвертый выходы устройства формирования отсчетов угловых координат соединены с одиннадцатым и двенадцатым входами устройства вычисления, управления и синхронизации, а пятый и шестой выходы устройства формирования отсчетов угловых координат - со вторым и третьим входами устройства регистрации данных, выход которого соединен с первым входом измерителя приращений частоты, угловых координат и времени, выход которого подключен ко входу вычислителя курсового угла, скорости и приращений положения, соединенного своим выходом со входом вычислителя линий положения, выход которого соединен с пятнадцатым входом устройства вычисления, управления и синхронизации, причем тринадцатый выход устройства вычисления, управления и синхронизации подключен к четвертому входу устройства регистрации данных, а четырнадцатый выход устройства вычисления, управления и синхронизации - к третьему входу измерителя приращений частоты, угловых координат и времени, второй выход которого соединен со входом данных устройства регистрации данных, а шестнадцатый выход устройства вычисления, управления и синхронизации является выходом системы.
РЛС работает следующим образом. После включения АФС 1 принимает радиосигналы, которые подаются их на вход РПС 2, где осуществляется их усиление и преобразование по частоте, а также констатируется обнаружение сигнала РИО. Напряжение с выходов РПС 2 подается параллельно на входы ИМПС 3 и УМУ 4. В ИМПС 3 определяют мощность и параметры сигнала - ширину спектра, среднюю частоту спектра сигнала и вид модуляции. В УМУ 4 определяют УК объекта и инициируют автосопровождение объекта по угловым координатам. Измеряют в моменты времени ti=iT, где i=0, 1, 2, 3, … - номера измерений, T - интервал времени между измерениями, и запоминают значения отсчетов УК (азимута β и угла места ε). Представляют результаты измерений в виде зависимостей βтек(iT), εтек(iT). Фильтруют в УВУС 5 полученные зависимости для уменьшения ошибок измерений, получая усредненные зависимости
Figure 00000097
,
Figure 00000098
, и используют эти зависимости в качестве первичных параметров при совместной обработке последовательных во времени измерений.
В УВН 6 восстанавливают, зная вид модуляции, несущую частоту
Figure 00000099
сигнала. Измеряют в моменты времени ti=iT и запоминают значения отсчетов несущей частоты
Figure 00000100
, а также текущего времени, соответствующего этим отсчетам. Представляют результаты измерений в виде зависимости
Figure 00000101
. Фильтруют ее для уменьшения ошибок измерений, получая усредненную зависимость
Figure 00000102
, и используют эту зависимость в качестве первичного параметра при совместной обработке последовательных во времени измерений. В УФОН 7 выбирают из зависимости
Figure 00000103
и фиксируют в заданные моменты времени ti усредненные значения несущей частоты сигнала, равные
Figure 00000104
,
где
Figure 00000105
- значение несущей частоты излучаемого сигнала;
Figure 00000106
- доплеровские сдвиги частоты несущей в моменты времени ti;
Vri - значения радиальной скорости объекта в те же моменты времени;
V - значения вектора скорости;
qi - значения курсового угла объекта;
λ - длина волны сигнала радиоизлучающего объекта;
c - скорость света.
Данные с выходов ИМПС 3 и УМУ 4 подаются соответственно на первый, второй, третий и четвертый входы УВУС 5. На пятый вход УВУС 5 с выхода УФОВ 9 поступают кодированные значения текущего времени код tтек и отсчеты времени tк, с использованием которых в УВУС 5 интерполируют усредненные зависимости
Figure 00000107
,
Figure 00000108
и получают непрерывные функции βT, εT, которые подают на первый и второй входы УФОУК 8. Аналогично в УВН 6 интерполируют усредненную зависимость
Figure 00000109
и получают непрерывную функцию
Figure 00000110
, которую подают на вход УФОН 7. Здесь с использованием отсчетов времени tк, поступающих на управляющий вход с восьмого выхода УВУС 5, формируют последовательность
Figure 00000111
, которую с его выхода подают на первый вход УРД 10. Также в УФОУК 8, с использованием отсчетов времени tк, поступающих на управляющий вход с восьмого выхода УВУС 5, формируют последовательности βT(t), εT(t), которые с третьего и четвертого выходов УФОУК 8 подаются на одиннадцатый и двенадцатый входы УВУС 5, а с пятого и шестого выходов - на второй и третий входы УРД 10.
В УРД 10 с использованием данных о коде tтек, поступающих на четвертый вход с тринадцатого выхода УВУС 5, последовательности
Figure 00000112
, βT(t), εT(t) привязывают к соответствующим значениям единого времени t0, t1, t2, …tk. Далее с выхода УРД 10 они по запросу, поступающему на управляющий вход со второго выхода ИПЧ-УК-В 11, подаются на первый вход ИПЧ-УК-В 11.
С использованием данных, поступающих на третий вход ИПЧ-УК-В 11 с четырнадцатого выхода УВУС 5, в ИПЧ-УК-В 11 формируются значения Δβ, Δε и интервалов времени прохождения объектом азимутальных секторов Δβk,n=|βkn| и угломестных секторов Δεk,n=|εkn|, равных Δtk,n=tk-tn, где
Figure 00000113
- число приращений азимута или угла места, используемых при разностных вычислениях. В блоке ИПЧ-УК-В 11 определяют также значения приращений доплеровских сдвигов частоты принимаемых сигналов
Figure 00000114
на интервалах Δtk,n, достаточно малых для справедливости предположения о равномерности и прямолинейности движения РИО (при движении объекта по криволинейной траектории осуществляется ее кусочно-линейная аппроксимация на интервалах Δtm>Δtk+n, n), причем его скорость составляет V, а высота равна H (горизонтальная скорость объекта VГ=V). Задавая значения k=0, 2, 4, а n=0, 2, определяют приращения доплеровских сдвигов частоты на интервалах Δt2,0, Δt4,2, Δt4,0.
Эти приращения из ИПЧ-УК-В 11 направляют на вход ВКУ-С-ПП 12, где определяют текущее значение курсового угла qkk+α, а также, используя уравнение для приращения доплеровского сдвига частоты на интервале Δt4,0, модуль горизонтальной скорости
Figure 00000115
, а затем - расстояние, пройденное РИО за интервал времени Δt4,0, как
Figure 00000116
.
С выхода ВКУ-С-ПП 12 данные qk, V и S подаются на блок ВЛП 13, где определяют радиус
Figure 00000117
окружности, проходящей через начало координат, хордой которой является расстояние S4,0, и находят центр O' этой окружности, фиксируя точку на конце луча длиной R, проведенного из начала координат O под углом βЦ0+q4-90°, а также линии положения. Величины O', R, qk и S с выхода ВЛП 13 передаются на пятнадцатый вход УВУС 5.
В УВУС 5 вычисляют местоположение РИО как координаты точек пересечения окружности с центром O' и лучей, проведенных из начала координат под углами β0 и β4, и определяют дальности d0 и d4 из соотношения
Figure 00000118
как
Figure 00000119
. Затем вычисляют интерполированные dk=1,2,3 и экстраполированные dk≥4 значения дальностей на интервале сохранения гипотезы о равномерном и прямолинейном движении РИО на постоянной высоте по формулам
Figure 00000120
при k=1, 2, 3 и n=4,
Figure 00000121
при k≥4 и n=4,
после чего определяют наклонные дальности и высоты как
Figure 00000122
и
Figure 00000123
,
где
Figure 00000124
и
Figure 00000125
- значения косинуса и тангенса угла места в моменты tk.
Далее в УВУС 5 осуществляют построение траектории движения РИО в пространстве на начальном интервале кусочно-линейной аппроксимации, а в случае кратковременного пропадания сигнала - ее прогнозируемое значение, при этом критерием сохранения гипотезы о равномерном и прямолинейном движении радиоизлучающего объекта является выполнение неравенств
|α-αi|<Δαi, |V-Vi|<ΔVi, |H-Hi|<ΔHi,
где Δα, ΔV, ΔH - пороговые значения величин α, V, H.
Затем определяют значение угла γ пикирования (кабрирования) как
Figure 00000126
, при расчете величин α, V и D в вышеприведенных формулах используют значение VГ=Vcosγ.
В момент, когда перестают выполняться неравенства |α-αi|<Δαi и |V-Vi|<ΔVi, фиксируют начало маневра объекта, после чего задают новые начальные значения азимута для следующего участка кусочно-линейной аппроксимации траектории и повторяют расчеты ее параметров α, V, D, H, необходимые для построения траектории движения РИО в пространстве.
Для оценки точностных характеристик предложенного способа получена зависимость ошибки измерения горизонтальной дальности до РИО, являющейся финишным параметром, от ошибок измерения первичных параметров, предполагая, что они подчиняются нормальному закону распределения и являются некоррелированными.
Как показано в материалах заявки, горизонтальная дальность до РИО определяется соотношением
Figure 00000127
где
Figure 00000128
Figure 00000129
;
Figure 00000130
.
После подстановки значения tgα в соотношение (1) и ряда преобразований получаем
Figure 00000131
где
Figure 00000132
;
Figure 00000133
.
Ошибку измерения горизонтальной дальности до РИО получим на основании теоремы о линеаризации функции нескольких случайных аргументов в виде
Figure 00000134
где σλ,
Figure 00000135
, σΔt,
Figure 00000136
- среднеквадратические ошибки (СКО) измерений соответственно длины волны сигнала передающего устройства РИО, приращения доплеровского сдвига несущей частоты принимаемого сигнала, интервала времени прохождения объектом азимутального сектора kΔβ и азимута РИО.
Методы цифровой обработки сигналов позволяют производить измерение их частотных и временных параметров с относительной погрешностью не хуже 10-5…10-7, в то время как погрешности измерения УК даже при использовании антенных систем с большой апертурой находятся в пределах 10-3…10-4. Поэтому основной вклад в ошибку измерения дальности вносят погрешности измерения УК объекта, а СКО измерения дальности
Figure 00000137
Производя дифференцирование выражения (2), определяем, что
Figure 00000138
а относительная среднеквадратическая ошибка измерения дальности
Figure 00000139
где
Figure 00000140
;
Figure 00000141
;
Figure 00000142
Figure 00000143
Вычисления, проведенные по формулам (4)-(8), показали, что при изменении величины β0 в пределах 0-90°, а Δβ в пределах 1°-2,5°, среднеквадратическая ошибка определения горизонтальной дальности практически не зависит от величины β0 и равна
Figure 00000144
,
где σβ - среднеквадратическая ошибка измерения азимута в угловых минутах.
Так, при точности измерения азимута σβ=2 угловым минутам величина
Figure 00000145
.
Для оценки точностей измерений параметров движения РИО предложенным способом в зависимости от точностей измерения совокупности первичных параметров (УК, времени, доплеровских приращений несущих частот, излучаемых объектами сигналов) в Ростовском-на-Дону НИИ радиосвязи было проведено математическое моделирование предложенных способа и пассивной однопозиционной угломерно-разностно-доплеровской РЛС. При этом предполагалось, что РИО движется равномерно и прямолинейно с заданной скоростью в пределах прямой видимости по поверхности моря, суши или в воздушной среде на малой высоте, а энергии излучаемого им сигнала достаточно для обнаружения объекта, измерения его УК и параметров излучаемого сигнала с малыми ошибками.
Сначала производился расчет в функциональной зависимости от времени точных (модельных) значений координат РИО в прямоугольной системе: горизонтальной дальности, текущих значений азимута βтек и несущей частоты
Figure 00000146
излучаемого сигнала, а также ее доплеровских приращений.
Затем рассчитывались зависимости βтек(t) и
Figure 00000147
с учетом ошибок их измерений, осуществлялся расчет параметров движения объекта по формулам предложенного способа и определялись среднеквадратические значения ошибок измерений путевого и курсового углов движения РИО, горизонтальной скорости и дальности до объекта путем сравнения их модельных и рассчитанных значений.
В результате моделирования установлено, что при ошибках измерения азимута σβ=2 угловым минутам, частоты
Figure 00000148
и времени σt=10-6 с, относительные величины ошибок измерений курсового угла q движения РИО, скорости V его движения и горизонтальной дальности d соответственно равны
Figure 00000149
Предложенный способ локации и однопозиционная РЛС для его реализации надежно функционируют в условиях приема флюктуирующих сигналов при достаточном отношении сигнал/шум, так как флюктуации влияют лишь на характеристики обнаружения и точность измерения неэнергетических параметров.
Реализация способа и устройства на его основе не встречает затруднений при современном уровне развития радиотехники и систем цифровой обработки сигналов. Возможность реализации предложенного способа обеспечивает ему критерий «промышленная применимость». При этом существует возможность измерения параметров движения РИО и в случае, если траектория движения находится в плоскости наблюдения, т.е. азимут объекта с течением времени не изменяется.
Таким образом, использование предложенного способа обеспечивает по сравнению с прототипом следующий технико-экономический эффект:
- повышена точность измерения наклонной дальности в 3-5 раз;
- достигнута возможность измерения скорости движения объекта с погрешностью (1-3)% и направления его движения (курсового угла) с погрешностью (3-5)%, что позволяет производить селекцию объектов по скорости и построение траекторий их движения;
- обеспечена работоспособность способа и устройства в условиях приема сложных модулированных флюктуирующих сигналов.

Claims (38)

1. Способ пассивной однопозиционной угломерно-разностно-доплеровской локации перемещающегося в пространстве радиоизлучающего объекта, при котором принимают радиосигналы, констатируют обнаружение сигнала радиоизлучающего объекта и определяют его параметры - ширину спектра, среднюю частоту спектра сигнала и вид модуляции, осуществляют автосопровождение объекта по угловым координатам, измеряют в моменты времени ti=iT, где i=0, 1, 2, 3, … - номера измерений, Т - интервал времени между измерениями, и запоминают значения отсчетов угловых координат (азимута β и угла места ε), а также текущего времени, соответствующего этим отсчетам, представляют результаты измерений в виде зависимостей βтек(iT) и εтек(iT), фильтруют полученные зависимости для уменьшения ошибок измерений, получая усредненные зависимости
Figure 00000150
,
Figure 00000151
, и используют эти зависимости в качестве первичных параметров при совместной обработке измерений, отличающийся тем, что восстанавливают, зная вид модуляции, несущую частоту
Figure 00000152
принятого сигнала, формируют в моменты времени ti и запоминают значения ее отсчетов, представляют результаты в виде зависимости
Figure 00000153
, фильтруют полученную зависимость для уменьшения ошибок измерений, получая усредненную зависимость
Figure 00000154
, выбирают из зависимости
Figure 00000154
и фиксируют в заданные моменты времени ti значения несущей частоты сигнала, равные
Figure 00000155
где
Figure 00000156
- значение несущей частоты излучаемого сигнала;
Figure 00000157
- доплеровские сдвиги частоты несущей в моменты времени ti;
Vri - значения радиальной скорости объекта в те же моменты времени;
V - значения вектора скорости;
qi - значения курсового угла объекта;
λ - длина волны сигнала радиоизлучающего объекта;
с - скорость света,
интерполируют усредненные угловые зависимости
Figure 00000150
и
Figure 00000151
, получая непрерывные функции β(t) и ε(t), извлекают из зависимости β(t), начиная с момента времени t0 и начального значения азимута β0, несколько значений азимута βk0+kΔβ, где
Figure 00000158
- номера выбранных значений азимута, Δβ - постоянная величина, и запоминают их совместно с соответствующими значениями единого времени t0, t1, t2, …, tk, фиксируют, начиная со значения β0, значения азимута βn0+nΔβ, где
Figure 00000159
- число приращений азимута, используемых при разностных вычислениях, вычисляют интервалы времени прохождения объектом азимутальных секторов
Figure 00000160
, равные Δk,n=tk-tn, интерполируют усредненную частотную зависимость
Figure 00000154
, получая непрерывную функцию
Figure 00000161
, вычисляют приращения доплеровских сдвигов частоты принимаемых сигналов
Figure 00000162
на интервалах Δtk,n, достаточно малых для справедливости предположения о равномерности и прямолинейности движения радиоизлучающего объекта со скоростью V на постоянной высоте Н, когда горизонтальная скорость объекта V г =V (при движении объекта по криволинейной траектории осуществляется ее кусочно-линейная аппроксимация на интервалах Δtm>Δtk,n), а его положение в сферической системе координат определяется текущими значениями:
- наклонной дальности Dтeк, проекцией которой на плоскость горизонта является горизонтальная дальность dтeк;
- азимута βтек, отсчитываемого против часовой стрелки от основного направления, совпадающего с осью Ох, до вектора горизонтальной дальности dтeк;
- угла места εтек между наклонной и горизонтальной дальностями, связанными соотношением Dтек=dтeкcosεтек;
- путевого угла Q, отсчитываемого против часовой стрелки от основного направления до горизонтальной проекции вектора скорости V при постоянном значении высоты Н;
- курсового угла qтeк, отсчитываемого против часовой стрелки от горизонтальной проекции вектора скорости до вектора горизонтальной дальности, причем qтeктек+α, Q+qтeктек+180°, Q=180°-α, где α - угол между вектором скорости V г и осью 0х; определяют горизонтальные составляющие приращений доплеровских сдвигов частоты как
Figure 00000163
находят, задавая значения k=2 и 4, n=0 и 2, приращения доплеровских сдвигов частоты на интервалах Δt2,0, Δt4,2, Δt4,0 по формулам
Figure 00000164
Figure 00000165
Figure 00000166
вычисляют величину отношения
Figure 00000167
находят, решая полученное уравнение, значение tgα и вычисляют величину угла
Figure 00000168
определяют текущее значение курсового угла qkk+α и, используя уравнение для приращения доплеровского сдвига частоты на интервале Δt4,0, модуль горизонтальной скорости
Figure 00000169
, а затем - расстояние, пройденное радиоизлучающим объектом за интервал времени Δt4,0, в виде
Figure 00000170
определяют радиус
Figure 00000171
окружности, проходящей через начало координат, хордой которой является расстояние S4,0, находят центр О' этой окружности, фиксируя точку на конце луча длиной R, проведенного из начала координат 0 под углом βЦ0+q4-90°, рассчитывают дальности d0 и d4 из соотношения
Figure 00000172
в виде
Figure 00000173
определяя координаты радиоизлучающего объекта в моменты времени t0 и t4 как точки пересечения окружности с центром О' и лучей длиной d0 и d4, проведенных из начала координат под углами β0 и β4, вычисляют интерполированные dk=1, 2, 3 и экстраполированные dk≥4 значения дальностей на интервале сохранения гипотезы о равномерном и прямолинейном движении радиоизлучающего объекта на постоянной высоте по формулам
Figure 00000174
при k=1, 2, 3 и n=4,
Figure 00000175
при k≥4 и n=4,
определяют наклонные дальности и высоты как
Figure 00000176
и
Figure 00000177
где
Figure 00000178
и
Figure 00000179
- значения косинуса и тангенса угла места в моменты времени tk, осуществляют построение траектории движения радиоизлучающего объекта в пространстве на начальном интервале кусочно-линейной аппроксимации, а в случае кратковременного пропадания сигнала - ее прогнозируемое значение, при этом критерием сохранения гипотезы о равномерном и прямолинейном движении радиоизлучающего объекта является выполнение неравенств
|α-αi|<Δαi, |V-Vi|<ΔVi, |Н-Нi|<ΔНi,
где Δα, ΔV, ΔН - пороговые значения величин α, V, Н, определяющие размеры участка кусочно-линейной аппроксимации траектории, вычисляют, в случае изменения высоты радиоизлучающего объекта, при |Нkn|≥ΔН значение угла γ пикирования (кабрирования) как
Figure 00000180
, а расчеты величин α, V, D производят, используя в вышеприведенных формулах значение V г =Vcosγ, фиксируют в момент, когда перестают выполняться неравенства |α-αi|<Δαi, и |V-Vi|<ΔVi, начало маневра объекта, после чего задают новые начальные значения азимута для следующего участка кусочно-линейной аппроксимации траектории и повторяют расчеты ее параметров α, V, D, Н для построения траектории движения радиоизлучающего объекта в пространстве на интервале наблюдения.
2. Способ пассивной однопозиционной угломерно-разностно-доплеровской локации по п. 1, отличающийся тем, что в случае, если траектория движения радиоизлучающего объекта находится в плоскости наблюдения (вертикальной), т.е. азимут объекта с течением времени не изменяется (βiT=const), после получения непрерывной функции ε(t), извлекают из нее, начиная с момента времени t0, несколько значений угла места εk0+kΔε, где
Figure 00000181
- номера выбранных значений угла места, отстоящих от начального значения ε0 на величины kΔε, запоминают их совместно с соответствующими значениями единого времени в моменты tk, вычисляют интервал времени прохождения объектом угломестных секторов Δεk,n=4Δε как Δt4,0=t4-t0, для n=0 и 4, фиксируют в моменты времени t0, t4 текущие значения несущей частоты сигнала радиоизлучающего объекта, равные
Figure 00000182
, где
Figure 00000183
, вычисляют приращение доплеровского сдвига несущей на интервале Δt4,0 как
Figure 00000184
, определяют величину модуля вектора скорости радиоизлучающего объекта на интервале времени Δt4,0 как
Figure 00000185
, а затем расстояние, пройденное радиоизлучающим объектом за интервал Δt4,0, как ΔS=VΔt4,0, а также радиус
Figure 00000186
описывающей окружности, проходящей через начало координат, у которой хордой является расстояние ΔS, определяют центр Оʺ этой окружности, фиксируя точку на конце луча длиной R', проведенного из начала координат 0 под углом εЦ=2ε0-90°+4Δε, рассчитывают дальности до объекта из соотношения
Figure 00000187
в виде
Figure 00000188
Figure 00000189
, а также высоты Н0(4)=D0(4)sinε0(4), определяя координаты радиоизлучающего объекта как точки пересечения окружности с центром Оʺ и лучей длиной D0 и D4, проведенных из начала координат под углами ε0 и ε4, после чего осуществляют построение траектории движения радиоизлучающего объекта в пространстве, задавая значения угла места из ряда εтeк(ti) и повторяя расчеты значений Δti, Vi, Di, Hi по вышеприведенным формулам, проверяя при этом справедливость гипотезы о равномерном и прямолинейном движении радиоизлучающего объекта.
3. Пассивная угломерно-разностно-доплеровская радиолокационная система, содержащая последовательно включенные антенно-фидерную систему и радиоприемную систему, соединенную своим первым выходом со входом измерителя мощности и параметров сигналов, а вторым выходом - со входом угломерного устройства, выходы которых соединены с первым, вторым, третьим и четвертым входами устройства вычисления, управления и синхронизации, отличающаяся тем, что в нее дополнительно введены устройство формирования отсчетов времени, устройство восстановления несущей частоты сигнала, устройство формирования отсчетов несущей, устройство формирования отсчетов угловых координат, устройство регистрации данных, измеритель приращений частоты, угловых координат и времени, вычислитель курсового угла, скорости и приращений положения и вычислитель линий положения, причем выход устройства формирования отсчетов времени подключен к пятому входу устройства вычисления, управления и синхронизации, а шестой и седьмой выходы устройства вычисления, управления и синхронизации соединены с первым и вторым входами устройства восстановления несущей, выход которого подключен к первому входу устройства регистрации данных через устройство формирования отсчетов несущей, второй вход устройства формирования отсчетов несущей подключен к восьмому выходу устройства вычисления, управления и синхронизации, соединенному также с управляющим входом устройства формирования отсчетов угловых координат, к первому и второму сигнальным входам которого подключены девятый и десятый выходы устройства вычисления, управления и синхронизации, при этом третий и четвертый выходы устройства формирования отсчетов угловых координат соединены с одиннадцатым и двенадцатым входами устройства вычисления, управления и синхронизации, а пятый и шестой выходы устройства формирования отсчетов угловых координат - со вторым и третьим входами устройства регистрации данных, выход которого соединен с первым входом измерителя приращений частоты, угловых координат и времени, выход которого подключен ко входу вычислителя курсового угла, скорости и приращений положения, соединенного своим выходом со входом вычислителя линий положения, выход которого соединен с пятнадцатым входом устройства вычисления, управления и синхронизации, причем тринадцатый выход устройства вычисления, управления и синхронизации подключен к четвертому входу устройства регистрации данных, а четырнадцатый выход устройства вычисления, управления и синхронизации - к третьему входу измерителя приращений частоты, угловых координат и времени, второй выход которого соединен со входом данных устройства регистрации данных, а шестнадцатый выход устройства вычисления, управления и синхронизации является выходом системы.
RU2016113834A 2016-04-11 2016-04-11 Способ пассивной однопозиционной угломерно-разностно-доплеровской локации перемещающегося в пространстве радиоизлучающего объекта и радиолокационная система для реализации этого способа RU2617830C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016113834A RU2617830C1 (ru) 2016-04-11 2016-04-11 Способ пассивной однопозиционной угломерно-разностно-доплеровской локации перемещающегося в пространстве радиоизлучающего объекта и радиолокационная система для реализации этого способа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016113834A RU2617830C1 (ru) 2016-04-11 2016-04-11 Способ пассивной однопозиционной угломерно-разностно-доплеровской локации перемещающегося в пространстве радиоизлучающего объекта и радиолокационная система для реализации этого способа

Publications (1)

Publication Number Publication Date
RU2617830C1 true RU2617830C1 (ru) 2017-04-28

Family

ID=58697498

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016113834A RU2617830C1 (ru) 2016-04-11 2016-04-11 Способ пассивной однопозиционной угломерно-разностно-доплеровской локации перемещающегося в пространстве радиоизлучающего объекта и радиолокационная система для реализации этого способа

Country Status (1)

Country Link
RU (1) RU2617830C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2661357C1 (ru) * 2017-09-28 2018-07-16 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ обзорной пассивной однопозиционной моноимпульсной трёхкоординатной угломерно-разностно-доплеровской локации перемещающихся в пространстве радиоизлучающих объектов
RU2667898C1 (ru) * 2017-05-29 2018-09-25 Акционерное общество "НИИ измерительных приборов - Новосибирский завод имени Коминтерна" (АО "НПО НИИИП-НЗиК") Способ сопровождения траектории излучающей или подсвечиваемой внешним радиоэлектронным средством цели
RU2717970C1 (ru) * 2019-10-07 2020-03-27 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ обзорной трехкоординатной двухпозиционной латерационной радиолокации авиационно-космических объектов
RU2754349C1 (ru) * 2020-05-20 2021-09-01 Акционерное общество "Уральское проектно-конструкторское бюро "Деталь" Способ определения координат и параметров движения источников радиоизлучений с помощью однопозиционной пассивной радиолокационной станции
RU2776078C1 (ru) * 2021-07-02 2022-07-13 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ определения координат и параметров движения источников радиоизлучений по измерениям их несущей частоты

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2357266C1 (ru) * 2007-11-29 2009-05-27 Государственное образовательное учреждение высшего профессионального образования Тамбовское высшее военное авиационное инженерное училище радиоэлектроники (военный институт) Способ формирования маршрута носителя пеленгатора, определяющего местоположение излучателя
WO2011008206A1 (en) * 2009-07-15 2011-01-20 Lockheed Martin Corporation Method and apparatus for geographic positioning
JP2011174875A (ja) * 2010-02-25 2011-09-08 Mitsubishi Electric Corp パッシブレーダ装置
EP1902329B1 (en) * 2005-06-13 2013-02-13 Raytheon Company System and method for passively estimating angle and range of a source using signal samples collected simulataneously from a multi-aperture antenna
RU133326U1 (ru) * 2013-02-15 2013-10-10 Министерство обороны Российской Федерации Пассивное радиолокационное устройство пеленгации воздушных объектов
RU2557808C1 (ru) * 2014-04-09 2015-07-27 Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" Способ определения наклонной дальности до движущейся цели пассивным моностатическим пеленгатором
WO2015130794A1 (en) * 2014-02-25 2015-09-03 Lockheed Martin Corporation Single platform doppler geolocation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1902329B1 (en) * 2005-06-13 2013-02-13 Raytheon Company System and method for passively estimating angle and range of a source using signal samples collected simulataneously from a multi-aperture antenna
RU2357266C1 (ru) * 2007-11-29 2009-05-27 Государственное образовательное учреждение высшего профессионального образования Тамбовское высшее военное авиационное инженерное училище радиоэлектроники (военный институт) Способ формирования маршрута носителя пеленгатора, определяющего местоположение излучателя
WO2011008206A1 (en) * 2009-07-15 2011-01-20 Lockheed Martin Corporation Method and apparatus for geographic positioning
JP2011174875A (ja) * 2010-02-25 2011-09-08 Mitsubishi Electric Corp パッシブレーダ装置
RU133326U1 (ru) * 2013-02-15 2013-10-10 Министерство обороны Российской Федерации Пассивное радиолокационное устройство пеленгации воздушных объектов
WO2015130794A1 (en) * 2014-02-25 2015-09-03 Lockheed Martin Corporation Single platform doppler geolocation
RU2557808C1 (ru) * 2014-04-09 2015-07-27 Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" Способ определения наклонной дальности до движущейся цели пассивным моностатическим пеленгатором

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2667898C1 (ru) * 2017-05-29 2018-09-25 Акционерное общество "НИИ измерительных приборов - Новосибирский завод имени Коминтерна" (АО "НПО НИИИП-НЗиК") Способ сопровождения траектории излучающей или подсвечиваемой внешним радиоэлектронным средством цели
RU2661357C1 (ru) * 2017-09-28 2018-07-16 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ обзорной пассивной однопозиционной моноимпульсной трёхкоординатной угломерно-разностно-доплеровской локации перемещающихся в пространстве радиоизлучающих объектов
RU2717970C1 (ru) * 2019-10-07 2020-03-27 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ обзорной трехкоординатной двухпозиционной латерационной радиолокации авиационно-космических объектов
RU2754349C1 (ru) * 2020-05-20 2021-09-01 Акционерное общество "Уральское проектно-конструкторское бюро "Деталь" Способ определения координат и параметров движения источников радиоизлучений с помощью однопозиционной пассивной радиолокационной станции
RU2776869C1 (ru) * 2021-05-21 2022-07-28 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ определения координат и параметров движения источников радиоизлучений на основе анализа их взаимного расположения
RU2776078C1 (ru) * 2021-07-02 2022-07-13 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ определения координат и параметров движения источников радиоизлучений по измерениям их несущей частоты
RU2776079C1 (ru) * 2021-07-02 2022-07-13 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ определения координат и параметров движения источников радиоизлучений
RU2805152C1 (ru) * 2023-04-03 2023-10-11 Александр Александрович Омельшин Способ оценивания линейной скорости мобильного объекта однопозиционным средством пассивной радиолокации вне зоны прямой радиовидимости

Similar Documents

Publication Publication Date Title
Musicki et al. Geolocation using TDOA and FDOA measurements
RU2617830C1 (ru) Способ пассивной однопозиционной угломерно-разностно-доплеровской локации перемещающегося в пространстве радиоизлучающего объекта и радиолокационная система для реализации этого способа
US8106814B2 (en) Method of estimating the elevation of a ballistic projectile
Zampella et al. Robust indoor positioning fusing PDR and RF technologies: The RFID and UWB case
CN102004244B (zh) 多普勒直接测距法
US11237277B2 (en) Techniques for determining geolocations
US8791859B2 (en) High precision radio frequency direction finding system
RU2411538C2 (ru) Способ определения ошибки измерения скорости ла инерциальной навигационной системой и бортовой навигационный комплекс для его реализации
RU2735744C1 (ru) Способ обзорной однопозиционной трилатерационной некогерентной радиолокации воздушных целей
RU2661357C1 (ru) Способ обзорной пассивной однопозиционной моноимпульсной трёхкоординатной угломерно-разностно-доплеровской локации перемещающихся в пространстве радиоизлучающих объектов
RU2275649C2 (ru) Способ местоопределения источников радиоизлучения и пассивная радиолокационная станция, используемая при реализации этого способа
RU2558699C1 (ru) Комплексный способ навигации летательных аппаратов
RU2699552C1 (ru) Способ пассивной однопозиционной угломерно-доплеровской локации перемещающихся в пространстве радиоизлучающих объектов
Kauffman et al. Enhanced feature detection and tracking algorithm for UWB-OFDM SAR navigation
Plšek et al. Passive Coherent Location and Passive ESM tracker systems synergy
RU2617373C1 (ru) Способ оптимальной привязки к подвижной наземной цели и прогноза её параметров на основе модифицированной, инвариантной к рельефу подстилающей поверхности угломестной процедуры расчёта дальности
RU2483324C1 (ru) Способ навигации летательного аппарата по радиолокационным изображениям земной поверхности
Anderson et al. Networked radar systems for cooperative tracking of UAVs
Cuccoli et al. Coordinate registration method based on sea/land transitions identification for over-the-horizon sky-wave radar: Numerical model and basic performance requirements
RU2687240C1 (ru) Способ определения параметров движения и траекторий воздушных объектов при полуактивной бистатической радиолокации
Al Aziz Navigation for UAVs using signals of opportunity
RU2776078C1 (ru) Способ определения координат и параметров движения источников радиоизлучений по измерениям их несущей частоты
Kozhabayeva et al. Drone direction estimation: phase method with two-channel direction finder.
Fathi et al. Adaptive Fusion of Inertial Navigation System and Tracking Radar Data
Jian et al. Algorithm for passive localization with single observer based on ambiguous phase differences measured by rotating interferometer