RU2502054C1 - Ультразвуковой расходомер - Google Patents

Ультразвуковой расходомер Download PDF

Info

Publication number
RU2502054C1
RU2502054C1 RU2012115330/28A RU2012115330A RU2502054C1 RU 2502054 C1 RU2502054 C1 RU 2502054C1 RU 2012115330/28 A RU2012115330/28 A RU 2012115330/28A RU 2012115330 A RU2012115330 A RU 2012115330A RU 2502054 C1 RU2502054 C1 RU 2502054C1
Authority
RU
Russia
Prior art keywords
sensor
flow
insert tube
flow meter
ultrasonic flow
Prior art date
Application number
RU2012115330/28A
Other languages
English (en)
Other versions
RU2012115330A (ru
Inventor
Сергей Дмитриевич Ледовский
Original Assignee
Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралтехнология" (ООО НПП "Уралтехнология")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралтехнология" (ООО НПП "Уралтехнология") filed Critical Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралтехнология" (ООО НПП "Уралтехнология")
Priority to RU2012115330/28A priority Critical patent/RU2502054C1/ru
Priority to PCT/RU2013/000026 priority patent/WO2013157990A1/ru
Publication of RU2012115330A publication Critical patent/RU2012115330A/ru
Application granted granted Critical
Publication of RU2502054C1 publication Critical patent/RU2502054C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Изобретение относится к системам выравнивания потока текучей среды в проточной части расходомеров или в трубопроводах на входе расходомеров, предназначенных для измерений объемного расхода текучих сред. Ультразвуковой расходомер, содержащий прямолинейную проточную часть - трубопровод, первый и второй электроакустические датчики, размещенные в соответствующих корпусах, установленных внутри проточной части на расстоянии друг от друга, каждый датчик связан с измерительным блоком. При этом между датчиками в проточной части установлена трубка-вкладыш, внутреннее сечение которой выполнено в виде равностороннего многоугольника с закругленными углами. При этом сечение трубки-вкладыша по направлению от первого датчика ко второму выполнено сужающимся, с каждой торцевой стороны трубки-вкладыша в ее нижней части выполнены полки, обращенные наружу к близлежащему датчику, внутренняя полость трубки-вкладыша образует зону измерения. Корпус каждого датчика имеет обтекаемую форму, плавно расширяющуюся по направлению к зоне измерения. Датчики установлены симметрично по отношению к трубке-вкладышу. Технический результат - расширение арсенала средств для выпрямления потока в ультразвуковых расходомерах, а также упрощение конструкции устройства и повышение степени выравнивания потока. 7 з.п. ф-лы, 8 ил.

Description

Изобретение относится к системам выравнивания потока текучей среды в проточной части расходомеров или в трубопроводах на входе расходомеров, предназначенных для измерений объемного расхода текучих сред.
При измерении объемного расхода неустановившихся потоков текучих сред, характеризующихся неравномерностью скорости потока в разных точках, возникает проблема, связанная с точностью измерения расхода таких потоков. Для повышения точности измерения необходимо обеспечить одинаковую скорость потока в разных точках, т.е. необходимо выровнять эпюру скоростей потока. Для этого в проточной части расходомеров или в трубопроводах на входе в расходомеры используют средства, позволяющие выровнять скорость потока или снизить пульсации потока.
Известен ультразвуковой расходомер (патент РФ №2331851 на изобретение), состоящий из прямолинейного пролетного трубопровода диаметром D и длиной L, входной и выходной камер, соединенных с трубопроводом посредством соответственно конфузора и диффузора, первого и второго электроакустических преобразователей, размещенных в камерах и связанных с измерительным блоком. В пролетном трубопроводе коаксиально размещен измерительный канал диаметром d=(0,4-0,6)D, при этом упомянутый канал со стороны, обращенной к входной камере, имеет участок с уклоном 15° и протяженностью 10,05L, а расстояние h между измерительным каналом и вторым по ходу потока электроакустическим преобразователем выбирается из условия h=(0,4-0,6)D.. Угол наклона образующей диффузора к оси измерительного канала выбирается в диапазоне 40-50°.
Недостатком известной системы является ее сложность, обусловленная наличием в проточной части измерительного канала. Данный канал необходимо определенным образом закрепить внутри проточной части расходомера. Такое крепление осуществляется посредством специальных крепежных элементов, крепящих канал к стенкам проточной части. Недостатком известного расходомера является его недостаточная точность, т.к. крепежные элементы, крепящие канал к стенкам проточной части расходомера будут создавать сопротивление потоку и вызывать местные возмущения потока.
Техническим результатом, достигаемым предлагаемым изобретением, является расширение арсенала средств для выпрямления потока в ультразвуковых расходомерах, а также упрощение конструкции устройства и повышение степени выравнивания потока.
Заявляемый технический результат достигается за счет того, что в ультразвуковом расходомере, содержащем прямолинейную проточную часть - трубопровод, первый и второй электроакустические датчики, размещенные в соответствующих корпусах, установленных внутри проточной части на расстоянии друг от друга, каждый датчик связан с измерительным блоком, согласно изобретению между датчиками в проточной части установлена трубка-вкладыш, внутреннее сечение которой выполнено в виде равностороннего многоугольника с закругленными углами, сечение трубки-вкладыша по направлению от первого датчика ко второму выполнено сужающимся, с каждой торцевой стороны трубки - вкладыша в ее нижней части выполнены полки, обращенные наружу к близлежащему датчику, внутренняя полость трубки-вкладыша образует зону измерения, корпус каждого датчика имеет обтекаемую форму, плавно расширяющуюся по направлению к зоне измерения, датчики установлены симметрично по отношению к трубке-вкладышу.
Целесообразно, чтобы корпус каждого датчика был выполнен в форме купола. Целесообразно, чтобы поверхность каждой полки, обращенная к зоне измерения, была выполнена с наклоном, обращенным в сторону близлежащего датчика.
Целесообразно, чтобы корпус каждого датчика был выполнен из материала, пропускающего звуковое излучение.
Корпус каждого датчика целесообразно выполнять из стеклонаполненного пластика. Излучающим элементом каждого датчика может являться пьезоэлемент. Корпус каждого датчика своей верхней частью связан с корпусом проточной части. Заявляемое устройство осуществляет формирование потока текучей среды с требуемыми характеристиками, позволяющими обеспечить в дальнейшем требуемую метрологическую точность ультразвукового расходомера
В проточной части расходомера устанавливаются на расстоянии друг от друга обращенные навстречу друг другу датчики акустического излучения. Между датчиками в проточной части расходомера устанавливается трубка - вкладыш, во внутрь которой направляется поток, расход которого необходимо измерить. Внутренняя полость трубки -вкладыша образует зону измерения. Зона измерения - зона между двумя датчиками.
Трубка - вкладыш, обеспечивает формирование потока с требуемыми параметрами. Для этого сечение трубки-вкладыша имеет форму равностороннего многоугольника с закругленным углами (например, ромба или квадрата) - это позволяет распределить неоднородности потока по углам, а также выровнять эпюру скоростей и сделать ее более симметричной и однородной (фиг.1). Турбулентные зоны рассеиваются по углам равностороннего многоугольника, оставляя в зоне зондирования (в центре) поток с выровненной эпюрой скоростей.
Кроме того, сечение трубки вкладыша по направлению от датчика, установленного на входе в зону измерения, к датчику, установленному на выходе зоны измерения, уменьшается, т.е. имеет место сужение, необходимое для поддержания скорости потока по сечению трубки - вкладыша. За счет такой формы трубки-вкладыша поток поступает в зону измерения по каналу с равномерно сужающимся сечением - тем самым выравнивается эпюра скоростей, а также увеличивается скорость потока в проточной части, что в свою очередь повышает точность измерений.
Параметры сужения определяются расчетным путем и будут зависеть от геометрии проточной части расходомера и геометрии внутренней полости трубки-вкладыша. Соотношение сечений на входе и выходе из трубки-вкладыша составляет - S1/S2=1.1, где S1 - площадь трубки-вкладыша на входе, а S2 - площадь на выходе.
Корпус каждого датчика, предназначенный для размещения излучающего элемента, например, пьезоэлемента, имеет обтекаемую форму, плавно расширяющуюся по направлению к зоне измерения (форма купола), тем самым обеспечивается равномерное обтекание датчика слева, справа и снизу, при этом предотвращаются разрывы потока. При обтекании датчика происходит перераспределение скоростей и в зону измерения поступает уже более однородный поток. Датчики установлены симметрично (достигается цель унификации применяемых элементов, а также обеспечивается возможность работы в режиме реверса - в обратном направлении). Корпус датчика, установленного на входе в зону измерения, выполняет также функцию элемента, предназначенного для сужения потока на входе в зону измерения (т.к. корпус датчика установлен в проточной части расходомера непосредственно на входе в зону измерения и занимает в проточной части определенный объем).
Сужение потока на входе в зону измерения позволяет повысить скорость потока на входе в зону измерения и, тем самым, повысить точность измерения. Симметричное расположение второго датчика позволяет обеспечить работу расходомера на реверсе (в обратном направлении).
Вышеописанная форма корпуса каждого датчика позволяет обеспечить требуемую точность измерения и в том случае, если расходомер установлен непосредственно после колена (изгиба трубы на 90°). В этом случае поток «прижимается» к боковой стенке трубы (фиг.2). После того, как такой поток обтекает корпус датчика на входе в зону измерения, происходит распределение скоростей потока вокруг корпуса датчика и в зону измерения уже поступает более однородный поток (фиг.2).
На противоположных торцах трубки-вкладыша в ее нижней части выполнены полки, обращенные к датчикам и выходящие за пределы зоны измерения. Полки, являющиеся частью трубки-вкладыша, способствуют равноускоренному обтеканию датчика и равномерному распределению скорости на входе в зону измерения, уменьшается тень - зона маленьких скоростей после обтекания корпуса датчика за счет того что после полок поток направляется вверх и ускоряется (фиг.3). Для этого внутренняя поверхность каждой полки выполнена с наклоном, обращенным в сторону датчика. Это позволит обеспечить более плавный переход потока из более широкой проточной части в более узкую зону измерения, избежав образования участков, в которых могут образовываться возмущения потока.
Корпус датчика выполнен из материала, пропускающего излучение (звук), например, из стеклонаполненного пластика.
Внутри корпуса датчика установлен излучающий элемент, например, пьезоэлемент, который наиболее распространен в ультразвуковых расходомерах.
Заявляемое устройство обеспечивает допустимое падение давления от входа в зону измерения к выходу из зоны измерения. По стандарту EN1434 -АР должен быть не более 0,25 атм на номинальном расходе.
Заявляемое устройство обеспечивает точность в пределах ±1%, что выше, чем в существующих конструкциях ультразвуковых расходомеров, измеряющих расход потока в трубопроводах.
Заявляемый ультразвуковой расходомер измеряет расход на основе измерения времени распространения импульсов ультразвукового колебания через двигающуюся жидкость. Разность между временами распространения ультразвуковых импульсов в прямом и обратном направлениях относительно движения жидкости пропорциональна скорости ее потока.
Возбуждение ультразвуковых колебаний осуществляется пьезоэлектрическими преобразователями, располагаемых внутри корпуса датчика.
Движение жидкости вызывает изменение разницы во времени полного распространения ультразвуковых сигналов по потоку и против него. Скорость распространения ультразвукового импульса в жидкости, заполняющей трубопровод, представляет собой сумму скоростей ультразвука неподвижной жидкости и скорости потока жидкости V в проекции на рассматриваемое направление распространения ультразвука.
В заявляемом ультразвуковом расходомере обеспечивается высокая точность измерений за счет того, что эпюра скоростей потока в каждом сечении трубки-вкладыша максимально выровнена. Максимально сглажены все возмущения, которые могут возникнуть в потоке, в том числе после изгибов трубопровода.
На фиг.1 изображено распределение неоднородностей потока в трубке вкладыше по углам ее сечения.
На фиг.2 изображено распределение скоростей потока внутри расходомера в случае, когда расходомер установлен после изгиба трубопровода.
На фиг.3 изображено распределение скоростей потока внутри расходомера в случае прямолинейного трубопровода.
На фиг.4 изображено продольное сечение заявляемого расходомера - вид сверху.
На фиг.5 изображено продольное сечение заявляемого расходомера - вид сбоку.
На фиг.6 изображено продольное сечение трубки-вкладыша.
На фиг.7 изображено поперечное сечение трубки-вкладыша.
На фиг.8 изображен общий вид трубки-вкладыша.
Заявляемый ультразвуковой расходомер содержит прямолинейную проточную часть 1- трубопровод, первый и второй электроакустические датчики (на чертежах не показаны), размещенные в соответствующих корпусах 2 и 3, установленных внутри проточной части 1на расстоянии друг от друга. Датчики выполнены электроакустическими, рабочим элементом датчиков является пьезоэлемент. Между датчиками в проточной части установлена трубка-вкладыш 4, внутреннее сечение которой выполнено в виде квадрата с закругленными углами. Сечение трубки-вкладыша по направлению от первого датчика ко второму выполнено сужающимся. С каждой торцевой стороны трубки - вкладыша в ее нижней части выполнены полки 5, обращенные наружу к близлежащему датчику.
Внутренняя полость трубки-вкладыша 4 образует зону измерения 6. Корпус 2, 3 каждого датчика имеет обтекаемую форму, плавно расширяющуюся по направлению к зоне измерения, а именно: каждый корпус 2,3 выполнен в виде купола. Датчики установлены симметрично по отношению к трубке-вкладышу 4. Поверхность каждой полки 5, обращенная к зоне измерения 6, выполнена с наклоном, обращенным в сторону близлежащего датчика для того, чтобы поток плавно поступал из более широкой зоны в более узкую - зону измерения для снижения возмущений потока. Корпус 2, 3 каждого датчика выполнен из материала, пропускающего звуковое излучение, а именно: из стеклонаполненного пластика - полиэфирсульфон (PES) Ultrason® E G6. Корпус 2,3 каждого датчика своей верхней частью связан с корпусом проточной части.
Заявляемый ультразвуковой расходомер, измеряет расход на основе измерения времени распространения импульсов ультразвукового колебания через двигающуюся жидкость от первого датчика ко второму. Разность между временами распространения ультразвуковых импульсов в прямом и обратном направлениях относительно движения жидкости пропорциональна скорости ее потока. Возбуждение ультразвуковых колебаний осуществляется пьезоэлектрическими преобразователями, располагаемых внутри корпуса датчика.

Claims (8)

1. Ультразвуковой расходомер, содержащий прямолинейную проточную часть - трубопровод, первый и второй электроакустические датчики, размещенные в соответствующих корпусах, установленных внутри проточной части на расстоянии друг от друга, каждый датчик связан с измерительным блоком, отличающийся тем, что между датчиками в проточной части установлена трубка-вкладыш, внутреннее сечение которой выполнено в виде равностороннего многоугольника с закругленными углами, сечение трубки-вкладыша по направлению от первого датчика ко второму выполнено сужающимся, с каждой торцевой стороны трубки-вкладыша в ее нижней части выполнены полки, обращенные наружу к близлежащему датчику, внутренняя полость трубки-вкладыша образует зону измерения, корпус каждого датчика имеет обтекаемую форму, плавно расширяющуюся по направлению к зоне измерения, датчики установлены симметрично по отношению к трубке-вкладышу.
2. Ультразвуковой расходомер по п.1, отличающийся тем, что корпус каждого датчика выполнен в форме купола.
3. Ультразвуковой расходомер по п.1, отличающийся тем, что поверхность каждой полки, обращенная к зоне измерения, выполнена с наклоном, обращенным в сторону близлежащего датчика.
4. Ультразвуковой расходомер по п.1, отличающийся тем, что корпус каждого датчика выполнен из материала, пропускающего звуковое излучение.
5. Ультразвуковой расходомер по п.4, отличающийся тем, что корпус каждого датчика выполнен из стеклонаполненного пластика.
6. Ультразвуковой расходомер по п.1, отличающийся тем, что излучающим элементом каждого датчика является пьезоэлемент.
7. Ультразвуковой расходомер по п.1, отличающийся тем, что корпус каждого датчика своей верхней частью связан с корпусом проточной части.
8. Ультразвуковой расходомер по п.1, отличающийся тем, что соотношение сечений на входе и выходе из трубки-вкладыша составляет -Sl/S2=1.1, где S1 - площадь трубки-вкладыша на входе, a S2 - площадь на выходе.
RU2012115330/28A 2012-04-17 2012-04-17 Ультразвуковой расходомер RU2502054C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2012115330/28A RU2502054C1 (ru) 2012-04-17 2012-04-17 Ультразвуковой расходомер
PCT/RU2013/000026 WO2013157990A1 (ru) 2012-04-17 2013-01-14 Ультразвуковой расходомер

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012115330/28A RU2502054C1 (ru) 2012-04-17 2012-04-17 Ультразвуковой расходомер

Publications (2)

Publication Number Publication Date
RU2012115330A RU2012115330A (ru) 2013-10-27
RU2502054C1 true RU2502054C1 (ru) 2013-12-20

Family

ID=49383805

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012115330/28A RU2502054C1 (ru) 2012-04-17 2012-04-17 Ультразвуковой расходомер

Country Status (2)

Country Link
RU (1) RU2502054C1 (ru)
WO (1) WO2013157990A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2569143C1 (ru) * 2014-02-13 2015-11-20 Общество с ограниченной ответственностью "ВОРМХОЛС" Способ определения дебитов воды, нефти, газа с использованием расходомерного устройства
RU2672817C1 (ru) * 2017-04-13 2018-11-19 ЗИК Энджиниринг ГмбХ Измерительное устройство для измерения скорости потока текучей среды

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9506789B2 (en) * 2014-04-27 2016-11-29 Cameron International Corporation Acoustically isolated ultrasonic transducer housing and flow meter
CN105092101A (zh) * 2015-09-16 2015-11-25 合肥瑞纳表计有限公司 超声波热量表
WO2019109113A1 (en) * 2017-12-03 2019-06-06 Eugene Fourie A flowmeter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728948A (en) * 1993-03-09 1998-03-17 Commonwealth Scientific And Industrial Research Organisation Fluid meter construction
RU2331851C2 (ru) * 2006-07-31 2008-08-20 Открытое акционерное общество "ТЕПЛОПРИБОР" Ультразвуковой расходомер
JP2009156711A (ja) * 2007-12-26 2009-07-16 Nitto Seiko Co Ltd 超音波流量計

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2421371A1 (fr) * 1978-03-29 1979-10-26 Flowmetering Instr Ltd Perfectionnements aux debitmetres ultrasoniques
RU118744U1 (ru) * 2012-04-17 2012-07-27 Общество С Ограниченной Ответственностью "Научно-Производственное Предприятие "Уралтехнология" Ультразвуковой расходомер

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728948A (en) * 1993-03-09 1998-03-17 Commonwealth Scientific And Industrial Research Organisation Fluid meter construction
RU2331851C2 (ru) * 2006-07-31 2008-08-20 Открытое акционерное общество "ТЕПЛОПРИБОР" Ультразвуковой расходомер
JP2009156711A (ja) * 2007-12-26 2009-07-16 Nitto Seiko Co Ltd 超音波流量計

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2569143C1 (ru) * 2014-02-13 2015-11-20 Общество с ограниченной ответственностью "ВОРМХОЛС" Способ определения дебитов воды, нефти, газа с использованием расходомерного устройства
RU2672817C1 (ru) * 2017-04-13 2018-11-19 ЗИК Энджиниринг ГмбХ Измерительное устройство для измерения скорости потока текучей среды
US10488237B2 (en) 2017-04-13 2019-11-26 Sick Engineering Gmbh Measurement apparatus for measuring a flow rate of a fluid

Also Published As

Publication number Publication date
RU2012115330A (ru) 2013-10-27
WO2013157990A1 (ru) 2013-10-24

Similar Documents

Publication Publication Date Title
US9366556B2 (en) Method for ultrasonic metering using an orifice meter fitting
RU2502054C1 (ru) Ультразвуковой расходомер
ITTO960239A1 (it) Rivelatore per un misuratore di flusso ultrasonico e misuratore di flusso con rivelatore
US9222811B2 (en) Flowmeter
CA2902166A1 (en) Ultrasonic flow metering with laminar to turbulent transition flow control
US10330509B2 (en) Method and arrangement for an ultrasound clamp-on flow measurement and circuit arrangement for control of an ultrasound clamp-on flow measurement
CN103270396A (zh) 超声波流量计
US10627271B2 (en) Hydraulic system for ultrasonic flow measurement using reflective acoustic path approach
US20200370935A1 (en) Hydraulic system for ultrasonic flow measurement using direct acoustic path approach
WO2005083371A1 (ja) ドップラー式超音波流量計
JP2002520583A (ja) マルチコード流量計
RU118744U1 (ru) Ультразвуковой расходомер
JP2001133307A (ja) 流入・流出対称型流量計
RU2715086C1 (ru) Ультразвуковой расходомер
Kang et al. A novel mathematical model for transit-time ultrasonic flow measurement
RU2331851C2 (ru) Ультразвуковой расходомер
Yu et al. Design and simulation of an ultrasonic flow meter for thin pipe
US20160123781A1 (en) Split flow vortex flowmeter
CN205861133U (zh) 文丘里双差压超声流量测量装置
JP2956804B2 (ja) 超音波流量計
EP3798582B1 (en) Ultrasonic flowmeter and fluid pipeline
RU2517996C1 (ru) Датчик ультразвукового расходомера
RU2298768C1 (ru) Способ измерения объемных расходов жидкости в напорных трубопроводах (варианты)
JP2006126019A (ja) 超音波流量計
KR100993617B1 (ko) 외벽부착식 초음파 다회선 유량계

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140418

NF4A Reinstatement of patent

Effective date: 20150627