RU2501605C2 - Способ получения оксидного кобальт-цинкового катализатора синтеза фишера-тропша - Google Patents

Способ получения оксидного кобальт-цинкового катализатора синтеза фишера-тропша Download PDF

Info

Publication number
RU2501605C2
RU2501605C2 RU2010101329/04A RU2010101329A RU2501605C2 RU 2501605 C2 RU2501605 C2 RU 2501605C2 RU 2010101329/04 A RU2010101329/04 A RU 2010101329/04A RU 2010101329 A RU2010101329 A RU 2010101329A RU 2501605 C2 RU2501605 C2 RU 2501605C2
Authority
RU
Russia
Prior art keywords
cobalt
catalyst
zinc oxide
zinc
component
Prior art date
Application number
RU2010101329/04A
Other languages
English (en)
Other versions
RU2010101329A (ru
Inventor
Корнелис Роланд БАЙЕНЗЕ
Original Assignee
Басф Кэталистс Ллк
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38885337&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2501605(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Басф Кэталистс Ллк filed Critical Басф Кэталистс Ллк
Publication of RU2010101329A publication Critical patent/RU2010101329A/ru
Application granted granted Critical
Publication of RU2501605C2 publication Critical patent/RU2501605C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/333Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к новому способу получения оксидного кобальт-цинкового катализатора синтеза Фишера-Тропша. Способ включает получение водной дисперсии порошка оксида цинка в реакторе, добавление водного раствора соли кобальта и осаждение кобальта из раствора на оксид цинка за счет добавления карбоната аммония. Способ позволяет получить катализатор с использованием меньшего суммарного количества нитрат-анионов и меньшего количества аммиака, а также избежать использования опасного в обращении нитрата цинка. Изобретение также относится к катализатору, полученному в результате указанного способа, и к применению указанного катализатора. 3 н. и 8 з.п. ф-лы, 3 пр.

Description

Область техники, к которой относится изобретение
Изобретение относится к способу получения оксидного кобальт-цинкового катализатора синтеза Фишера-Тропша.
Уровень техники
В области получения катализаторов синтеза Фишера-Тропша значительная часть патентной литературы посвящена пропитанным катализаторам, в то время как в другой существенной части патентной литературы описаны осажденные катализаторы синтеза Фишера-Тропша. Кроме того, имеется ограниченное число патентов, в которых описаны другие способы получения, такие как микроэмульсионные золь-гелевые технологии, адсорбционные технологии, технологии на основе монолита, и др.
В документе US A 4826800 описан способ получения катализатора, содержащего кобальт и оксид цинка, для применения, после восстановительной активации, в превращении синтез газа в углеводороды. Этот катализатор получают путем смешивания растворимой соли цинка и растворимой соли кобальта с осаждающим агентом, таким как гидроксид аммония или карбонат аммония, и выделения осадка.
В документах US-A-5945458 и US-A-5811365 описан синтез Фишера-Тропша в присутствии каталитической композиции из металла VIII группы, например кобальта, на носителе - оксиде цинка. Такой катализатор получают путем первоначального приготовления носителя, добавляя раствор соли цинка и других компонентов в щелочной раствор бикарбоната. Затем осадок отделяют от раствора бикарбоната с помощью фильтрации, получая отфильтрованный материал, который затем может быть высушен, прокален, и на который наносят металл VIII группы. Затем материал катализатора формуют в таблетки, которые размалывают, получая частицы размером 250-500 мкм, которые могут быть использованы в синтезе Фишера-Тропша. Дополнительные операции обработки, такие как измельчение, необходимы для того, чтобы получить порошок катализатора, применяемый в суспензионном процессе синтеза. Однако полученные, как указано выше, частицы все же являются относительно большими. Более того, их низкая прочность, в сочетании с последующими операциями формования и измельчения приводят к получению частиц неправильной формы с широким распределением частиц по размеру.
В документе WO 03/090925 описан новый способ получения катализатора Co/ZnO, который разработан в результате точной регулировки условий осаждения, что непосредственно дает катализатор с очень узким распределением частиц по размеру и улучшенными химическими, физическими свойствами и характеристикой истирания.
В документе EP 261870 описан способ получения катализатора синтеза Фишера-Тропша с использованием различных приемов осаждения. В описании упомянуты методики соосаждения и осаждения осадка. Однако в качестве основы объяснена только методика соосаждения с использованием бикарбоната аммония.
Способы, проиллюстрированные в примерах этого документа, не дают осадка, имеющего подходящие характеристики. В этом способе не получается продукт, имеющий характеристики, сопоставимые с промышленными катализаторами.
Существует потребность в дополнительном улучшении условий получения, особенно с учетом необходимых количеств химических реагентов в качестве исходных соединений и образованием сточных вод, которые обычно содержат большое количество (комплексных) ионов металлов и нитрата. Однако способ получения не должен приводить к другим характеристикам продукта, по сравнению с известными продуктами.
Настоящее изобретение относится к новому технологическому маршруту получения Co/ZnO катализатора синтеза Фишера-Тропша, в котором применяется так называемое «осаждение на подложку». В этой технологии кобальт осаждается в суспензии порошка оксида цинка из раствора соли кобальта, например, раствора нитрата кобальта, с последующим введением основания, например, карбоната аммония, карбоната натрия или их гидроксидных аналогов. В ходе способа осаждения на подложку кобальт осаждается или связывается на частицах оксида цинка, при этом без связи с теорией, по-видимому, происходит химическое взаимодействие между осажденным соединением кобальта и носителем - ZnO, что приводит к стабильной структуре гидроксикарбоната кобальта-цинка в качестве предшественника катализатора.
Неожиданно, после сушки и прокаливания получается смешанная оксидная композиция Co3O4/ZnO с пористой структурой, аналогичной структуре продукта, полученного путем одновременного соосаждения кобальта вместе с цинком из нитратного раствора Co-Zn. Важным преимуществом нового технологического маршрута осаждения на подложку, по сравнению с «традиционным» технологическим маршрутом соосаждения, является существенное уменьшение общего количества анионов (обычно нитратов), вовлеченных в этот способ производства. Более того, следствием вышеуказанного также является существенное уменьшение необходимого количества аммиака (в виде карбоната аммония из раствора осаждающего агента).
Следовательно, изобретение относится к способу получения оксидного кобальт-цинкового катализатора синтеза Фишера-Тропша, причем этот способ включает получение водной дисперсии порошка оксида цинка в реакторе, добавление водного раствора соли кобальта и водного раствора осаждающего агента и осаждение кобальта из раствора на оксид цинка путем добавления карбоната аммония.
Новый технологический маршрут получения катализатора относится к так называемому технологическому маршруту «осаждения на подложку», в котором кобальт осаждается из водного раствора (нитрата), причем кобальт осаждается на исходное соединение цинка, предварительно добавленного в виде порошка ZnO, суспендированного в избытке воды. Применение в качестве исходного соединения порошка ZnO (составляет приблизительно до 95 масс.% конечного катализатора), вместо соосаждения цинка из раствора предшественника - нитрата цинка, приводит к существенному снижению необходимого количества нитратов и карбоната аммония, вовлеченных в способ производства (снижение нитратов приблизительно на 80%). Более того, оксид цинка в качестве исходного соединения гораздо менее опасен, чем нитрат цинка, таким образом, обеспечиваются существенно упрощенные технологические приемы крупнотоннажного производства катализатора.
Неожиданно, в конце процесса осаждения на подложку, после сушки и прокаливания осажденного продукта, в прокаленном продукте практически невозможно обнаружить «свободный» ZnO, как было показано с помощью протяженной просвечивающей электронной микроскопии (ПЭМ) в сочетании с анализом элементарного состава. Эти исследования показали, что наблюдается химическое взаимодействие между осажденными ионами Со и порошком ZnO, приводящее к аналогичному предшественнику катализатора - смешанному оксиду кобальта-цинка. Наличие химического взаимодействия осажденного соединения с поверхностью оксида цинка дополнительно подтверждается так называемой структурой Moiree при исследовании методом ПЭМ, что указывает на наложение различных шпинельных решеток оксидов и металлов (например, ZnCo2O4, CoCo2O4) в прокаленном предшественнике катализатора.
Кроме того, интересно, что после прокаливания пористая структура, удельная поверхность и распределение пор по размеру этих смешанных оксидов кобальта-цинка, осажденных на подложку, были аналогичны характеристикам смешанных продуктов - оксидов кобальта-цинка, полученных путем соосаждения.
Существенным аспектом способа получения катализатора согласно изобретению, главным образом, является применение метода осаждения на подложку, в котором кобальт осаждается на порошок оксида цинка под действием основания. Кроме того, существенно, что карбонат аммония используется в качестве основания, поскольку другие известные осаждающие основания не дают продукта, который соответствует промышленным требованиям по таким характеристикам как размер частиц, распределение частиц по размеру и другим механическим свойствам. Например, найдено, что при использовании бикарбоната аммония не образуется продукт, который подходит в качестве замены известных промышленных материалов.
Необходимо отметить, что промышленный продукт, известный как карбонат аммония, фактически представляет собой смесь или двойную соль бикарбоната аммония и карбамата аммония (NH4HCO3·NH2COONH4), приблизительно в эквимолярном соотношении. Обычно молярное отношение карбоната к карбамату может находиться между 0,8:1 и 1:0,8. Именно водный раствор этой смеси или двойной соли будет применяться в качестве осаждающего основания.
Установлено, что в структуре катализатора, полученного согласно изобретению, наблюдаются такие же химические взаимодействия между кобальтом и оксидом цинка, как в катализаторах, полученных путем соосаждения. Доказательством могут служить характеристики восстановления прокаленного предшественника катализатора. При обработке катализатора в восстановительной атмосфере, например, в разбавленном водороде, степень восстановления кобальта снижается в случае пониженного содержания кобальта, что указывает на более сильное взаимодействие кобальта с оксидом цинка. Аналогичная закономерность отмечена при соосаждении предшественников катализатора.
Найдено, что катализатор, полученный согласно изобретению, является особенно эффективным для применения в реакторе с перемешиваемой суспензионной фазой, в реакторе-колонне с барботажем суспензии (SBCR), циркуляционном реакторе или в реакторе с кипящим слоем катализатора.
Катализатор, полученный согласно изобретению, обладает очень хорошей характеристикой текучести в сухом виде и/или при использовании в реакторе с перемешиваемой суспензией, и хорошей характеристикой диспергируемости с компонентами реакционной смеси. Способ согласно изобретению обеспечивает получение продуктов с очень хорошим распределением частиц по размеру, что подтверждается характеристикой свободной текучести высушенного катализатора, которое можно наблюдать, например, при хранении катализатора в контейнере.
Катализатор, полученный согласно изобретению, обладает весьма желательными характеристиками разделения, и соответственно легко выделяется из реакционной смеси путем фильтрации.
В катализаторе, полученном согласно изобретению, очень хорошо сбалансированы характеристики активности и разделения.
Предпочтительно в катализаторе присутствуют, главным образом (то есть, по меньшей мере, 75 об.%) поры, имеющие диаметр в диапазоне 10-150 нм. Гораздо предпочтительнее катализатор, не содержащий поры с диаметром меньше чем 5 нм (в частности, меньше чем 5% от объема составляют поры с диаметром меньше чем 5 нм). Найдено, что такой катализатор обладает особенно хорошими характеристиками диффузии для реагентов и продуктов. Кроме того, обнаружено, что такой катализатор. обладает высокой селективностью по продуктам C5+ в синтезе Фишера-Тропша.
Очень хорошие результаты были достигнуты с катализатором, имеющим объем пор меньше, чем 0,75 мл/г. Предпочтительно объем пор составляет, по меньшей мере, 0,05 мл/г. Особенно подходящим является катализатор с объемом пор меньше чем 0,60 мл/г.
Объем пор катализатора определяется по данным адсорбции азота (N2-БЭТ), измеренной с использованием прибора Ankersmit Quantachrome Autosorb-6, после дегазации образца при 180°C до давления 3,3 Па (25 миллиторр).
Найдено, что такой катализатор обладает очень хорошей характеристикой физической прочности, что выгодно при использовании в реакторах различного типа, в том числе с фазой суспензии, в циркуляционном реакторе, в реакторе-колонне с барботажем суспензии и в реакторе с кипящим слоем катализатора.
Кроме того, удельная поверхность, которую определяют по адсорбции азота (N2-БЭТ) с использованием прибора Ankersmit Quantachrome Autosorb-6, после дегазации образца при 180°C до давления 3,3 Па (25 миллиторр), может быть выбрана в широком диапазоне, в зависимости от предполагаемого назначения. Для синтеза Фишера-Тропша этот показатель может быть выбран в диапазоне 1-500 м2/г. Предпочтительный катализатор имеет удельную поверхность в диапазоне 5-160 м2/г. Очень хорошие результаты могут быть получены для катализатора, имеющего удельную поверхность в диапазоне 5-150 м2/г.
Предпочтительный катализатор представляет собой гранулированный материал, в котором частицы имеют более или менее сферическую геометрию. Установлено, что при использовании такой катализатор обладает очень хорошей механической прочностью, имеет хорошие характеристики разделения и относительно высокое сопротивление истиранию. Такой катализатор целесообразно может быть получен по способу настоящего изобретения, в котором осаждаемый материал необязательно подвергается измельчению и распылительной сушке, необязательно после добавления дополнительного связующего, такого как оксид цинка, диоксид кремния или оксид алюминия, или коллоидные формы указанных оксидов.
Состав катализатора может изменяться в широких пределах, причем специалистам в этой области техники известно как выбрать состав в зависимости от предполагаемого назначения.
Катализаторы, в основном состоят из кобальта в качестве металлического компонента и оксида цинка в качестве оксидного носителя. Предпочтительно атомное отношение цинка к кобальту составляет между 0,2 и 75.
Кроме того, возможно, что катализатор также содержит один или несколько других компонентов, таких как компоненты, которые обычно применяются в качестве промоторов в катализаторах синтеза Фишера-Тропша. Кроме того, катализатор может содержать один или несколько промоторов, например, гафний, платина, цирконий, палладий, рений, церий, лантан или их сочетание. Такие промоторы, если они присутствуют, обычно используются в атомном отношении металлический компонент/промотор вплоть до 10:1.
Получение катализатора осуществляется в водной системе, причем в реакторе получается суспензия частиц оксида цинка. В реактор поступает водный раствор соли кобальта, предпочтительно нитрат кобальта, вместе с водным раствором карбоната аммония. Предпочтительно, температуру поддерживают между 40 и 95°C. После завершения осаждения предшественник катализатора выделяется из суспензии и обрабатывается дополнительно. Эта дополнительная обработка может включать в себя сушку, формование, прокаливание и восстановление кобальта до активной металлической фазы.
Теперь изобретение будет разъяснено с использованием следующих ниже примеров, которые приведены в качестве иллюстрации, но не для ограничения объема изобретения.
Пример 1: катализатор 16% Co/ZnO
Готовят кислотный раствор кобальта, растворяя 195,0 г Co(NO3)2·6H2O (14,5 масс.% Co) в 1 литре воды. Готовят отдельный раствор, растворяя 91,9 г карбоната аммония в 1 литре воды (молярное отношение карбонат/металл = 2). Оба раствора одновременно поступают в объем воды (1,75 литра), содержащий 160 грамм порошка ZnO (Norzinco, Harzsiegel, объем пор и удельная поверхность соответственно равны 0,015 мл/г и 3,8 м2/г), при этом поддерживают следующие условия: температура 75°C, перемешивание 300 об/мин, скорость потока 1 литр/час. Значение pH во время осаждения было постоянным, приблизительно 8,1. После завершения процесса осаждения продукт выделяют из суспензии путем фильтрации, высушивают в течение 16 часов при 110°C и затем прокаливают в течение 5 часов при 500°C (со скоростью нагрева 150°C/час).
По данным химического и физического анализа прокаленный катализатор содержит 15,6% Co, причем объем пор и удельная поверхность катализатора составляют соответственно 0,30 мл/г и 30 м2/г. Размер кристаллитов Co3O4, найденный с помощью рентгеновской дифрактограммы, равен 124Å, хотя распределение частиц по размеру (весьма высокодисперсное для массы порошка ZnO) оказалось более широким. По данным протяженной ПЭМ и элементарного анализа установлено, что в прокаленном продукте отсутствует «свободный» оксид ZnO, то есть продемонстрировано, что практически весь ZnO прореагировал (вступил в реакцию) с осажденным кобальтом. Доказательство взаимодействия между кобальтом и ZnO также может быть получено из спектра термопрограммированного восстановления (ТПВ): хотя для массы осажденного Co3O4 наблюдается полное восстановление при довольно низкой температуре (обычно при температуре ниже 250°C), для этого катализатора наблюдается такой же спектр ТПВ, как для стандартного соосажденного аналога, то есть два пика восстановления, обычно при 280-290°C (восстановление CO3O4 до CoO) и 420-430°C (восстановление CoO до металлического Co). Как и в случае соосажденных Co-ZnO катализаторов, и в отличие от массивного порошка Co3O4, катализатор, полученный по методике этого Примера 1, также содержит некоторое количество невосстановленного кобальта, что также подтверждает аналогию с соосажденным катализатором.
Пример 2: катализатор 20% Co/ZnO
Готовят кислотный раствор кобальта, растворяя 276,3 г Co(NO3)2·6H2O (14,5 масс.% Co) в 1 литре воды. Готовят отдельный раствор, растворяя 130,3 г карбоната аммония в 1 литре воды (молярное отношение карбонат/металл = 2). Оба раствора одновременно подают в объем воды (1,75 литра), содержащий 160 грамм порошка ZnO (Norzinco, Harzsiegel, объем пор и удельная поверхность соответственно равны 0,015 мл/г и 3,8 м2/г), при этом поддерживают следующие условия: температура 75°C, перемешивание 300 об/мин, скорость потока 1 литр/час. Значение pH во время осаждения было постоянным, приблизительно 8,1. После завершения процесса осаждения продукт выделяют из суспензии путем фильтрации, высушивают в течение 16 часов при 110°C и затем прокаливают в течение 5 часов при 500°C (со скоростью подъема 150°C/час).
По данным химического и физического анализа прокаленный катализатор содержит 19,0% Со, причем объем пор и удельная поверхность катализатора составляют соответственно 0,23 мл/г и 27 м2/г. Размер кристаллитов Co3O4 равен 151 Å, хотя распределение частиц по размеру (весьма высокодисперсное для массы порошка ZnO) оказалось более широким. По данным протяженной ПЭМ и элементарного анализа установлено, что в прокаленном продукте отсутствует «свободный» оксид ZnO, то есть продемонстрировано, что практически весь ZnO прореагировал (вступил в реакцию) с осажденным кобальтом. Это взаимодействие также подтверждается данными спектра ТПВ, как описано для катализатора Примера 1.
Пример 3: катализатор 30% Co/ZnO
Готовят кислотный раствор кобальта, растворяя 473,9 г Co(NO3)2·6H2O (14,5 масс.% Co) в 1 литре воды. Готовят отдельный раствор, растворяя 167,6 г карбонат аммония в 1 литре воды (молярное отношение карбонат/металл=1,5). Оба раствора одновременно подают в объем воды (1,75 литра), содержащий 160 грамм порошка ZnO (Norzinco, Harzsiegel, объем пор и удельная поверхность соответственно равны 0,015 мл/г и 3,8 м2/г), при этом поддерживают следующие условия: температура 75°С, перемешивание 300 об/мин, скорость потока 1 литр/час. pH во время осаждения было постоянным, приблизительно 7,6.
После завершения процесса осаждения, продукт выделяют из суспензии путем фильтрации, высушивают в течение 16 часов при 110°C и затем прокаливают в течение 5 часов при 500°C (со скоростью подъема 150°C/час).
По данным химического и физического анализа прокаленный катализатор содержит 31,6% Co, причем объем пор и удельная поверхность катализатора составляют соответственно 0,230 мл/г и 29 м2/г. Размер кристаллитов Co3O4 равен 151Å, хотя распределение частиц по размеру (весьма высокодисперсное для массы порошка ZnO) оказалось более широким. По данным протяженной ПЭМ и элементарного анализа установлено, что в прокаленном продукте отсутствует «свободный» оксид ZnO, то есть можно сделать вывод, что практически весь ZnO прореагировал (вступил в реакцию) с осажденным кобальтом. Кроме того, взаимодействие между Co и ZnO подтверждается данными спектра ТПВ, как описано для катализатора Примера 1.

Claims (11)

1. Способ получения оксидного кобальт-цинкового катализатора синтеза Фишера-Тропша, который включает получение водной дисперсии порошка оксида цинка в реакторе, добавление водного раствора соли кобальта и осаждение кобальта из раствора на оксид цинка за счет добавления карбоната аммония.
2. Способ по п.1, в котором атомное отношение цинка к кобальту составляет 0,2-75.
3. Способ по п.1 или 2, в котором водный раствор кобальта представляет собой водный раствор нитрата кобальта.
4. Способ по п.1 или 2, в котором содержимое реактора перемешивают.
5. Способ по п.1 или 2, в котором осаждение осуществляют при температуре 40-95°C.
6. Способ по п.1 или 2, в котором в ходе получения добавляют дополнительно промотирующий компонент или предшественник промотирующего компонента, причем этот компонент предпочтительно выбирают из гафния, платины, циркония, палладия, рения, церия, лантана или их сочетания, а также из их соединений.
7. Способ по п.6, в котором промотирующий компонент используется в атомном соотношении компонента кобальта к компоненту металла в промотирующем компоненте вплоть до 10:1.
8. Способ по п.1 или 2, который дополнительно включает выделение твердого материала из водной дисперсии, его сушку и прокаливание.
9. Способ по п.8, в котором стадия сушки включает распылительную сушку, необязательно в присутствии дополнительного связующего, такого как оксид цинка, коллоидный оксид цинка или оксид другого металла.
10. Катализатор, который получен способом по пп.1-9.
11. Применение катализатора, полученного способом по пп.1-9, в качестве катализатора для синтеза Фишера-Тропша.
RU2010101329/04A 2007-06-19 2008-06-18 Способ получения оксидного кобальт-цинкового катализатора синтеза фишера-тропша RU2501605C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07110555.5 2007-06-19
EP07110555A EP2008714A1 (en) 2007-06-19 2007-06-19 Process for the preparation of a cobalt-zinc oxide Fischer-Tropsch catalyst
PCT/NL2008/050393 WO2008156358A2 (en) 2007-06-19 2008-06-18 Process for the preparation of a cobalt-zinc oxide fischer-tropsch catalyst

Publications (2)

Publication Number Publication Date
RU2010101329A RU2010101329A (ru) 2011-07-27
RU2501605C2 true RU2501605C2 (ru) 2013-12-20

Family

ID=38885337

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010101329/04A RU2501605C2 (ru) 2007-06-19 2008-06-18 Способ получения оксидного кобальт-цинкового катализатора синтеза фишера-тропша

Country Status (10)

Country Link
EP (2) EP2008714A1 (ru)
JP (1) JP5269892B2 (ru)
CN (1) CN101784340B (ru)
AR (1) AR067072A1 (ru)
AU (1) AU2008264328B2 (ru)
BR (1) BRPI0813247A2 (ru)
CA (1) CA2691763C (ru)
RU (1) RU2501605C2 (ru)
WO (1) WO2008156358A2 (ru)
ZA (1) ZA201000086B (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000588B (zh) * 2010-11-11 2013-02-27 中国科学院山西煤炭化学研究所 一种改性氧化锌负载钴催化剂及其制备方法
CN102319569A (zh) * 2011-07-22 2012-01-18 浙江工业大学 一种低温还原型钴基费托合成催化剂及其制备方法
JP6858109B2 (ja) * 2017-10-03 2021-04-14 日鉄エンジニアリング株式会社 合成ガスから炭化水素を製造する触媒の製造方法、及び合成ガスから炭化水素を製造する方法
CN108279146B (zh) * 2018-01-30 2021-03-26 北京航空航天大学 一种用于氧化锌基陶瓷成分测试的前处理方法
AU2019239566A1 (en) 2018-03-20 2020-09-24 Shell Internationale Research Maatschappij B.V. Preparation of a cobalt-containing catalyst
CN110559983B (zh) * 2019-09-18 2022-08-05 齐鲁理工学院 一种用于污染物吸附的钴掺杂多孔ZnO的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB271840A (en) * 1926-05-26 1928-09-20 Commercial Solvents Corp Improvement in catalysts for synthetic methanol production
EP0261870A1 (en) * 1986-09-26 1988-03-30 The British Petroleum Company p.l.c. Syngas conversion catalyst, its production and use thereof
US5585316A (en) * 1991-07-02 1996-12-17 British Petroleum Company P.L.C. Catalyst treatment
RU2004134343A (ru) * 2002-04-25 2005-04-20 Энгельхард Корпорейшн (Us) Катализатор фишер-тропша

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030027874A1 (en) * 2001-06-28 2003-02-06 Conoco Inc. Metal oxide-containing catalysts and use thereof in fischer-tropsch processes
EP1667948A1 (en) * 2003-09-30 2006-06-14 Shell Internationale Researchmaatschappij B.V. Titania supports for fischer-tropsch catalysts
BRPI0400086A (pt) * 2004-03-09 2005-11-01 Cbmm Sa Catalisador de cobalto para sìntese de fischer-tropsch, suporte para o mesmo, processos de preparação do suporte e do catalisador e uso do catalisador
US7361626B2 (en) * 2004-04-30 2008-04-22 Engelhard Corporation Supported catalyst
EP1852182A1 (en) * 2006-05-01 2007-11-07 Engelhard Corporation Fischer-Tropsch Catalyst comprising cobalt and zinc oxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB271840A (en) * 1926-05-26 1928-09-20 Commercial Solvents Corp Improvement in catalysts for synthetic methanol production
EP0261870A1 (en) * 1986-09-26 1988-03-30 The British Petroleum Company p.l.c. Syngas conversion catalyst, its production and use thereof
US5585316A (en) * 1991-07-02 1996-12-17 British Petroleum Company P.L.C. Catalyst treatment
RU2004134343A (ru) * 2002-04-25 2005-04-20 Энгельхард Корпорейшн (Us) Катализатор фишер-тропша

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
I.V. GUSEVA & YA.T. EIDUS, «The catalytic hydrocondensation of carbon monoxide with olefins and their hydropolymerization under the action of carbon monoxide and hydrogen communication 52. The activity of Co-ZnO catalysts in the hydropolymerization of ethylene initiated by carbon monoxide», Russian Chemical Bulletin, vol.23(1), 1974, pp.50-53. *

Also Published As

Publication number Publication date
AU2008264328A1 (en) 2008-12-24
CA2691763C (en) 2017-07-18
RU2010101329A (ru) 2011-07-27
ZA201000086B (en) 2010-09-29
EP2170508A2 (en) 2010-04-07
CA2691763A1 (en) 2008-12-24
AU2008264328B2 (en) 2012-09-20
JP5269892B2 (ja) 2013-08-21
WO2008156358A2 (en) 2008-12-24
CN101784340A (zh) 2010-07-21
BRPI0813247A2 (pt) 2014-12-23
JP2010530305A (ja) 2010-09-09
EP2008714A1 (en) 2008-12-31
CN101784340B (zh) 2014-02-12
WO2008156358A3 (en) 2009-03-26
AR067072A1 (es) 2009-09-30

Similar Documents

Publication Publication Date Title
AU2003269179B2 (en) Process for preparing cobalt catalysts on titania support
AU2003277409B2 (en) Fischer-Tropsch processes and catalysts using stabilized supports
US9242229B2 (en) Fischer-tropsch catalysts
RU2584915C2 (ru) Катализаторы
AU2003301247A1 (en) Fischer-tropsch processes and catalysts made from a material comprising boehmite
RU2501605C2 (ru) Способ получения оксидного кобальт-цинкового катализатора синтеза фишера-тропша
RU2628068C2 (ru) Катализаторы
MXPA06003360A (es) Soportes de titania para catalizadores fischer-tropsch.
US9156022B2 (en) Attrition resistant supports for fischer-tropsch catalyst and process for making same
WO2018069759A1 (en) Copper/zinc/aluminium catalyst for the methanol synthesis prepared from a binary zinc-aluminium precursor solution
JP4698343B2 (ja) 合成ガスから炭化水素を製造する触媒とその触媒の製造方法、及び当該触媒を用いた合成ガスから炭化水素を製造する方法
EA033748B1 (ru) Способ синтеза углеводородов
US10744486B2 (en) Catalyst support materials and catalyst materials useful for Fischer-Tropsch processes