RU2499900C1 - Способ сборки шатунно-поршневого узла - Google Patents

Способ сборки шатунно-поршневого узла Download PDF

Info

Publication number
RU2499900C1
RU2499900C1 RU2012123235/02A RU2012123235A RU2499900C1 RU 2499900 C1 RU2499900 C1 RU 2499900C1 RU 2012123235/02 A RU2012123235/02 A RU 2012123235/02A RU 2012123235 A RU2012123235 A RU 2012123235A RU 2499900 C1 RU2499900 C1 RU 2499900C1
Authority
RU
Russia
Prior art keywords
piston
piston pin
temperature
nickel
layer
Prior art date
Application number
RU2012123235/02A
Other languages
English (en)
Inventor
Петр Олегович Русинов
Жесфина Михайловна Бледнова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ")
Priority to RU2012123235/02A priority Critical patent/RU2499900C1/ru
Application granted granted Critical
Publication of RU2499900C1 publication Critical patent/RU2499900C1/ru

Links

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Изобретение относится к области машиностроения и металлургии, в частности к способу сборки шатунно-поршневого узла. Осуществляют установку поршневого пальца в отверстие поршня и установку шатуна на поршневой палец. Предварительно на поверхность стального поршневого пальца наносят механически активированный порошок из материала на основе никеля с эффектом памяти формы с размером частиц 30-50 мкм путем плазменного напыления в вакууме с получением слоя толщиной 0,2-3 мм. Затем осуществляют вакуумный отжиг нанесенного слоя при температуре 500-800°C, проводят термомеханическую обработку при нагреве от 30 до 250°C или при охлаждении до -10÷0°C с помощью жидкого азота и при обкатке нанесенного слоя при этой температуре роликами в радиальном направлении за 50-70 проходов с накоплением степени деформации ε≥3,7%. Затем после установки поршневого пальца в отверстие поршня проводят нагрев соединения до температуры 20,7-325,8°С конца обратного мартенситного превращения. Техническим результатом является повышение прочностных характеристик шатунно-поршневого узла. 5 з.п. ф-лы, 1 ил., 1 табл., 3 пр.

Description

Изобретение относится к области машиностроения и металлургии, в частности к способам сборки и разборки узлов.
В настоящее время существуют следующие способы сборки и разборки узлов.
Известен способ сборки подшипника скольжения, заключающийся в установке корпуса и вкладышей, охватывающих вал, в посадочных местах с последующей сборкой подшипникового узла, отличающийся тем, что установку корпуса и вкладышей в посадочных местах выполняют после того как, по крайней мере, на одну из контактирующих поверхностей корпуса и/или вкладышей подшипника наносят покрытие из материалов, обладающих податливостью. Наносят покрытие из мягких металлов, например, меди, серебра, олова, индия, методом электроэрозионного легирования, при энергии разряда 0,04-0,08 Дж толщиной 0,05-0,12 мм (патент №2422690).
Недостатком данного способа является сложность процесса сборки подшипника скольжения. Низкая надежность полученного соединения.
Наиболее близким является способ сборки шатунно-поршневого узла, в одном цилиндре должны быть установлены поршень, поршневые кольца, палец и шатун одной размерной группы. Поршневые пальцы подбираются к поршням и шатунам таким образом, чтобы при комнатной температуре поршневой палец должен от усилия пальца руки входить в верхнюю головку шатуна, а в отверстие поршня входить после нагрева последнего в воде до 60…85°C. После побора поршней, пальцев и шатунов производится их сборка с нагревом (Устройство, техническое обслуживание и ремонт легковых автомобилей. Шестопалов С.К. Учеб. для нач. проф. образования. - 2-е изд. М.: ИРПО; Изд. Центр «Академия», 2000. - 544 с.).
Недостатком этого способа является низкая прочность полученного соединения. Сложность сборки, разборки полученного узла.
Задачей изобретения является разработка надежного способа сборки шатунно-поршневого узла.
Техническим результатом является повышение прочностных характеристик шатунно-поршневого узла.
Поставленная задача решается предложенным способом сборки шатунно-поршневого узла, заключающийся в установке поршневого пальца в отверстия поршня, установки шатуна на поршневой палец, предварительно на поверхность стального поршневого пальца наносят механически активированный порошок из материала на основе никеля с эффектом памяти формы с размером частиц 30-50 мкм путем плазменного напыления в вакууме с получением слоя толщиной 0,2-3 мм, вакуумный отжиг нанесенного слоя проводят при температуре 500-800°C, термомеханическую обработку осуществляют при нагреве от 30 до 250°C или при охлаждении до -10-0°C с помощью жидкого азота и при обкатке нанесенного слоя при этой температуре роликами в радиальном направлении за 50-70 проходов с накоплением степени деформации ε≥3,7%, затем после установки поршневого пальца в отверстие поршня проводят нагрев соединения до температуры 20,7-325,8°C конца обратного мартенситного превращения. В качестве порошка на основе Ni используют состав: никель 50-55 at.%, титан 45-50 at.% или титан 49-51 at.%, никель 41-44 at.%, медь 5-10 at.%, никель 62-65 at.%, алюминий 35-38 at.%. На поверхность поршневого пальца наносят указанную смесь порошков плазменным напылением при температуре плазменной струи t=8000-15000°C, токе разряда I=300-390 A, напряжении U=45-80 B, скорости микрочастиц 120-160 м/с. В качестве плазмо-образующего газа используется смесь аргона и азота Ar=50-80%, N2=30-50%, причем расстояние от сопла плазматрона до поршневого пальца составляет 155-200 мм. Последующее охлаждение и понижение до низкой температуры с помощью жидкого азота проводим для слоя, полученного напылением порошков состава: никель 50-55 at.%, титан 45-50 at.% или титан 49-51 at.%, никель 41-44 at.%, медь 5-10 at.%. Нагрев осуществляем для слоя, полученного напылением порошков состава: никель 62-65 at.%, алюминий 35-38 at.%.
Повышение прочностных характеристик шатунно-поршневого узла достигается за счет использования технологии поверхностного модифицирования позволяющее получать наноструктурированные материалы с эффектом памяти формы. Технология поверхностного модифицирования, представляет собой комбинированный процесс, включающий подготовку поверхности, механоактивацию порошка, собственно процесс плазменного напыления в вакууме со всем многообразием влияющих факторов и последующую термическую обработку с поверхностно-пластическим деформированием. Каждая составляющая этого процесса вносит определенный вклад в повышение механических характеристик, а совокупное их влияние может оказать синергетический эффект на формирование структуры и свойств. Эти результаты дают нам основание полагать, что основной вклад в повышение механических свойств вносит именно наноструктурирование.
На фиг.1 изображен шатунно-поршневой узел.
Шатунно-поршневой узел состоит из поршня 1, поршневого пальца 2 с наноструктурированным функциональным материалом 3 с эффектом памяти формы, шатуна 4.
Способ осуществляется следующим образом.
Перед сборкой шатунно-поршневого узла на поверхность поршневого пальца наносим наноструктурированный слой с ЭПФ. Нанесение слоя осуществляем следующим образом, порошок с эффектом памяти формы наносят при помощи плазменного напыления в вакууме на поверхность поршневого пальца из стали 45, 40, 40Х, 12Х18Н10Т, получаем покрытие толщиной 0,2-3 мм, далее осуществляют вакуумный отжиг нанесенного слоя при температуре 500-800°C с последующим повышением температуры от 30 до 250°C или понижением до низкой температуры -10÷0°C с помощью жидкого азота в зависимости от сплава, обкатку нанесенного слоя при этой температуре роликами в радиальном направлении за 50-70 проходов с целью накопления степени деформации ε≥3,7%. После нанесения слоя осуществляем сборку, для этого поршневой палец вставляется в отверстия поршня, таким образом, чтобы поршневой палец с наноструктурированным слоем с эффектом памяти формы входил в отверстия поршня по переходной посадке, далее осуществляется нагрев соединения до температуры 20,7-325,8°C конца обратного мартенситного превращения. Далее на поршневом пальце закрепляется шатун.
Отжиг проводят для повышения технологической пластичности и формирования определенного типа наноструктуры с одновременным увеличением прочности и пластичности сплава, приданию сплаву эффекта памяти формы.
Пример 1
Перед сборкой шатунно-поршневого узла на поверхность поршневого пальца наносим наноструктурированный слой с ЭПФ. Нанесение слоя осуществляем следующим образом, порошок с эффектом памяти формы 35Al-65% at. Ni наносят при помощи плазменного напыления в вакууме на поверхность поршневого пальца из стали 45, получаем покрытие толщиной 0,5 мм, далее осуществляют вакуумный отжиг нанесенного слоя при температуре 500°C с последующим повышением температуры до 217°C, обкатку нанесенного слоя при этой температуре роликами в радиальном направлении за 56 проходов с целью накопления степени деформации ε=3,8%. После нанесения слоя осуществляем сборку, для этого поршневой палец вставляется в отверстия поршня, таким образом, чтобы поршневой палец с наноструктурированным слоем с эффектом памяти формы входил в отверстия поршня по переходной посадке, далее осуществляется нагрев соединения до температуры 242°C конца обратного мартенситного превращения. Далее на поршневом пальце закрепляется шатун.
Пример 2
Перед сборкой шатунно-поршневого узла на поверхность поршневого пальца наносим наноструктурированный слой с ЭПФ. Нанесение слоя осуществляем следующим образом, порошок с эффектом памяти формы 49,8Ti-50,2% at. Ni наносят при помощи плазменного напыления в вакууме на поверхность поршневого пальца из стали 12Х18Н10Т, получаем покрытие толщиной 0,8 мм, далее осуществляют вакуумный отжиг нанесенного слоя при температуре 600°C с последующим охлаждением и понижением до температуры 12,8°C с помощью жидкого азота, обкатку нанесенного слоя при этой температуре роликами в радиальном направлении за 65 проходов с целью накопления степени деформации ε=5,5%. После нанесения слоя осуществляем сборку, для этого поршневой палец вставляется в отверстия поршня, таким образом, чтобы поршневой палец с наноструктурированным слоем с эффектом памяти формы входил в отверстия поршня по переходной посадке, далее осуществляется нагрев соединения до температуры 54,8°C конца обратного мартенситного превращения. Далее на поршневом пальце закрепляется шатун.
Пример 3
Перед сборкой шатунно-поршневого узла на поверхность поршневого пальца наносим наноструктурированный слой с ЭПФ. Нанесение слоя осуществляем следующим образом, порошок с эффектом памяти формы Ti49Ni41Cu10 наносят при помощи плазменного напыления в вакууме на поверхность поршневого пальца из стали 40Х, получаем покрытие толщиной 0,7 мм, далее осуществляют вакуумный отжиг нанесенного слоя при температуре 700°C с последующим повышением температуры до 35°C, обкатку нанесенного слоя при этой температуре роликами в радиальном направлении за 70 проходов с целью накопления степени деформации ε≥4,1%. После нанесения слоя осуществляем сборку, для этого поршневой палец вставляется в отверстия поршня, таким образом, чтобы поршневой палец с наноструктурированным слоем с эффектом памяти формы входил в отверстия поршня по переходной посадке, далее осуществляется нагрев соединения до температуры 52,4°C конца обратного мартенситного превращения. Далее на поршневом пальце закрепляется шатун.
Были проведены испытания полученных образцов на изгиб с вращением шатунно-поршневого узла (поршневого пальца), а также испытан полученный узел (поршневой палец) по прототипу, табл.
Как видно из табл.1 в результате усталостных испытаний шатунно-поршневого узла, предложенный шатунно-поршневой узел обладает повышенными прочностными характеристиками.
Результаты усталостных испытаний шатунно-поршневого узла
Шатунно-поршневой узел (палец без функционального материала), прототип Шатунно-поршневой узел (палец с функциональным материалом NiAl) Шатунно-поршневой узел (палец с функциональным материалом NiTi)
№ образца σа, МПа N, циклов № образца σа, МПа N, циклов № образца σa, МПа N, циклов
1 338 3,56·104 1 442 3,62·104 1 505 3,11·104
2 327 3,89·104 2 450 4,08·104 2 485 4,11·104
3 298 1,24·105 3 448 5,31·104 3 490 6,32·104
4 307 1,97·105 4 420 9,35·104 4 485 6,89·104
5 282 7,89·105 5 390 5,68·105 5 421 6,91·105
6 274 8,95·105 6 385 6,53·105 6 419 8,58·105
7 284 9,46·105 7 368 1,16·106 7 422 9,78·105
8 288 1,64·106 8 362 1,82·106 8 420 1,93·106
9 277 >107 9 355 >107 9 415 >107
10 270 >107 10 365 >107 10 410 >107

Claims (6)

1. Способ сборки шатунно-поршневого узла, включающий установку поршневого пальца в отверстие поршня и установку шатуна на поршневой палец, отличающийся тем, что предварительно на поверхность стального поршневого пальца наносят механически активированный порошок из материала на основе никеля с эффектом памяти формы с размером частиц 30-50 мкм путем плазменного напыления в вакууме с получением слоя толщиной 0,2-3 мм, вакуумный отжиг нанесенного слоя проводят при температуре 500-800°С, термомеханическую обработку осуществляют при нагреве от 30 до 250°С или при охлаждении до -10÷0°С с помощью жидкого азота и при обкатке нанесенного слоя при этой температуре роликами в радиальном направлении за 50-70 проходов с накоплением степени деформации ε≥3,7%, затем после установки поршневого пальца в отверстие поршня проводят нагрев соединения до температуры 20,7-325,8°С конца обратного мартенситного превращения.
2. Способ по п.1, отличающийся тем, что в качестве порошка на основе Ni состав: никель 50-55 ат.%, титан 45-50 ат.% или титан 49-51 ат.%, никель 41-44 ат.%, медь 5-10 ат.%, никель 62-65 ат.%, алюминий 35-38 ат.%.
3. Способ по п.1, отличающийся тем, что на поверхность поршневого пальца наносят указанную смесь порошков плазменным напылением при температуре плазменной струи Т=8000-15000°C, токе разряда I=300-390 А, напряжении U=45-80 В, скорости микрочастиц 120-160 м/с.
4. Способ по п.1, отличающийся тем, что в качестве плазмообразующего газа используют смесь аргона и азота: Ar 50-80%, N2 30-50%, причем расстояние от сопла плазмотрона до поршневого пальца составляет 155-200 мм.
5. Способ по п.1, отличающийся тем, что последующее охлаждение до температуры -10÷0°C с помощью жидкого азота проводят для поверхностного слоя, полученного напылением порошков состава: никель 50-55 ат.%, титан 45-50 ат.% или титан 49-51 ат.%, никель 41-44 ат.%, медь 5-10 ат.%.
6. Способ по п.1, отличающийся тем, что нагрев осуществляют для поверхностного слоя, полученного напылением порошков состава: никель 62-65 ат.%, алюминий 35-38 ат.%.
RU2012123235/02A 2012-06-05 2012-06-05 Способ сборки шатунно-поршневого узла RU2499900C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012123235/02A RU2499900C1 (ru) 2012-06-05 2012-06-05 Способ сборки шатунно-поршневого узла

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012123235/02A RU2499900C1 (ru) 2012-06-05 2012-06-05 Способ сборки шатунно-поршневого узла

Publications (1)

Publication Number Publication Date
RU2499900C1 true RU2499900C1 (ru) 2013-11-27

Family

ID=49710550

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012123235/02A RU2499900C1 (ru) 2012-06-05 2012-06-05 Способ сборки шатунно-поршневого узла

Country Status (1)

Country Link
RU (1) RU2499900C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1669766A1 (ru) * 1987-11-17 1991-08-15 Производственное объединение Чебоксарский завод промышленных тракторов Способ сборки шатунно-поршневой группы поршневой машины
US7270719B2 (en) * 2003-01-13 2007-09-18 Sandvik Intellectual Property Ab Method for manufacturing surface hardened stainless steel with improved wear resistance and low static friction properties
RU2393370C2 (ru) * 2008-08-04 2010-06-27 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУВПО "КубГТУ") Способ закрепления на валу сопрягаемых цилиндрических деталей
RU2398027C1 (ru) * 2008-12-29 2010-08-27 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУВПО "КубГТУ") Способ получения наноструктурированных покрытий никель-алюминий с эффектом памяти формы на стали
WO2011000068A1 (en) * 2009-07-01 2011-01-06 Mahle Metal Leve S/A Piston ring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1669766A1 (ru) * 1987-11-17 1991-08-15 Производственное объединение Чебоксарский завод промышленных тракторов Способ сборки шатунно-поршневой группы поршневой машины
US7270719B2 (en) * 2003-01-13 2007-09-18 Sandvik Intellectual Property Ab Method for manufacturing surface hardened stainless steel with improved wear resistance and low static friction properties
RU2393370C2 (ru) * 2008-08-04 2010-06-27 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУВПО "КубГТУ") Способ закрепления на валу сопрягаемых цилиндрических деталей
RU2398027C1 (ru) * 2008-12-29 2010-08-27 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУВПО "КубГТУ") Способ получения наноструктурированных покрытий никель-алюминий с эффектом памяти формы на стали
WO2011000068A1 (en) * 2009-07-01 2011-01-06 Mahle Metal Leve S/A Piston ring

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ШЕСТОПАЛОВ С.К. Устройство, техническое обслуживание и ремонт легковых автомобилей. - М.: Академия, 2000, с.323. *

Similar Documents

Publication Publication Date Title
Liu et al. A comparative study of laser cladding high temperature wear-resistant composite coating with the addition of self-lubricating WS2 and WS2/(Ni–P) encapsulation
Navinšek et al. Improvement of hot-working processes with PVD coatings and duplex treatment
EP3077688B1 (en) Bearing element and method for manufacturing a bearing element
Hong et al. Cavitation erosion behavior and mechanism of HVOF sprayed WC-10Co-4Cr coating in 3.5 wt% NaCl solution
EP3037562B1 (en) Sliding bearing
CN1497050A (zh) 用于涂覆受流体腐蚀的元件的钴基合金
Luo et al. Effects of the metal-ceramic transition region on the mechanical properties and crack propagation behavior of an Al2O3-40 wt% TiO2 coating
Zhang et al. Effect of TiN/Ti composite coating and shot peening on fretting fatigue behavior of TC17 alloy at 350 C
Wu et al. Influence of rolling temperature on interface properties of the cross wedge rolling of 42CrMo/Q235 laminated shaft
Ni et al. Effect of laser remelting on tribological properties of Babbitt alloy
CN1497064A (zh) 易受液体侵蚀元件的处理方法和抗蚀涂层合金
Gavendová et al. Microstructure modification of CGDS and HVOF sprayed CoNiCrAlY bond coat remelted by electron beam
RU2499900C1 (ru) Способ сборки шатунно-поршневого узла
CN100552247C (zh) 具有扩散层pvd轴瓦的生产方法
Swain et al. Investigation of Tribological Behavior of Plasma Sprayed NiTi Coating for Aerospace Application
Yuan et al. Effects of laser energies on wear and tensile properties of biomimetic 7075 aluminum alloy
JP6100557B2 (ja) マグネシウム基材の表面処理方法
Yu et al. Effect of vacuum heat treatment on tensile strength and fracture performance of cold-sprayed Cu-4Cr-2Nb coatings
US20140109861A1 (en) Piston and tribological system consisting of a piston and a cylinder running surface of a cylinder crank case for an internal combustion engine
CN107604217B (zh) 铝硅合金、铝硅合金组件及其制备方法和应用
Doruk et al. Effect of tempering conditions on the fatigue behavior of an AA 6082 aluminum alloy
Valeeva et al. Tin-and copper-based electrochemical coatings for sliding bearings
Altuncu et al. Evaluation of fracture toughness of thermal sprayed and hard chrome coated aluminium-zinc alloy
Ye et al. Two feasible approaches to enhance the wear behaviors of NiCrBSi coating in atmosphere and aqueous environments
CN100528379C (zh) 旋转件热喷涂方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140606