RU2495377C1 - Способ определения навигационных параметров для носителя и устройство гибридизации - Google Patents
Способ определения навигационных параметров для носителя и устройство гибридизации Download PDFInfo
- Publication number
- RU2495377C1 RU2495377C1 RU2012102819/08A RU2012102819A RU2495377C1 RU 2495377 C1 RU2495377 C1 RU 2495377C1 RU 2012102819/08 A RU2012102819/08 A RU 2012102819/08A RU 2012102819 A RU2012102819 A RU 2012102819A RU 2495377 C1 RU2495377 C1 RU 2495377C1
- Authority
- RU
- Russia
- Prior art keywords
- malfunction
- satellite
- kalman filter
- type
- navigation solution
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/40—Correcting position, velocity or attitude
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/45—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
- G01S19/47—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Navigation (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Заявленное изобретение относится к области носителей, одновременно использующих информацию, получаемую от инерциального блока, и информацию, получаемую от системы спутниковой навигации, например системы GPS. Технический результат состоит в уменьшении, в случае возникновения неисправности у спутника, защитного радиуса вокруг вычисленного положения, ограничивающего ошибку определения истинного положения в соответствии с заданным уровнем риска для целостности, что определяет степень целостности системы. Для этого способ определения навигационных параметров носителя при помощи устройства гибридизации, содержащего фильтр (3) Калмана, формирующий гибридное навигационное решение на основе инерниальных измерений, рассчитанных виртуальной платформой (2), и необработанных измерений сигналов, переданных группой спутников и полученных от системы спутникового позиционирования (GNSS), отличающийся тем, что включает этапы, на которых определяют для каждого из спутников, по меньшей мере, одно отношение (Ir, Ir') правдоподобия между гипотезой наличия у данного спутника неисправности определенного типа и гипотезой отсутствия у спутника неисправности, констатируют наличие у спутника такой неисправности на основе отношения (Ir, Ir') правдоподобия, соответствующего неисправности определенного типа, и порогового значения, оценивают влияние констатированной неисправности на гибридное навигационное решение и корректируют гибридное навигационное решение в соответствии с оценкой влияния констатированной неисправности. 2 н. и 12 з.п. ф-лы, 1 ил.
Description
Область техники, к которой относится изобретение
Изобретение относится к области носителей, одновременно использующих информацию, получаемую от инерциального блока, и информацию, получаемую от системы спутниковой навигации, например, системы GPS.
Изобретение касается способа и устройства для гибридизации и, в частности, обнаружения неисправностей спутников и корректировки влияния таких неисправностей.
Уровень техники
Носители, такие как воздушные или морские суда, оборудуют многочисленными системами навигации. В число таких систем входит, в частности, гибридное оборудование типа INS/GNSS (от английского «Inertial Navigation System» (инерциальная навигационная система) и «Global Navigation Satellite System» (глобальная система спутниковой навигации)).
Инерциальный блок выдает информацию с низким уровнем шума и высокой кратковременной точностью. Однако в течение длительных промежутков времени происходит ухудшение качества определения положения инерциальным блоком (более или менее быстрое в зависимости от качества датчиков, например, акселерометров или гироскопов, и способов обработки данных, используемых в блоке). В свою очередь, информация, получаемая от систем спутниковой навигации, крайне мало подвержена ухудшению качества в течение длительных промежутков времени, но зачастую содержит высокий уровень шума и обладает переменной степенью точности. Кроме того, данные инерциальных измерений доступны всегда, в то время как информация GNSS может быть недоступна либо содержать ошибки и искажения.
Гибридизация состоит в сочетании информации, выдаваемой инерциальным блоком, с измерениями, получаемыми от системы спутниковой навигации, с целью получения информации о положении и скорости с использованием преимуществ обеих систем. Таким образом, точность измерений, получаемых приемником GNSS, позволяет компенсировать дрейф инерциальной системы, а результаты инерциальных измерений, содержащие низкий уровень шумов, позволяют отфильтровывать шумы в измерениях приемника GNSS.
Современные системы навигации рассчитывают защитные радиусы вокруг вычисленного положения, ограничивающие ошибку определения истинного положения в соответствии с заданным уровнем риска для целостности, что определяет степень целостности системы.
В соответствии с существующим состоянием техники такие защитные радиусы могут быть вычислены, например, при помощи набора фильтров Калмана, которые позволяют обеспечить защиту от возможной неисправности спутника.
Такие фильтры обеспечивают гибридизацию между информацией, поступающей от системы спутниковой навигации, и информацией, поступающей от инерциального блока. Один из фильтров набора фильтров, называемый основным фильтром, использует все измерения GNSS, состоящие из псевдоизмерений и информации об их качестве. Другие фильтры из набора фильтров, называемые вспомогательными, используют лишь часть имеющихся измерений GNSS. В случае возникновения неисправности на уровне спутниковых измерений вспомогательный фильтр, который не получает это измерение, не будет видеть неисправности; таким образом, «загрязнения» такого вспомогательного фильтра не происходит.
Использование такого набора фильтров Калмана было предложено в патентном документе US 7219013. В соответствии с данным документом, защитные радиусы вычисляют при помощи способа разделения решений, а для обнаружения и исключения неисправностей спутников используют контроль отклонений от ожидаемого для фильтров Калмана.
Однако такая архитектура не позволяет выявлять неисправности, вызванные малыми дрейфами, что приводит к необходимости дополнительного контроля отклонений от ожидаемого для фильтров так называемым методом наименьших квадратов с использованием только информации GNSS.
Заявитель разработал устройства, использующие такой набор фильтров, один из примеров которых представлен в патентной заявке FR 0858726, поданной 17 декабря 2008 г.
Система, предложенная в данной заявке, содержит набор фильтров Калмана, в котором каждый из фильтров связан с модулем корректировки измерений GNSS на входе фильтра в зависимости от сигнала на его выходе. Гибридное навигационное решение получают путем корректировки инерциального состояния в соответствии с сигналами на выходах фильтров, входящих в набор фильтров.
Однако архитектура, предложенная в данном документе, не вполне удовлетворительна. Хотя она обеспечивает возможность обнаружения неисправности и исключения измерений, поступающих со спутника, на котором обнаружена неисправность, она не предлагает никакого решения для оценки влияния неисправности на навигационное решение. Действительно, обнаружение неисправностей основано на моментальной статистической проверке, которую производят только тогда, когда неисправность достигает порога обнаружения. Таким образом, даже в случае выделения неисправного спутника навигационное решение не может быть скорректировано, в результате чего по-прежнему существует остаточная ошибка, порожденная данными, искаженными вследствие неисправности до ее обнаружения. Вследствие этого в случае возникновения неисправности спутника, даже обнаруженной, защитный радиус значительно возрастает.
Кроме того, такая архитектура не обеспечивает возможности определения типа неисправности, в частности, различения неисправностей типа систематического смещения и неисправностей с линейным изменением, а лишь позволяет выявлять наличие одной из этих неисправностей.
Более того, поскольку не ограничен период обнаружения неисправности, ничто не гарантирует отсутствия в гибридном решении на любой момент времени искажений, вызванных неисправностью, которая будет обнаружена в будущем.
Раскрытие изобретения
Задача, на решение которой направлено настоящее изобретение, состоит в устранении, по меньшей мере, одного из указанных недостатков и, в частности, в уменьшении защитного радиуса в случае возникновения неисправности спутника.
Для решения поставленной задачи в соответствии с первым аспектом изобретения предлагается способ для определения навигационных параметров носителя при помощи устройства гибридизации, содержащего фильтр Калмана, формирующий гибридное навигационное решение на основе инерциальных измерений, рассчитанных виртуальной платформой, и необработанных измерений сигналов, переданных группой спутников и полученных от системы спутникового позиционирования (GNSS), включающий в себя этапы, на которых:
- определяют для каждого из спутников, по меньшей мере, одно отношение правдоподобия между гипотезой наличия у данного спутника неисправности определенного типа и гипотезой отсутствия у спутника неисправности,
- констатируют наличие у спутника неисправности определенного типа на основе отношения правдоподобия, соответствующего неисправности определенного типа, и порогового значения,
- оценивают влияние констатированной неисправности на гибридное навигационное решение, и
- корректируют гибридное навигационное решение в соответствии с оценкой влияния констатированной неисправности.
В оптимальном варианте способ по первому аспекту настоящего изобретения обладает следующими характеристиками, которые могут быть осуществлены по отдельности или в любых технически возможных сочетаниях:
- для каждого спутника при каждой итерации фильтра Калмана определяют, по меньшей мере, одно отношение правдоподобия в скользящем окне накопления, причем наличие неисправности определенного типа констатируют, если сумма отношений правдоподобия, соответствующих данной неисправности, превышает соответствующее пороговое значение,
- в случае констатации неисправности способ дополнительно включает этап, на котором исключают необработанные измерения сигналов, переданных спутником, для которого констатирована неисправность,
- отношение правдоподобия определяют в зависимости от вектора отклонения и ковариаций отклонения, полученных от фильтра Калмана, а также с учетом оценки влияния неисправности определенного типа на указанный вектор отклонения,
- влияние неисправности определенного типа на указанное отклонение оценивают путем определения по данным, полученным от фильтра Калмана, динамической матрицы отклонения и оценки амплитуды неисправности определенного типа в скользящем окне оценки, которое соответствует заданному числу итераций фильтра Калмана, причем динамическая матрица отклонения связывает амплитуду неисправности с расхождением, порожденным такой неисправностью в отклонении,
- заданное число итераций фильтра Калмана соответствует периоду, меньшему заранее определенного периода обнаружения,
- оценку амплитуды неисправности определенного типа производят в скользящем окне оценки путем минимизации методом наименьших квадратов или при помощи фильтра Калмана,
- оценка влияния неисправности на гибридное навигационное решение включает определение фильтром Калмана динамической навигационной матрицы и оценку амплитуды и ковариаций неисправности определенного типа в скользящем окне оценки, которое соответствует заданному числу итераций фильтра Калмана, причем динамическая навигационная матрица связывает амплитуду неисправности с расхождением, порожденным такой неисправностью в гибридном навигационном решении,
- для каждого из спутников определяют два отношения правдоподобия, причем одно отношение правдоподобия соответствует гипотезе наличия неисправности типа систематического смещения, а второе отношение правдоподобия соответствует гипотезе наличия неисправности типа линейного изменения,
- в случае констатации наличия неисправности типа систематического смещения на этапе констатации этап оценки влияния неисправности на гибридное навигационное решение осуществляют в скользящем окне оценки, начало которого совпадает с моментом констатации наличия неисправности типа систематического смещения,
- в случае констатации наличия неисправности типа линейного изменения на этапе констатации этап оценки влияния неисправности на гибридное навигационное решение осуществляют в скользящем окне оценки, которое предшествует моменту констатации наличия неисправности типа линейного изменения, и
- в случае превышения несколькими суммами отношений правдоподобия соответствующих им пороговых значений на этапе констатации констатируют наличие одной неисправности, причем указанная неисправность соответствует наибольшей из сумм отношений правдоподобия.
В соответствии со вторым аспектом изобретения предлагается устройство гибридизации, содержащее виртуальную платформу, выполненную с возможностью вычисления инерциальных измерений, фильтр Калмана, предназначенный для формирования гибридного навигационного решения на основе инерциальных измерений и необработанных измерений сигналов, переданных группировкой спутников и полученных от системы спутникового позиционирования (GNSS), содержащее
- модуль обнаружения, выполненный с возможностью определения для каждого спутника, по меньшей мере, одного отношения правдоподобия между гипотезой наличия у данного спутника неисправности определенного типа и гипотезой отсутствия у спутника неисправности, а также с возможностью констатации наличия неисправности определенного типа на основании отношения правдоподобия, соответствующего неисправности данного типа, и порогового значения,
- модуль адаптации, выполненный с возможностью оценки влияния констатированной неисправности на гибридное навигационное решение, сформированное фильтром Калмана, а также с возможностью корректировки гибридного навигационного решения в соответствии с оценкой влияния констатированной неисправности.
В оптимальном варианте устройство по второму аспекту изобретения дополнительно содержит модуль обработки спутниковых сигналов, выполненный с возможностью исключения необработанных измерений сигналов, переданных со всех спутников, для которых модулем обнаружения констатирована неисправность.
Решение по изобретению обладает многочисленными преимуществами. В частности, решение по изобретению позволяет оценивать влияние неисправности на гибридное навигационное решение и устранять такое влияние. Решение по изобретению также обеспечивает возможность обнаружения медленно развивающихся дрейфов при помощи статистических проверок в скользящем окне.
Кроме того, решение по изобретению позволяет отличать неисправности типа систематического смещения от неисправностей типа линейного изменения и применять корректировки, соответствующие каждому типу неисправности.
Помимо этого, решение по изобретению способствует обнаружению неисправностей в сроки, меньшие заранее установленного периода обнаружения.
Краткое описание чертежей
Другие аспекты, задачи и преимущества настоящего изобретения станут ясны из нижеследующего подробного описания предпочтительных вариантов его осуществления, приведенного в виде примера, не накладывающего каких-либо ограничений, со ссылками на фиг.1, на которой представлена схема, иллюстрирующая один из возможных вариантов осуществления устройства по второму аспекту изобретения.
Осуществление изобретения
На фиг.1 представлено устройство 1 гибридизации в соответствии с одним из возможных вариантов осуществления второго аспекта изобретения, предназначенное для установки в носителе, например, в воздушном судне. Устройство 1 гибридизации использует информацию, получаемую от инерциального блока UMI и от системы GNSS спутниковой навигации, и содержит виртуальную платформу 2 и фильтр 3 Калмана.
Виртуальная платформа 2 получает инерциальные приращения, поступающие от датчиков (гироскопов, акселерометров) инерциального блока. Инерциальные приращения соответствуют, в частности, угловым приращениям и приращениям скорости. Данные инерциальной навигации (такие как значения высоты, скорости или положения носителя) вычисляет виртуальная платформа 2 на основе таких приращений. Такие данные инерциальной навигации в дальнейшем описании обозначены термином «инерциальные измерения PPVI».
Такие инерциальные измерения PPVI передаются в модуль вычисления априорно оцененных псевдорасстояний (не представлен на фиг.1), который также получает данные по положению спутников. Модуль вычисления априорно оцененных псевдорасстояний вычисляет по части инерциальных измерений и данным по положению спутников априорные псевдорасстояния между носителем и спутниками, видимыми носителю.
Устройство 1 гибридизации также получает от системы GNSS спутниковой навигации псевдоизмерения между носителем и различными видимыми спутниками. Затем, в соответствии с известными способами, вычисляют расхождения (называемые наблюдениями) между априорно оцененными псевдоизмерениями и псевдоизмерениями, полученными от системы GNSS.
Устройство 1 гибридизации дополнительно содержит фильтр 3 Калмана, осуществляющий гибридизацию между инерциальными данными, поступающими от инерциального блока, и информацией от системы спутниковой навигации. Помимо выдачи на выход статистической информации по измерениям, фильтр обеспечивает сохранение линейности работы виртуальной платформы 2, модель которой предусмотрена в фильтре 3 Калмана, путем оценки вектора dX0 состояния.
Фильтр 3 Калмана учитывает все наблюдения (получая для этого все измерения, поступающие из системы GNSS) и формирует гибридное навигационное решение.
В рамках архитектуры замкнутого контура (архитектуры с обратной связью), представленной на фиг.1, устройство 1 гибридизации формирует гибридный выходной сигнал Xref («базовые навигационные данные»), соответствующее инерциальным измерениям PPVI, рассчитанным виртуальной платформой 2 и скорректированным при помощи вычитающего элемента 7 на вектор dX0 состояния, сформированный фильтром Калмана.
Однако изобретение не ограничено такой архитектурой, но также применимо и к архитектуре открытого контура, в которой вычитающий элемент 7 не используют.
Для выработки гибридного навигационного решения в устройстве 1 предусмотрен сумматор 10, установленный на выходе фильтра 3 Калмана для сложения вектора dX0 состояния, сформированного фильтром, с гибридным выходным сигналом Xref.
Следует отметить, что гибридный выходной сигнал Xref предназначен исключительно для внутреннего использования. Таким образом, оптимальное навигационное решение образовано информацией, получаемой на выходе сумматора 10.
Гибридный выходной сигнал Xref может быть возвращен на вход виртуальной платформы 2.
Кроме того, как показано на фиг.1, вектор dX0 стабилизации состояния может быть подан на вход фильтра 3 Калмана. Таким образом, обеспечивают согласованность фильтра с виртуальной платформой 2.
В дальнейшем описании неисправным спутником считают спутник, который передает в своих сообщениях ошибочную информацию, порождающую расхождение (постоянное или переменное) между его действительным положением и положением, определенным в его сообщениях.
Устройство 1 гибридизации по изобретению содержит модуль 4 обнаружения и исключения неисправностей спутников, содержащий модуль 41 обнаружения, выполненный с возможностью осуществления этапов, на которых:
- для каждого спутника определяют, по меньшей мере, одно отношение Ir, Ir' правдоподобия между гипотезой наличия у данного спутника неисправности определенного типа и гипотезой отсутствия у спутника неисправности,
- в соответствии с отношением Ir, Ir' правдоподобия, определенным для неисправности определенного типа, и пороговым значением констатируют наличие у спутника неисправности определенного типа.
Отношение правдоподобия соответствует вероятности наличия у соответствующего спутника неисправности определенного типа. Например, если отношение правдоподобия, относящееся к неисправности определенного типа, положительно, вероятность наличия такой неисправности у соответствующего спутника более высока. Чем выше отношение правдоподобия, тем выше вероятность наличия связанной с ним неисправности у соответствующего спутника.
В оптимальном варианте для каждого спутника при каждой итерации фильтра Калмана в скользящем окне накопления определяют, по меньшей мере, одно отношение Ir, Ir' правдоподобия, причем наличие неисправности определенного типа констатируют, если сумма отношений Ir, Ir' правдоподобия, соответствующих такой неисправности, в скользящем окне превышает соответствующее пороговое значение.
Пороговое значение может быть одним и тем же для нескольких спутников и/или нескольких типов неисправностей; в альтернативном варианте пороговые значения могут быть разными для каждого спутника и каждого типа неисправности, причем в последнем случае каждое отношение правдоподобия или, в оптимальном варианте, каждую сумму отношений правдоподобия, сравнивают с соответствующими им пороговыми значениями.
Размер скользящего окна накопления может варьироваться в зависимости от типа неисправности; также может быть установлен единый размер скользящего окна.
Как будет подробно описано ниже, модуль 4 обнаружения и исключения неисправностей спутников также выполняет функцию обработки и исключения измерений GNSS с целью их контроля.
В варианте осуществления изобретения, представленном на фиг.1, модуль 4 обнаружения и исключения дополнительно содержит модуль 42 обработки спутниковых сигналов, который принимает измерения GNSS и направляет полученную информацию в фильтр 3 Калмана в соответствии с текущей ситуацией (неисправные спутники не обнаружены; исключение данных спутника, в котором обнаружена неисправность).
Устройство гибридизации в соответствии со вторым аспектом изобретения дополнительно содержит модуль 5 адаптации, выполненный с возможностью выполнения этапов, на которых:
- оценивают влияние неисправности на гибридное навигационное решение, сформированное фильтром 3 Калмана, и
- в случае констатации наличия неисправности корректируют гибридное навигационное решение в соответствии с полученной оценкой влияния неисправности.
Модуль 5 адаптации также выполняет функцию оценки расхождения, порожденного неисправностью в гибридном навигационном решении, и корректировки гибридного навигационного решения, например, при помощи вычитающего элемента 6. Однако настоящее изобретение не ограничено данной архитектурой, и оценка влияния неисправности на гибридное навигационное решение может быть произведена другими средствами, например, фильтром Калмана, модулем 41 обнаружения или же любыми другими соответствующими средствами, известными специалистам в данной области.
Ниже следует описание способов вычислений, разработанных заявителем для определения отношений правдоподобия и влияния неисправностей на гибридные навигационные решения. Данные формулы приведены в виде примера и не накладывают каких-либо ограничений на изобретение.
В оптимальном варианте вход модуля 41 обнаружения соединен с выходом фильтра Калмана, причем отношения правдоподобия определяют по данным, получаемым от фильтра Калмана, которые содержат, в частности, вектор отклонения и ковариацию отклонения, а также по вектору оценки влияния неисправности данного рода на вектор отклонения.
Отклонением называют расхождение между априорным наблюдением, поступившим в фильтр Калмана, и апостериорной оценкой такого наблюдения, выработанной фильтром.
Таким образом, вектор отклонения представляет собой отклонение для наблюдений, полученных несколькими спутниками.
Отношение Ir правдоподобия, связанное с неисправностью определенного типа, для некоторого момента t предпочтительно определяют по следующей формуле:
где:
εt - вектор отклонения фильтра Калмана в момент t,
St - ковариации отклонений в момент t,
ρt - расхождение, вызванное неисправностью, в векторе отклонения в момент t.
Символ T обозначает транспонирование матрицы или вектора-столбца.
Величина ρt неизвестна, но ее можно оценить в скользящем окне оценки. В предпочтительном варианте одновременно с этим оценивают расхождение гибридного навигационного решения, порожденное неисправностью, обозначенное в дальнейшем описании символом βt. Для получения данных оценок могут быть использованы следующие формулы:
где:
φt - динамическая матрица отклонения, связывающая амплитуду неисправности и расхождение, порожденное неисправностью в отклонении, и
µt - динамическая навигационная матрица, связывающая амплитуду неисправности и расхождение, порожденное неисправностью, в гибридном навигационном решении.
В оптимальном варианте обе динамические матрицы для момента t вычисляет модуль 41 обнаружения на основе данных, полученных от фильтра Калмана, предпочтительно перекрестно-рекурсивным образом, т.е. для каждого момента t φt и µt вычисляют по φt-1 и µt-1.
Указанные данные, полученные от фильтра 3 Калмана, могут содержать приращение фильтра Калмана и матриц перехода и наблюдений.
Оценку амплитуды неисправности в оптимальном варианте получают в скользящем окне оценки, которое соответствует определенному числу N итераций фильтра Калмана.
В соответствии с оптимальным вариантом осуществления изобретения такая оценка может быть получена методом наименьших квадратов в скользящем окне оценки, предпочтительно по следующей формуле:
В оптимальном варианте заданное число N итераций фильтра Калмана соответствует периоду, меньшему заранее установленного периода Т обнаружения. В частности, если символ δ обозначает период итерации фильтра 3 Калмана, то скользящее окно оценки должно соответствовать следующему условию: N·δ≤Т.
В оптимальном варианте такое скользящее окно оценки совпадает со скользящим окном накопления отношений правдоподобия, связанных с данной неисправностью.
Использование такого периода обнаружения позволяет ограничить размеры скользящего окна, а также нагрузку на вычислительные средства.
Модуль 41 обнаружения предпочтительно выполнен с возможностью накопления отношений правдоподобия для каждого спутника и каждого заданного типа неисправности в скользящем окне накопления.
В оптимальном варианте осуществления изобретения для каждого спутника определяют два отношения Ir, Ir' правдоподобия, причем отношение Ir соответствует гипотезе о неисправности типа систематического смещения, а отношение Ir' соответствует гипотезе о неисправности типа линейного изменения.
В частности, динамическая матрица отклонения, определенная для каждой итерации фильтра Калмана, будет разной для неисправностей типа систематического смещения и неисправностей типа линейного изменения. Следовательно, отношения Ir, Ir' правдоподобия для каждого спутника различны.
Таким образом, изобретение позволяет различать случаи возникновения неисправностей типа систематического смещения и неисправностей типа линейного изменения.
В случае обнаружения неисправности типа систематического смещения этап оценки влияния неисправности на гибридное навигационное решение в оптимальном варианте осуществляют в скользящем окне оценки, начиная с момента констатации наличия неисправности типа систематического смещения. Таким образом, в случае обнаружения неисправности типа систематического смещения скользящее окно оценки оставляют активным в течение определенного времени, достаточного для оценки характеристик неисправности.
В оптимальном варианте оценка характеристик неисправности типа систематического смещения зависит от момента возникновения неисправности, т.е. момента, в который сумма отношений правдоподобия в скользящем окне накопления, соответствующем неисправности типа систематического смещения, превысила соответствующее пороговое значение. Таким образом, исключение измерений модулем 42 вводят в действие только после такой оценки.
В случае обнаружения неисправности типа линейного изменения оценку влияния неисправности на гибридное навигационное решение предпочтительно осуществляют в скользящем окне оценки, предшествующем констатации наличия неисправности типа линейного изменения.
В оптимальном варианте, если несколько сумм отношений Ir, Ir' правдоподобия превышают соответствующие пороговые значения, модуль 41 обнаружения констатирует наличие одной неисправности. Такая неисправность соответствует наибольшей из сумм отношений правдоподобия для всех неисправностей, обнаруженных на всех спутниках.
Таким образом, в случае возможного наличия неисправностей на двух спутниках констатируют только наличие наиболее вероятной неисправности, а в случае возможного наличия двух неисправностей разных типов также констатируют только наличие наиболее вероятной неисправности.
Claims (14)
1. Способ для определения навигационных параметров носителя при помощи устройства гибридизации, содержащего фильтр (3) Калмана, формирующий гибридное навигационное решение на основе инерциальных измерений, рассчитанных виртуальной платформой (2), и необработанных измерений сигналов, переданных группой спутников и полученных от системы спутникового позиционирования (GNSS), отличающийся тем, что включает этапы, на которых:
определяют для каждого из спутников, по меньшей мере, одно отношение (Ir, Ir') правдоподобия между гипотезой наличия у данного спутника неисправности определенного типа и гипотезой отсутствия у спутника неисправности,
констатируют наличие у спутника неисправности определенного типа на основе отношения (Ir, Ir') правдоподобия, соответствующего неисправности определенного типа, и порогового значения,
оценивают влияние констатированной неисправности на гибридное навигационное решение, и
корректируют гибридное навигационное решение в соответствии с оценкой влияния констатированной неисправности.
определяют для каждого из спутников, по меньшей мере, одно отношение (Ir, Ir') правдоподобия между гипотезой наличия у данного спутника неисправности определенного типа и гипотезой отсутствия у спутника неисправности,
констатируют наличие у спутника неисправности определенного типа на основе отношения (Ir, Ir') правдоподобия, соответствующего неисправности определенного типа, и порогового значения,
оценивают влияние констатированной неисправности на гибридное навигационное решение, и
корректируют гибридное навигационное решение в соответствии с оценкой влияния констатированной неисправности.
2. Способ по п.1, отличающийся тем, что для каждого спутника при каждой итерации фильтра Калмана определяют, по меньшей мере, одно отношение (Ir, Ir') правдоподобия в скользящем окне накопления, причем наличие неисправности определенного типа констатируют, если сумма отношений (Ir, Ir') правдоподобия, соответствующих данной неисправности, превышает соответствующее пороговое значение.
3. Способ по п.2, отличающийся тем, что в случае констатации неисправности дополнительно включает этап, на котором исключают необработанные измерения сигналов, переданных спутником, для которого констатирована неисправность.
4. Способ по п.1, отличающийся тем, что отношение (Ir, Ir') правдоподобия определяют в зависимости от вектора отклонения и ковариаций отклонения, полученных от фильтра Калмана, а также с учетом оценки влияния неисправности определенного типа на указанный вектор отклонения.
5. Способ по п.4, отличающийся тем, что влияние неисправности определенного типа на указанное отклонение оценивают путем определения по данным, полученным от фильтра (3) Калмана, динамической матрицы отклонения и оценки амплитуды неисправности определенного типа в скользящем окне оценки, которое соответствует заданному числу (N) итераций фильтра (3) Калмана, причем динамическая матрица отклонения связывает амплитуду неисправности с расхождением, порожденным такой неисправностью в отклонении.
6. Способ по п.5, отличающийся тем, что заданное число (N) итераций фильтра (3) Калмана соответствует периоду, меньшему заранее определенного периода (Т) обнаружения.
7. Способ по п.5 или 6, отличающийся тем, что оценку амплитуды неисправности определенного типа производят в скользящем окне оценки путем минимизации методом наименьших квадратов или при помощи фильтра Калмана.
8. Способ по п.1, отличающийся тем, что оценка влияния неисправности на гибридное навигационное решение включает определение фильтром (3) Калмана динамической навигационной матрицы и оценку амплитуды и ковариации неисправности определенного типа в скользящем окне оценки, которое соответствует заданному числу (N) итераций фильтра (3) Калмана, причем динамическая навигационная матрица связывает амплитуду неисправности с расхождением, порожденным такой неисправностью в гибридном навигационном решении.
9. Способ по п.1, отличающийся тем, что для каждого из спутников определяют два отношения (Ir, Ir') правдоподобия, причем одно отношение (Ir) правдоподобия соответствует гипотезе наличия неисправности типа систематического смещения, а второе отношение (Ir') правдоподобия соответствует гипотезе наличия неисправности типа линейного изменения.
10. Способ по п.8 или 9, отличающийся тем, что в случае констатации наличия неисправности типа систематического смещения на этапе констатации этап оценки влияния неисправности на гибридное навигационное решение осуществляют в скользящем окне оценки, начало которого совпадает с моментом констатации наличия неисправности типа систематического смещения.
11. Способ по п.8 или 9, отличающийся тем, что в случае констатации наличия неисправности типа линейного изменения на этапе констатации этап оценки влияния неисправности на гибридное навигационное решение осуществляют в скользящем окне оценки, которое предшествует моменту констатации наличия неисправности типа линейного изменения.
12. Способ по п.2, отличающийся тем, что в случае превышения несколькими суммами отношений (Ir, Ir') правдоподобия соответствующих им пороговых значений на этапе констатации констатируют наличие одной неисправности, причем указанная неисправность соответствует наибольшей из сумм отношений правдоподобия.
13. Устройство гибридизации, содержащее виртуальную платформу (2), выполненную с возможностью вычисления инерциальных измерений, фильтр (3) Калмана, предназначенный для формирования гибридного навигационного решения на основе инерциальных измерений и необработанных измерений сигналов, переданных группировкой спутников и полученных от системы спутникового позиционирования (GNSS), отличающееся тем, что содержит
модуль (42) обнаружения, выполненный с возможностью определения для каждого спутника, по меньшей мере, одного отношения (Ir, Ir') правдоподобия между гипотезой наличия у данного спутника неисправности определенного типа и гипотезой отсутствия у спутника неисправности, а также с возможностью констатации наличия неисправности определенного типа на основе отношения (Ir, Ir') правдоподобия, соответствующего неисправности данного типа, и порогового значения,
модуль (5) адаптации, выполненный с возможностью оценки влияния констатированной неисправности на гибридное навигационное решение, сформированное фильтром Калмана, а также с возможностью корректировки гибридного навигационного решения в соответствии с оценкой влияния констатированной неисправности.
модуль (42) обнаружения, выполненный с возможностью определения для каждого спутника, по меньшей мере, одного отношения (Ir, Ir') правдоподобия между гипотезой наличия у данного спутника неисправности определенного типа и гипотезой отсутствия у спутника неисправности, а также с возможностью констатации наличия неисправности определенного типа на основе отношения (Ir, Ir') правдоподобия, соответствующего неисправности данного типа, и порогового значения,
модуль (5) адаптации, выполненный с возможностью оценки влияния констатированной неисправности на гибридное навигационное решение, сформированное фильтром Калмана, а также с возможностью корректировки гибридного навигационного решения в соответствии с оценкой влияния констатированной неисправности.
14. Устройство по п.13, отличающееся тем, что дополнительно содержит модуль (42) обработки спутниковых сигналов, выполненный с возможностью исключения необработанных измерений сигналов, переданных со всех спутников, для которых модулем обнаружения констатирована неисправность.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0954850 | 2009-07-10 | ||
FR0954850A FR2947901B1 (fr) | 2009-07-10 | 2009-07-10 | Procede de determination de parametres de navigation d'un porteur et dispositif d'hybridation |
PCT/EP2010/059853 WO2011003993A1 (fr) | 2009-07-10 | 2010-07-09 | Procédé de détermination de paramètres de navigation d'un porteur et dispositif d'hybridation |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012102819A RU2012102819A (ru) | 2013-08-20 |
RU2495377C1 true RU2495377C1 (ru) | 2013-10-10 |
Family
ID=42077553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012102819/08A RU2495377C1 (ru) | 2009-07-10 | 2010-07-09 | Способ определения навигационных параметров для носителя и устройство гибридизации |
Country Status (5)
Country | Link |
---|---|
US (1) | US8942923B2 (ru) |
EP (1) | EP2452157B1 (ru) |
FR (1) | FR2947901B1 (ru) |
RU (1) | RU2495377C1 (ru) |
WO (1) | WO2011003993A1 (ru) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2947900B1 (fr) * | 2009-07-10 | 2012-03-23 | Sagem Defense Securite | Procede de determination de parametres de navigation d'un porteur et dispositif d'hybridation a banc de filtres de kalman |
CN108897027B (zh) * | 2018-05-09 | 2019-05-14 | 温州大学 | 基于北斗Ka星间链路信号的地面用户导航定位方法 |
CN109345875B (zh) * | 2018-09-28 | 2020-11-03 | 哈尔滨工程大学 | 一种提高船舶自动识别系统测量精度的估计方法 |
CN111076745B (zh) * | 2019-11-27 | 2023-03-10 | 中国航空工业集团公司洛阳电光设备研究所 | 一种基于闭环检测的惯性稳定平台故障诊断方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5841399A (en) * | 1996-06-28 | 1998-11-24 | Alliedsignal Inc. | Fault detection and exclusion used in a global positioning system GPS receiver |
RU2182341C2 (ru) * | 1995-11-14 | 2002-05-10 | Сантр Насьональ Д'Этюд Спасьяль | Глобальная космическая система определения местоположения и радионавигации, радиомаяк и приемник, используемые в данной системе |
US6859170B2 (en) * | 1999-04-21 | 2005-02-22 | The Johns Hopkins University | Extended kalman filter for autonomous satellite navigation system |
RU2277696C2 (ru) * | 2004-04-21 | 2006-06-10 | Закрытое акционерное общество "Лазекс" | Интегрированная инерциально-спутниковая навигационная система |
EP1752786A1 (fr) * | 2005-08-09 | 2007-02-14 | Sagem Défense Sécurité | Système de navigation hybride inertiel/satellite et procedé de controle d'un tel système |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5583774A (en) * | 1994-06-16 | 1996-12-10 | Litton Systems, Inc. | Assured-integrity monitored-extrapolation navigation apparatus |
US5923286A (en) * | 1996-10-23 | 1999-07-13 | Honeywell Inc. | GPS/IRS global position determination method and apparatus with integrity loss provisions |
US6449559B2 (en) * | 1998-11-20 | 2002-09-10 | American Gnc Corporation | Fully-coupled positioning process and system thereof |
US6417802B1 (en) * | 2000-04-26 | 2002-07-09 | Litton Systems, Inc. | Integrated inertial/GPS navigation system |
FR2826447B1 (fr) * | 2001-06-26 | 2003-09-19 | Sagem | Procede et dispositif de navigation inertielle hybride |
FR2830320B1 (fr) * | 2001-09-28 | 2003-11-28 | Thales Sa | Centrale de navigation inertielle hybryde a integrite amelioree |
FR2832796B1 (fr) * | 2001-11-27 | 2004-01-23 | Thales Sa | Centrale de navigation inertielle hybride a integrite amelioree en altitude |
US6697736B2 (en) * | 2002-02-06 | 2004-02-24 | American Gnc Corporation | Positioning and navigation method and system thereof |
US7219013B1 (en) | 2003-07-31 | 2007-05-15 | Rockwell Collins, Inc. | Method and system for fault detection and exclusion for multi-sensor navigation systems |
FR2866423B1 (fr) * | 2004-02-13 | 2006-05-05 | Thales Sa | Dispositif de surveillance de l'integrite des informations delivrees par un systeme hybride ins/gnss |
FR2906893B1 (fr) * | 2006-10-06 | 2009-01-16 | Thales Sa | Procede et dispositif de surveillance de l'integrite des informations delivrees par un systeme hybride ins/gnss |
US8509965B2 (en) * | 2006-12-12 | 2013-08-13 | American Gnc Corporation | Integrated collision avoidance system for air vehicle |
FR2913773B1 (fr) * | 2007-03-16 | 2014-08-01 | Thales Sa | Dispositif de reception de signaux satellitaires comprenant une boucle de phase avec compensation des retards |
WO2008147232A1 (en) * | 2007-05-29 | 2008-12-04 | Deimos Engenharia S.A. | Highly integrated gps, galileo and inertial navigation system |
US20090182493A1 (en) * | 2008-01-15 | 2009-07-16 | Honeywell International, Inc. | Navigation system with apparatus for detecting accuracy failures |
US20090182494A1 (en) * | 2008-01-15 | 2009-07-16 | Honeywell International, Inc. | Navigation system with apparatus for detecting accuracy failures |
FR2927705B1 (fr) * | 2008-02-19 | 2010-03-26 | Thales Sa | Systeme de navigation a hybridation par les mesures de phase |
FR2949866B1 (fr) * | 2009-09-10 | 2011-09-30 | Thales Sa | Systeme hybride et dispositif de calcul d'une position et de surveillance de son integrite. |
-
2009
- 2009-07-10 FR FR0954850A patent/FR2947901B1/fr not_active Expired - Fee Related
-
2010
- 2010-07-09 WO PCT/EP2010/059853 patent/WO2011003993A1/fr active Application Filing
- 2010-07-09 EP EP10730462.8A patent/EP2452157B1/fr active Active
- 2010-07-09 US US13/383,202 patent/US8942923B2/en active Active
- 2010-07-09 RU RU2012102819/08A patent/RU2495377C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2182341C2 (ru) * | 1995-11-14 | 2002-05-10 | Сантр Насьональ Д'Этюд Спасьяль | Глобальная космическая система определения местоположения и радионавигации, радиомаяк и приемник, используемые в данной системе |
US5841399A (en) * | 1996-06-28 | 1998-11-24 | Alliedsignal Inc. | Fault detection and exclusion used in a global positioning system GPS receiver |
US6859170B2 (en) * | 1999-04-21 | 2005-02-22 | The Johns Hopkins University | Extended kalman filter for autonomous satellite navigation system |
RU2277696C2 (ru) * | 2004-04-21 | 2006-06-10 | Закрытое акционерное общество "Лазекс" | Интегрированная инерциально-спутниковая навигационная система |
EP1752786A1 (fr) * | 2005-08-09 | 2007-02-14 | Sagem Défense Sécurité | Système de navigation hybride inertiel/satellite et procedé de controle d'un tel système |
Also Published As
Publication number | Publication date |
---|---|
US8942923B2 (en) | 2015-01-27 |
EP2452157B1 (fr) | 2013-09-04 |
FR2947901A1 (fr) | 2011-01-14 |
FR2947901B1 (fr) | 2012-03-23 |
EP2452157A1 (fr) | 2012-05-16 |
WO2011003993A1 (fr) | 2011-01-13 |
RU2012102819A (ru) | 2013-08-20 |
US20120123679A1 (en) | 2012-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2559842C2 (ru) | Способ и устройство для обнаружения и исключения множественных отказов спутников системы гнсс | |
US7711482B2 (en) | Hybrid INS/GNSS system with integrity monitoring and method for integrity monitoring | |
RU2510529C2 (ru) | Способ определения навигационных параметров носителя и устройство гибридизации, связанное с банком фильтров калмана | |
US7409289B2 (en) | Device for monitoring the integrity of information delivered by a hybrid INS/GNSS system | |
US9285482B2 (en) | Method and device for detecting and excluding satellite malfunctions in a hybrid INS/GNSS system | |
US9146320B2 (en) | Method for detecting and excluding multiple failures in a satellite | |
US9146322B2 (en) | Hybrid system and device for calculating a position and for monitoring its integrity | |
US8902105B2 (en) | Method and apparatus for determining an integrity indicating parameter indicating the integrity of positioning information determined in a gobal positioning system | |
KR101574819B1 (ko) | 비정상적 의사-거리 측정에 대해 무선 내비게이션 수신기 사용자를 보호하는 방법 | |
CA3014110C (en) | System and method to provide an asil qualifier for gnss position and related values | |
US20070265810A1 (en) | Closed loop hybridising device with monitoring of the measurement integrity | |
CN104796142A (zh) | 多级/多阈值/多持久性的gps/gnss原子钟监控 | |
JP2012073246A (ja) | 擬似的距離測定値の選定による位置推定の修正方法 | |
CN116075747A (zh) | 用于卫星定位的系统和方法 | |
WO2021202004A2 (en) | System and method for reconverging gnss position estimates | |
RU2495377C1 (ru) | Способ определения навигационных параметров для носителя и устройство гибридизации | |
CN113009520B (zh) | 一种卫星导航矢量跟踪环的完好性检测方法 | |
US8625696B2 (en) | Hybridization device with segregated kalman filters | |
US20230084387A1 (en) | Measurement arrangement | |
CN115291253A (zh) | 一种基于残差检测的车辆定位完好性监测方法及系统 | |
Giremus et al. | A GLR algorithm to detect and exclude up to two simultaneous range failures in a GPS/Galileo/IRS case | |
Kim et al. | Integrity Assurance of LIRTK Using SS-RAIM Against Sensor Faults for UAV Applications | |
US20240201392A1 (en) | System and method for bounding a satellite positioning solution integrity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner |