RU2495145C1 - Способ разделения медно-никелевого файнштейна - Google Patents

Способ разделения медно-никелевого файнштейна Download PDF

Info

Publication number
RU2495145C1
RU2495145C1 RU2012107946/02A RU2012107946A RU2495145C1 RU 2495145 C1 RU2495145 C1 RU 2495145C1 RU 2012107946/02 A RU2012107946/02 A RU 2012107946/02A RU 2012107946 A RU2012107946 A RU 2012107946A RU 2495145 C1 RU2495145 C1 RU 2495145C1
Authority
RU
Russia
Prior art keywords
copper
nickel
sulfide
melt
sodium chloride
Prior art date
Application number
RU2012107946/02A
Other languages
English (en)
Other versions
RU2012107946A (ru
Inventor
Юрий Тихонович Мельников
Дмитрий Олегович Криницын
Original Assignee
Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" filed Critical Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет"
Priority to RU2012107946/02A priority Critical patent/RU2495145C1/ru
Priority to EA201200629A priority patent/EA019818B1/ru
Publication of RU2012107946A publication Critical patent/RU2012107946A/ru
Application granted granted Critical
Publication of RU2495145C1 publication Critical patent/RU2495145C1/ru

Links

Abstract

Изобретение относится к цветной металлургии, в частности к способу разделения медно-никелевого файнштейна. Способ разделения медно-никелевого файнштейна, содержащего медь, кобальт и железо, на медный и никелевый концентраты включает обработку его расплавом хлорида щелочного металла для растворения в нем сульфида меди. Затем ведут отделение сульфида никеля от сульфида меди путем слива хлоридного расплава с растворенным в нем сульфидом меди и регенерацию расплава хлорида щелочного металла. При этом обработке хлоридным расплавом подвергают файнштейн, содержащий до 35 мас.% меди, и проводят ее расплавом хлорида натрия при температуре 950-900°C. Оставшийся после отделения от сульфида меди сульфид никеля повторно обрабатывают расплавом хлорида натрия при температуре 900°C. Из хлоридного расплава с растворенным сульфидом меди выделяют кристаллы сульфида меди и регенерируют расплав хлорида натрия охлаждением хлоридного расплава с 900°C до 750°C путем подачи азота на его поверхность. Техническим результатом изобретения является упрощение технологии разделения медно-никелевого файнштейна, содержащего значительные количества меди (до 35 мас.%), сокращение энергетических и материальных затрат. 2 з.п. ф-лы, 2 табл., 3 пр.

Description

Изобретение относится к цветной металлургии, в частности к способу разделения медно-никелевого файнштейна.
В настоящее время известен способ переработки медно-никелевых файнштейнов по технологии разделительной флотации [Худяков И.Ф., Тихонов А.И., Деев В.И., Набойченко С.С. Металлургия меди и кобальта. Т.2. - М.: Металлургия, 1977. - с.88-95.]. Технология многостадийна, требует большого количества технологических площадей и оборудования и не обеспечивает глубокого разделения сульфидов меди и никеля.
Известен способ разделительной плавки медно-никелевого файнштейна [Чижиков Д.М., Гуляницкая З.Ф., Плигинская Л.В., Субботина Е.А. Электрометаллургия медно-никелевых сульфидных сплавов в водных растворах. - М.: Наука, 1977. - с.263], основанный на том, что введение в файнштейн сульфида натрия приводит к растворению в нем сульфида меди, а сульфид никеля не растворяется. При этом сульфид никеля находится в донной фазе, а сульфиды меди и натрия в верхней фазе. Однако разделение сульфида меди и сульфида натрия требует окисления последнего до сульфата натрия, а затем вновь восстановления его до сульфида натрия с целью повторного использования. Способ включает много переделов, связан с получением большого количества промежуточных продуктов и значительного расхода окислителя и восстановителя.
Наиболее близким техническим решением, выбранным в качестве прототипа, является способ обработки файнштейна (никелевого матта) [US 3802870, C01G 53/00; С22В 23/00; С22В 23/02; С22В 5/08; С22В 23/00, опубл. 1974.04.09.], содержащего до 15% примесей меди, кобальта и железа, расплавленным хлоридом натрия, содержащим до 10% хлорида никеля, при температуре 780°C и соотношении файнштейн ÷ солевой расплав, равном один к одному. Солевой расплав, в который перешли из файнштейна медь, кобальт, железо, регенерируют электролизом или магниевым сплавом.
Недостатками известного способа является то, что для выделения из файнштейна меди, кобальта и железа в качестве реагента используется хлорид никеля, растворенный в расплаве хлорида натрия или в эвтектике хлорида натрия и калия, полученный солевой экстрагент требует регенерации путем электролиза или обработки его магниевым сплавом. Способ может быть применен для файнштейна, содержащего только до 15% примесей.
Техническим результатом изобретения является упрощение технологии разделения медно-никелевого файнштейна, содержащего значительные количества меди (до 35 мас.%), сокращение энергетических и материальных затрат.
Технический результат достигается тем, что в способе разделения медно-никелевого файнштейна, содержащего медь, кобальт и железо, на медный и никелевый концентраты, включающем обработку его расплавом хлорида щелочного металла для растворения в нем сульфида меди, отделение сульфида никеля от сульфида меди путем слива хлоридного расплава с растворенным в нем сульфидом меди и регенерацию расплава хлорида щелочного металла, новым является то, что обработке подвергают файнштейн, содержащий до 35 мас.% меди, и проводят ее расплавом хлорида натрия при температуре 950-900°C. Также новым является то, что оставшийся после отделения от сульфида меди сульфид никеля повторно обрабатывают расплавом хлорида натрия при температуре 900°C, из хлоридного расплава с растворенным сульфидом меди выделяют кристаллы сульфида меди и регенерируют расплав хлорида натрия охлаждением хлоридного расплава с 900°C до 750°C путем подачи азота на его поверхность.
Полученный в конвертере файнштейн следующего состава (масс.%): 45 Ni, 28 Си, 2,4 Fe, 1,0 Со, 22,6 S, сливают в отстойник и охлаждают до 950-900°C. Затем сливают в расплав хлорида натрия, находящегося в рафинированной печи и перемешивают в течение 30-40 минут. В результате сульфид меди растворяется в хлориде натрия.
Выбор соотношения хлорид натрия÷файнштейн зависит от содержания сульфида меди в файнштейне. Максимальная растворимость сульфида меди в хлориде натрия при 900°C достигает 90 мас.%. Растворимость сульфидов железа, кобальта и никеля в хлориде натрия при 900°C не превышает 0,1-0,3 мас.%. Остаточное содержание меди в файнштейне не более 1 мас.%.
Из рафинировочной печи первоначально сливают хлоридно-сульфидный расплав в котел-кристаллизатор и азотом охлаждают расплав с поверхности с 900°C до 750°C. В ходе охлаждения расплава содержание сульфида меди в нем снижается с 60-70 мас.% до 15 мас.%. Кристаллы сульфида меди опускаются на дно решетчатой корзины. Расплав хлорида натрия сливают в ковш и затем подают для повторного использования в рафинировочную печь. Из котла-кристаллизатора извлекают решетчатую корзину с кристаллами сульфида меди, выгружают и отправляют на медный завод.
Оставшийся в рафинировочной печи сульфид никеля повторно обрабатывают при температуре 900°C расплавом хлорида натрия в соотношении 10:1, что снижает содержание меди в сульфиде никеля до 0,1-0,3 мас.%. Расплав хлорида натрия с небольшим содержанием сульфида меди используют на переделе первой промывки файнштейна.
Применение хлорида натрия, вместо хлорида калия, более эффективно, так как хлорид калия при температуре 900°C растворяет до 80 мас.% сульфида меди, а при охлаждении хлоридного расплава до 800°C в нем содержится до 59,0 мас.% сульфида меди, а в хлориде натрия при 750°С остаточное содержание меди равно 23,0 мас.%, что свидетельствует о достижении в два раза большего извлечения сульфида меди из сульфида никеля за одну операцию экстракции.
Представленный способ разделения медно-никелевого файнштейна позволяет устранить передел охлаждения файнштейна в изложницах, грубое и тонкое дробление, помол и флотацию. Однако получаемый в результате сульфидный никелевый концентрат содержит до 3,0-4,0 мас.% меди и 3,0-3,5 мас.% железа, а медный концентрат - 3,4-4,0 мас.% никеля и 0,16-0,20 мас.% кобальта, то есть не достигается глубокое разделение меди и никеля. Снижение содержания меди в сульфиде никеля до 0,22 мас.% уменьшает на порядок потребность в никелевом порошке для удаления меди из анодного электролита при электролитическом рафинировании никеля, а прямое электролитическое растворение сульфида никеля устранит передел его обжига, выброс сернистого газа в атмосферу, восстановление закиси никеля, то есть снизит потребность в восстановителе.
Достоверность полученных результатов по разделению медно-никелевого файншейна от меди подтверждается изучением взаимной растворимости сульфида меди и сульфида никеля в расплаве хлорида натрия. Установлено, что сульфид меди, растворяясь в хлориде натрия, при температуре 870°C образует две сульфидно-хлоридных фазы. Одна содержит до 90 мас.% сульфида меди, а вторая - 40,5 мас.% сульфида меди. При снижении температуры до 750°C из расплава кристаллизуется 75,5 мас.% сульфида меди. Эвтектика кристаллизуется при 725°C и содержит около 10,0 мас.% сульфида меди.
Пример 1.
Сплавляют 70 г сульфида никеля и 30 г сульфида меди, охаждают и при температуре 950-900°C выливают в солевой расплав (75,5 мас.% NaCl и 15,0 мас.% Cu2S), взятый в количестве 33 г. Перемешивают в течение 30 минут. Затем разделяют сульфидно-никелевую и хлоридно-сульфидно-медную фазы путем сливания. В результате масса сульфида никеля составляет 71,2 г и в ней содержится 1,70 мас.% сульфида меди. Масса солевого расплава составлят 61,8 г и содержит 46,60 мас.% сульфида меди.
Повторная промывка сульфида никеля (71,2 г) расплавом хлорида натрия (20 г) позволяет снизить содержание сульфида меди в нем до 0,15 мас.%. Этот расплав можно использовать многократно или применить на первой стадии экстракции.
Пример 2.
Никелевый концентрат, взятый после разделительной флотации файнштейна, массой 100 г, содержащий (мас.%): 67,0 Ni, 3,5 Cu, 3,5 Fe, 1,2 Со, 24,8 S, обрабатывают расплавом хлорида натрия, взятого в количестве 10 г, при температуре 950-900°C. Перемешивают в течение 30 минут и разделяют, путем сливания, сульфидную и солевую фазы, состав которых представлен в таблице 1.
Таблица - 1.
Распределение элементов между сульфидной и солевой фазами.
Начальная масса фаз, г сульфидная/солевая Конечная масса фаз, г сульфидная/солевая Содержание элементов в фазах, мас.% сульфидная/солевая
Ni Cu Fe Со S
100/10 95,4/14,6 70,85/0,05 0,1/23,3 3,4/0,1 1,05/0,05 23,9/7,0
Полученный солевой расплав можно использовать до четырех раз для извлечения из файнштейна меди, содержание которой в хлоридном расплаве повышается до 70,0 мас.%, серы до 15,0 мас.%, хлорида натрия - до 14 мас.%. Потери хлорида натрия на испарение за одну операцию не превышают 0,5-1,0 мас.%.
Пример 3.
Файнштейн, массой 100 г, содержащий (мас.%): 45 Ni, 28 Cu, 2,4 Fe, 1,0 Со, 22,6 S, обрабатывают расплавом хлорида натрия, взятого в количестве 10 г, при температуре 950-900°C. Перемешивают в течение 30 минут и разделяют, путем сливания, сульфидную и солевую фазы, состав которых представлен в таблице 2.
Таблица - 2.
Распределение элементов между сульфидной и солевой фазами.
Начальная масса фаз, г сульфидная/ солевая Конечная масса фаз, г сульфидная/ солевая Содержание элементов в фазах, мас.% сульфидная/солевая
Ni Cu Fe Со S
100/10 67,65/42,15 68,70/0,04 1,53/62,3 3,50/0,1 1,55/0,05 26,4/13,53
Для регенерации солевого расплава (42,15 г), с целью повторного использования, его охлаждают с 900°C до 750°C путем подачи на поверхность расплава азота. Содержание сульфида меди в солевом расплаве снижается с 77,7 мас.% до 15 мас.%.
Выделяется 29,7 г сульфида меди и остается 12,25 г солевого расплава, который повторно используют для разделения медно-никелевого файнштейна.
Преимущества заявляемого технического решения заключаются в том, что проведение обработки файнштейна расплавом хлорида натрия при температуре 950-900°C обеспечивает переход судьфида меди в хлоридный расплав на 90%. Также более глубокое извлечение меди из сульфида никеля обеспечивается тем, что после первичной очистки от сульфида меди оставшийся сульфид никеля при температуре 900°C повторно промывают расплавом хлорида натрия, что приводит к снижению содержания сульфида меди в сульфиде никеля до 0,2-0,3%. Регенерацию солевого хлоридного экстрагента осуществляют путем охлаждения расплава с поверхности с 900°C до 750°C азотом, что обеспечивает кристаллизацию сульфида меди и снижение его концентрации в солевом расплаве до 10 мас.%. Полученный солевой расплав используют повторно для разделения медно-никелевого файнштейна, а выделенный сульфид меди направляют на медное производство.

Claims (3)

1. Способ разделения медно-никелевого файнштейна, содержащего медь, кобальт и железо, на медный и никелевый концентраты, включающий обработку его расплавом хлорида щелочного металла для растворения в нем сульфида меди, отделение сульфида никеля от сульфида меди путем слива хлоридного расплава с растворенным в нем сульфидом меди и регенерацию расплава хлорида щелочного металла, отличающийся тем, что обработке подвергают файнштейн, содержащий до 35 мас.% меди, и проводят ее расплавом хлорида натрия при температуре 950-900°C.
2. Способ по п.1, отличающийся тем, что оставшийся после отделения от сульфида меди сульфид никеля повторно обрабатывают расплавом хлорида натрия при температуре 900°C.
3. Способ по п.1, отличающийся тем, что из хлоридного расплава с растворенным сульфидом меди выделяют кристаллы сульфида меди и регенерируют расплав хлорида натрия охлаждением хлоридного расплава от 900°C до 750°C путем подачи азота на его поверхность.
RU2012107946/02A 2012-03-01 2012-03-01 Способ разделения медно-никелевого файнштейна RU2495145C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2012107946/02A RU2495145C1 (ru) 2012-03-01 2012-03-01 Способ разделения медно-никелевого файнштейна
EA201200629A EA019818B1 (ru) 2012-03-01 2012-05-23 Способ разделения медно-никелевого файнштейна

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012107946/02A RU2495145C1 (ru) 2012-03-01 2012-03-01 Способ разделения медно-никелевого файнштейна

Publications (2)

Publication Number Publication Date
RU2012107946A RU2012107946A (ru) 2013-09-10
RU2495145C1 true RU2495145C1 (ru) 2013-10-10

Family

ID=49164577

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012107946/02A RU2495145C1 (ru) 2012-03-01 2012-03-01 Способ разделения медно-никелевого файнштейна

Country Status (2)

Country Link
EA (1) EA019818B1 (ru)
RU (1) RU2495145C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1601450A (en) * 1976-11-23 1981-10-28 Johnson Matthey Co Ltd Extraction of precious metals
US4695317A (en) * 1985-01-31 1987-09-22 Sumitomo Metal Mining Company Limited Method of treating silicate ore containing gold and silver
JPS63111134A (ja) * 1986-10-30 1988-05-16 Kantaro Yamamoto 硫化鉱物及びテルル化金銀鉱から金を採取する方法
RU2162897C1 (ru) * 1999-12-07 2001-02-10 Иркутский государственный технический университет Способ извлечения благородных металлов из серебросодержащих концентратов
RU2219264C2 (ru) * 2002-03-11 2003-12-20 Открытое акционерное общество "Иргиредмет" Способ переработки концентратов, содержащих цветные и благородные металлы
RU2316606C1 (ru) * 2006-04-25 2008-02-10 Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" ОАО "Иргиредмет" Способ переработки сульфидных концентратов, содержащих свинец, цветные и благородные металлы

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE787700A (fr) * 1971-08-20 1973-02-19 Int Nickel Canada Purification d'une matte de nickel
CA1002326A (en) * 1973-07-05 1976-12-28 Inco Limited Arsenic removal from nickel matte
CA997570A (en) * 1973-07-13 1976-09-28 Malcolm C.E. Bell Method of stripping base metals for fused salts
RU2219266C1 (ru) * 2002-03-28 2003-12-20 Институт металлургии и материаловедения им. А.А. Байкова РАН Способ пирометаллургической переработки медно-никелевого файнштейна
RU2415956C1 (ru) * 2009-10-14 2011-04-10 Открытое акционерное общество "Кольская горно-металлургическая компания" Способ получения никеля и концентрата драгоценных металлов из медно-никелевого файнштейна

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1601450A (en) * 1976-11-23 1981-10-28 Johnson Matthey Co Ltd Extraction of precious metals
US4695317A (en) * 1985-01-31 1987-09-22 Sumitomo Metal Mining Company Limited Method of treating silicate ore containing gold and silver
JPS63111134A (ja) * 1986-10-30 1988-05-16 Kantaro Yamamoto 硫化鉱物及びテルル化金銀鉱から金を採取する方法
RU2162897C1 (ru) * 1999-12-07 2001-02-10 Иркутский государственный технический университет Способ извлечения благородных металлов из серебросодержащих концентратов
RU2219264C2 (ru) * 2002-03-11 2003-12-20 Открытое акционерное общество "Иргиредмет" Способ переработки концентратов, содержащих цветные и благородные металлы
RU2316606C1 (ru) * 2006-04-25 2008-02-10 Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" ОАО "Иргиредмет" Способ переработки сульфидных концентратов, содержащих свинец, цветные и благородные металлы

Also Published As

Publication number Publication date
EA019818B1 (ru) 2014-06-30
EA201200629A1 (ru) 2013-09-30
RU2012107946A (ru) 2013-09-10

Similar Documents

Publication Publication Date Title
RU2741429C1 (ru) Способ и система полной повторной переработки медно-никелевой сульфидной руды
CN107058730B (zh) 一种对铜镍硫化矿综合利用的方法及其系统
CN107012324B (zh) 一种从铜镍硫化矿中回收主伴生元素的方法及其系统
US8052774B2 (en) Method for concentration of gold in copper sulfide minerals
RU2561621C1 (ru) Способ извлечения металлов из содержащего их материала
CN106119560B (zh) 一种锌钴分离方法
AU2006329807A1 (en) Method for recovering rare metals in a zinc leaching process
JP5439997B2 (ja) 含銅鉄物からの銅回収方法
CN103789544A (zh) 高铁锌焙砂中浸渣与高铁硫化锌精矿协同浸出-除铜砷方法
NO129913B (ru)
CA1113253A (en) Process for the treatment of raw materials containing arsenic and metal
CN108603247A (zh) 钪的回收方法
RU2397259C1 (ru) Способ переработки серебросодержащих свинцовых отходов для извлечения серебра и свинца в виде продуктов
JP2013209732A (ja) ニッケルの回収方法
JPH02197533A (ja) 有価金属の分離方法
JP6233478B2 (ja) ビスマスの精製方法
WO2018138917A1 (ja) ビスマスの精製方法
ES2794298B2 (es) Procedimiento de extracción de metales a partir de minerales o concentrados de sulfuros polimetálicos
RU2495145C1 (ru) Способ разделения медно-никелевого файнштейна
AU2014360655B2 (en) Process for producing refined nickel and other products from a mixed hydroxide intermediate
EP1507878B1 (en) Chloride assisted hydrometallurgical extraction of metals
CN105349788A (zh) 一种用铜电解黄渣生产工业硫酸镍的方法
RU2421529C1 (ru) Способ получения аффинированного серебра
EP3155135A1 (en) Process of extracting gold and silver from ores and mining by-products
US10344354B2 (en) Nickel recovery process

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190302