RU2494981C1 - Стеклокристаллический материал - Google Patents

Стеклокристаллический материал Download PDF

Info

Publication number
RU2494981C1
RU2494981C1 RU2012110802/03A RU2012110802A RU2494981C1 RU 2494981 C1 RU2494981 C1 RU 2494981C1 RU 2012110802/03 A RU2012110802/03 A RU 2012110802/03A RU 2012110802 A RU2012110802 A RU 2012110802A RU 2494981 C1 RU2494981 C1 RU 2494981C1
Authority
RU
Russia
Prior art keywords
glass
temperature
nio
crystalline
crucible
Prior art date
Application number
RU2012110802/03A
Other languages
English (en)
Inventor
Никита Владиславович Голубев
Елена Сергеевна Игнатьева
Виталий Иванович Савинков
Владимир Николаевич Сигаев
Павел Джибраелович Саркисов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева)
Priority to RU2012110802/03A priority Critical patent/RU2494981C1/ru
Application granted granted Critical
Publication of RU2494981C1 publication Critical patent/RU2494981C1/ru

Links

Images

Abstract

Изобретение относится к легированным прозрачным стеклокристаллическим материалам, которые могут использоваться в качестве активной среды лазеров и усилителей в ближней ИК области. Технический результат изобретения заключается в снижении температуры синтеза прозрачного люминесцирующего в ближней ИК области стеклокристаллического материала до 1500°C. Стеклокристаллический материал содержит следующие компоненты, мас.%: Li2O - 1,3-2,3; Na2O - 1,5-2,7; Ga2O3 - 32,5-37,9; SiO2 - 7,0-21,2; GeO2 - 37,0-56,5; NiO - 0,01-0,8. 4 пр., 7 ил., 2 табл.

Description

Изобретение относится к легированным прозрачным стеклокристаллическим материалам, которые могут использоваться в качестве активной среды лазеров и усилителей в ближней ИК области.
Перспективными для создания лазерных сред представляются Ga2O3-содержащие стекла, кристаллизующиеся с выделением высокогаллатных фаз со структурой шпинели и обладающие при легировании Ni2+ широкополосной ИК-люминесценцией [1-5]. Одним из перспективных применений таких материалов является получение на их основе волоконных лазеров и волоконно-оптических усилителей.
Известен допированный NiO прозрачный стеклокристаллический материал на основе силикатного стекла состава: 4,5Li2O-50,5Ga2O3-45,0SiO2 (масс.%) [4, 5]. Основным недостатком этих силикатных материалов является необходимость проведения лабораторной варки в платиновых сосудах малого объема при температурах свыше 1580°C в течение не менее 2 ч, что обуславливает быстрый износ платинового тигля, существенное снижение лучевой прочности из-за попадания в стекло атомарной платины и делает практически невозможным их промышленное производство. Поскольку увеличение объема тигля при переходе к полупромышленным варкам с использованием необходимых для достижения оптической однородности операций перемешивания и бурления, приведет, как ожидается, к существенному повышению температуры синтеза, составы стекол нужно по мере возможности выбирать так, чтобы температура их варки не превышала 1500°C.
Наиболее близким аналогом к заявляемому материалу является прозрачный стеклокристаллический материал состава (масс.%): (25-55)SiO2-(9-50)Ga2O3-(7-33)Al2O3-(0-15)Na2O-(0-20)K2O-(0-6)Li2O и (5-30)K2O+Na2O, (0-1)NiO [6]. В данных силикатных стеклах при соответствующей термообработке могут быть выделены легированные Ni2+ кристаллы шпинели. За счет преимущественного вхождения ионов металла в состав кристаллической фазы материал приобретает способность люминесцировать в широком диапазоне длин волн в ближней ИК области.
Недостатком прототипа является длительная варка (4-16 ч) исходного стекла при высокой температуре 1550-1650°C.
Техническим результатом настоящего изобретения является разработка прозрачного, люминесцирующего в ближней ИК области стеклокристаллического материала, синтез исходного стекла для которого можно осуществлять при температурах ниже 1500°C.
Технический результат достигается тем, что стеклокристаллический материал, включающий Li2O, Na2O, Ga2O3, SiO2, NiO дополнительно содержит GeO2 при следующем соотношении компонентов (масс.%):
Li2O - 1,3-2,3
Na2O - 1,5-2,7
Ga2O3 - 32,5-37,9
SiO2 - 7,0-21,2
GeO2 - 37,0-56,5
NiO - 0,01-0,8
при этом никель введен сверх 100%
Введение в состав стекла GeO2 обеспечивает снижение температуры варки более чем на 100°C и, следовательно, обуславливает высокую технологичность заявляемых составов. При избытке SiO2, Ga2O3 или недостатке Li2O+Na2O по сравнению с указанными выше пределами стекла плохо провариваются и трудно формуются. Уменьшение концентрации Ga2O3 ниже заявляемой нецелесообразно из-за снижения объемной доли выделяющихся нанокристаллов. С увеличением содержания щелочных оксидов ухудшается химическая устойчивость стекол. Уменьшение концентрации NiO ниже заявляемой нецелесообразно из-за снижения количества активных центров и, соответственно, эффективности люминесценции; а увеличение концентрации NiO сверх заявляемой нецелесообразно из-за снижения интенсивности люминесценции, обусловленной концентрационным тушением, а также ухудшения светопропускания стеклокристаллического материала.
В таблице 1 представлен ряд составов синтезированных стекол, на основе которых получены стеклокристаллические материалы.
Таблица 1
Примеры составов ряда исследованных стекол
№ состава Состав, масс.%
Li2O Na2O Ga2O3 SiO2 GeO2 NiO сверх 100%
1 2,3 1,6 37,9 21,2 37,0 0,1
2 2,3 1,6 37,9 21,2 37,0 0,01
3 2,3 1,6 37,9 21,2 37,0 0,04
4 2,3 1,6 37,9 21,2 37,0 0,05
5 2,3 1,6 37,9 21,2 37,0 0,2
6 2,3 1,6 37,9 21,2 37,0 0,4
7 2,3 1,6 37,9 21,2 37,0 0,8
8 2,2 1,5 36,3 14,5 45,5 0,1
9 1,3 2,7 32,5 7 56,5 0,1
В таблице 2 представлены температура варки стекол, режимы их термообработки и свойства полученных стеклокристаллических материалов.
Достижение заявляемого технического результата подтверждается следующими примерами.
Пример 1
Готовят шихту для синтеза стекла №1 (Таблица 1). В качестве сырьевых материалов применяют: Li2CO3, Na2CO3, Ga2O3, SiO2, GeO2 и NiO квалификации хч. Варку проводят в платиновых тиглях малого объема (40 мл) на воздухе из расчета на 20 г конечного продукта при температуре 1450°C в течение 40 мин. Для варки используют электрическую печь быстрого нагрева с карбидокремниевыми нагревателями. Для более точного совпадения требуемого и действительного составов стекол экспериментально определяют и учитывают количество наиболее летучих компонентов шихты. Расплав выливают из тигля на металлическую плиту и прессуют другой плитой до толщины 1,5-2 мм. Из полученных пластин изготавливают образцы округлой формы приблизительно диаметром 10 мм и толщиной 1 мм, поверхность которых шлифуют и полируют. Превращение стекла в люминесцирующий стеклокристаллический материал на основе галлатной кристаллической фазы со структурой инвертной шпинели осуществляют путем одноступенчатой термообработки в муфельной камерной высокотемпературной печи ПЛ-5 при температуре первого экзотермического пика в течение 15 мин.
Таблица 2
Температура варки стекол, режимы их термообработки и свойства полученных стеклокристаллических материалов.
Состав Условия варки стекол Режим термообработки Интегральная относительная интенсивность люминесценции Пропускание, %
№1 В Pt-тигле объемом 40 мл при 1450°C 690°C, 15 мин 1 90
№2 В Pt-тигле объемом 40 мл при 1450°C 690°C, 15 мин 0,11 97
№3 В Pt-тигле объемом 40 мл при 1450°C 690°С,15 мин 0,13 95
№4 В Pt-тигле объемом 40 мл при 1450°C 690°C,15 мин 0,41 93
№5 В Pt-тигле объемом 40 мл при 1450°C 690°C, 15 мин 0,27 86
№6 В Pt-тигле объемом 40 мл при 1450°C 690°C, 15 мин 0,13 78
№7 В Pt-тигле объемом 40 мл при 1450°C 690°C,15 мин 0,06 60
№8 В Pt-тигле объемом 40 мл при 1440°C 680°C, 15 мин 0,85 88
№8 В Pt-тигле объемом 300 мл при 1480°C 680°C, 15 мин 0,85 92
№9 В Pt-тигле объемом 40 мл при 1430°C 670°C, 15 мин 0,67 86
Неизотермическая кристаллизация стекол изучена методом дифференциально-сканирующей калориметрии (ДСК). Кривые ДСК получали как для тонко измельченных порошковых образцов, так и для монолита стекла массой 10-15 мг. Это позволило разделить тепловые эффекты, наблюдающиеся на поверхности и в объеме стекла. Измерения выполнены в платиновых тиглях в токе Ar при скорости нагревания 10 град/мин с помощью высокотемпературного термоанализатора Netzsch STA 449F3 в режиме равномерного подъема температуры со скоростью 10 град/мин до температуры 1200°C.
Для контроля степени аморфности исходных стекол и идентификации кристаллических фаз, выделяющихся во время термообработки, образцы либо полировали, и рентгенофазовый анализ (РФА) проводили на монолитах стекла, либо стекла измельчали в порошки дисперсностью ~50-60 мкм. Измерения проводили при комнатной температуре в интервале углов 2θ=10-60°. Идентификацию кристаллических фаз проводили путем сравнения относительных интенсивностей пиков кристаллических отражений на дифракционной кривой и соответствующих им межплоскостных расстояний данными электронного каталога дифрактограмм JCPDS (Joint Committee on Powder Diffraction Standards).
Начальные стадии фазового разделения в термообработанных образцах исследовали также с применением просвечивающего электронного микроскопа FEI Tecnai G2 F20 (Tecnai) с использованием образцов в виде порошка (с диаметром отдельных частиц ~1 мкм). Для изучения процессов наноструктурирования в объеме стекла поверхность образцов шлифовали и полировали после каждой термообработки, чтобы избежать влияния поверхностной кристаллизации.
Спектры поглощения исходных и термообработанных стекол регистрировали в диапазоне 300-3000 нм на сканирующем двухлучевом спектрофотометре с двойным монохроматором Shimadzu UV-3600. Возбуждение люминесценции осуществлялось при длине волны λв=980 нм. Спектры люминесценции регистрировали с использованием титан-сапфирового лазера с охлаждаемым жидким азотом InGaS ФЭУ.
Параметры оптической однородности стекла: двулучепреломление, бессвильность, пузырность, а также показатель преломления и коэффициент дисперсии определяли по ГОСТ 3519-91, 3521-81, 3522-81 и 28869-90 соответственно.
Свойства полученного стеклокристаллического материала приведены в таблице 2.
Наличие отчетливого экзотермического пика на кривой ДСК монолитного образца (Фиг.1. Кривые ДСК порошка (а) и монолитного образца (б) стекла №1) свидетельствует о существовании объемной кристаллизации. Кроме того, первый экзоэффект, связанный с выделением высокогаллатной фазы со структурой инвертной шпинели, почти не сдвигается в сторону низких температур при измельчении образца. Площадь под этим пиком, пропорциональная тепловому эффекту при кристаллизации, также практически не меняется. Эти наблюдения и отсутствие на поверхности термообработанных стекол четко фиксируемого закристаллизованного слоя свидетельствуют об объемном характере фазового разделения данных стекол. Данные просвечивающей электронной микроскопии также указывают на наличие в термообработанных стеклах объемного фазового разделения и неоднородностей диаметром меньше, чем 10 нм и с практически монодисперсным распределением частиц по размерам (Фиг.2а. Фотография образца термообработанного (690°C, 15 мин) стекла №1). В свою очередь, снимки с высоким разрешением подтвердили ожидаемую кристаллическую природу сформированных наночастиц (Фиг.2б. Фотография с высоким разрешением наночастицы в термообработанном (690°C, 15 мин) стекле №1). Согласно РФА стекло данного состава кристаллизуется с выделением высокогаллатной фазы со структурой инвертной шпинели (Фиг.3. Рентгенограмма порошка стекла состава №1, термообработанного при 690°C в течение 18 ч).
Сравнение спектров поглощения исходных и термообработанных стекол с разной концентрацией №0 показало, что имеет место преимущественная локализация ионов никеля в нанокристаллах, а не в матрице стекла. Среди характерных полос поглощения термообработанного стекла при 390, 650 и 1100 нм, которые наблюдаются также в ряде кристаллических материалов и которым соответствуют электронные переходы иона Ni2+ в октаэдрическом окружении, отсутствует наиболее сильная полоса поглощения в районе 435 нм, характерная для ионов Ni2+ в стекле (Фиг.4. Спектр поглощения исходного (а) и термообработанного (б) стекла состава №7. Толщина образцов 2 мм). Это означает практически полное отсутствие ионов Ni2+ в стекле и, следовательно, их переход в нанокристаллы, выпавшие в объеме стеклообразной матрицы. Поскольку величина оптической плотности изученных образцов пропорциональна содержанию NiO, на Фиг.4 представлен только спектр поглощения для стекла с максимальной концентрацией NiO.
Преимущественное вхождение ионов Ni2+ в структуру нанокристаллов, симметрия которых обеспечивает необходимые спектральные свойства данного иона, приводит к возникновению в термообработанных образцах широкополосной люминесценции в ближней ИК области (Фиг.5. Зависимость интенсивности люминесценции термообработанных стекол составов №№1-9 (см. Таблица 1) от концентрации NiO и состава стекла). При этом наибольшие значения интенсивности люминесценции демонстрировали образцы с 0,1 мол.% NiO.
Пример 2
Готовят шихту и синтезируют стекло №8 аналогично приведенному в примере 1. Отличие состоит в более низкой температуре синтеза, которая составляет 1440°С. Последнее значение более чем на 100°С меньше, чем температура варки силикатного стекла. Свойства полученного стеклокристаллического материала приведены в таблице 2. Данное стекло после термообработки при температуре первого экзотермического пика (680°С, 15 мин) также обладает широкополосной люминесценцией в ближней ИК области (Фиг.5).
Пример 3
Готовят шихту и синтезируют стекло №8 аналогично приведенному в примере 1. Отличие состоит в более высокой температуре синтеза, которая составляет 1480°С, использование платинного тигля большего объема (300 мл) и проведение операций перемешивания и бурления расплава кислородом. При варке стекла №1 при 1480°С в Pt тигле объемом 300 мл не удалось осуществить операции бурления и перемешивания вследствие высокой вязкости расплава этого стекла при температуре варки. Свойства полученного стеклокристаллического материала приведены в таблице 2. Состав №8, с пониженным содержанием SiO2, позволил перейти ко второму этапу, на котором варку осуществляли по режиму указанному на Фиг.6 (Режим варки стекла состава №8 в тигле объемом 300 мл: 0-1 - равномерный подъем температуры, 1-2 - сыпки шихты, 2-3 равномерный подъем температуры, 3-4 - развар шихты, 4-5 - бурление кислородом, 5-6 - перемешивание стекломассы мешалкой, 6-7 - снижение температуры до температуры выработки). Повышение содержания GeO2 в составе стекла привело к снижению вязкости расплава и сделало возможным операции размешивания стекломассы Pt мешалкой и бурления кислородом. Засыпку шихты осуществляют последовательно порциями по мере развара с помощью изготовленного из кварцевого стекла приспособления оригинальной конструкции. Контроль и поддержание температуры на всех стадиях варки осуществляется программируемым контролером с точностью ±2°С. Расплав стекла выливают в подогретую металлическую форму с помощью переворотного устройства. После термообработки полученный стеклокристаллический материал также люминесцировал на длине волны 1300 нм с полушириной полосы люминесценции более 300 нм (Фиг.5). Полученная отливка стекла оптического качества массой 500 г имела следующие показателями: показатель преломления ne=1,6465, коэффициент дисперсии νe=42,79, двулучепреломление δT=3,5, бессвильность 81%, пузырность: класс А (3 шт/кг), категория 1а (размер пузыря не более 0,05 мм).
Пример 4
Готовят шихту и синтезируют стекло №9 аналогично приведенному в примере 1. Отличие состоит в более низкой температуре синтеза, которая составляет 1430°С. Данное стекло после термообработки (670°С, 15 мин) также обладает широкополосной люминесценцией в ближней ИК области (Фиг.5). Однако нанокристаллы инвертной шпинели в стекле данного состава выделяются вместе с нежелательными германатными фазами (Фиг.7. Рентгенограмма порошка стекла состава №9, термообработанного при 800°С в течение 30 мин), что снижает интенсивность люминесценции.
Таким образом, заявляемый активированный NiO галлиевосиликогерманатный стеклокристаллический материал люминесцирует, также как и силикатный, на длине волны 1300 нм с полушириной полосы люминесценции более 300 нм. Однако возможность получения исходного стекла при температуре менее 1500°С делает галлиевосиликогерманатный стеклокристаллический материал более перспективным для производства.
Литература
1. B.N. Samson, L.R. Pinckney, J. Wang, G.H. Beall, and N.F. Borrelli Nickel-doped nanocrystalline glass-ceramic fiber // OPTICS LETTERS. 2002. Vol.27. №15. P.1309-1311.
2. T. Suzuki, G.S. Murugan, Y. Ohishi Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals // Applied Physics Lett. 2005. 86. 131903.
3. В.Wu Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, J. Qiu Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals // Applied Physics B. 2007. 87.697-699.
4. Botao Wu, Jian Ruan, Jinjun Ren, Danping Chen, Congshan Zhu, Shifeng Zhou, and Jianrong Qiu Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals // Applied physics letters. 2008. 92. 041110 (3pp).
5. Shifeng Zhou, Nan Jiang, Huafang Dong, Heping Zeng, Jianhua Hao and Jianrong Qiu Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass // Nanotechnology. 2008. 19. 015702 (6рр).
6. Gerge H. Beall, Linda R. Pinckney, Bryce N. Samson Transparent gallate glass-ceramics. № US 006632758 B2.

Claims (1)

  1. Стеклокристаллический материал, включающий Li2O, Na2O, Ga2O3, SiO2, NiO, отличающийся тем, что стеклокристаллический материал дополнительно содержит GeO2 при следующем соотношении компонентов, мас.%:
    Li2O 1,3-2,3 Na2O 1,5-2,7 Ga2O3 32,5-37,9 SiO2 7,0-21,2 GeO2 37,0-56,5 NiO 0,01-0,8
RU2012110802/03A 2012-03-22 2012-03-22 Стеклокристаллический материал RU2494981C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012110802/03A RU2494981C1 (ru) 2012-03-22 2012-03-22 Стеклокристаллический материал

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012110802/03A RU2494981C1 (ru) 2012-03-22 2012-03-22 Стеклокристаллический материал

Publications (1)

Publication Number Publication Date
RU2494981C1 true RU2494981C1 (ru) 2013-10-10

Family

ID=49302917

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012110802/03A RU2494981C1 (ru) 2012-03-22 2012-03-22 Стеклокристаллический материал

Country Status (1)

Country Link
RU (1) RU2494981C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2550622C1 (ru) * 2013-12-26 2015-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева (РХТУ им. Д.И. Менделеева) Способ локальной нанокристаллизации галлийсодержащих оксидных стекол
RU2579077C1 (ru) * 2015-03-10 2016-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет имени Д.И. Менделеева (РХТУ им. Д.И. Менделеева) Способ локальной микрокристаллизации оксидных стекол
RU2604614C1 (ru) * 2015-11-03 2016-12-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева (РХТУ им. Д.И. Менделеева) Люминесцирующий стеклокристаллический материал
RU2674667C1 (ru) * 2017-12-18 2018-12-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева (РХТУ им. Д.И. Менделеева) Люминесцирующая стеклокерамика

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU97106250A (ru) * 1996-04-17 1999-05-10 Корнинг Инкорпорейтед Оксигалидное лазерное стекло с присадкой редкоземельного элемента
US6271160B1 (en) * 1998-05-13 2001-08-07 Sumita Optical Glass, Inc. Oxide phosphorescent glass capable of exhibiting a long lasting afterglow and photostimulated luminescence
US6632758B2 (en) * 2001-05-03 2003-10-14 Corning Incorporated Transparent gallate glass-ceramics
EP1695946A2 (en) * 1998-04-01 2006-08-30 Sumita Optical Glass, Inc. An oxide glass capable of exhibiting a long lasting afterglow and photostimulated luminescence
US20070200097A1 (en) * 2004-03-03 2007-08-30 Nippon Sheet Glass Company Limited Glass Composition That Emits Fluorescence In Infrared Wavelength Region And Method Of Amplifying Signal Light Using The Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU97106250A (ru) * 1996-04-17 1999-05-10 Корнинг Инкорпорейтед Оксигалидное лазерное стекло с присадкой редкоземельного элемента
EP1695946A2 (en) * 1998-04-01 2006-08-30 Sumita Optical Glass, Inc. An oxide glass capable of exhibiting a long lasting afterglow and photostimulated luminescence
US6271160B1 (en) * 1998-05-13 2001-08-07 Sumita Optical Glass, Inc. Oxide phosphorescent glass capable of exhibiting a long lasting afterglow and photostimulated luminescence
US6632758B2 (en) * 2001-05-03 2003-10-14 Corning Incorporated Transparent gallate glass-ceramics
US20070200097A1 (en) * 2004-03-03 2007-08-30 Nippon Sheet Glass Company Limited Glass Composition That Emits Fluorescence In Infrared Wavelength Region And Method Of Amplifying Signal Light Using The Same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2550622C1 (ru) * 2013-12-26 2015-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева (РХТУ им. Д.И. Менделеева) Способ локальной нанокристаллизации галлийсодержащих оксидных стекол
RU2579077C1 (ru) * 2015-03-10 2016-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет имени Д.И. Менделеева (РХТУ им. Д.И. Менделеева) Способ локальной микрокристаллизации оксидных стекол
RU2604614C1 (ru) * 2015-11-03 2016-12-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева (РХТУ им. Д.И. Менделеева) Люминесцирующий стеклокристаллический материал
RU2674667C1 (ru) * 2017-12-18 2018-12-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева (РХТУ им. Д.И. Менделеева) Люминесцирующая стеклокерамика

Similar Documents

Publication Publication Date Title
US9593039B2 (en) Nanostructured glasses and vitroceramics that are transparent in visible and infra-red ranges
Yuan et al. Effect of glass network modifier R2O (R= Li, Na and K) on upconversion luminescence in Er3+/Yb3+ co-doped NaYF4 oxyfluoride glass-ceramics
RU2494981C1 (ru) Стеклокристаллический материал
Tan et al. Topo‐chemical tailoring of tellurium quantum dot precipitation from supercooled polyphosphates for broadband optical amplification
Boyer et al. Transparent polycrystalline Sr RE Ga 3 O 7 melilite ceramics: potential phosphors for tuneable solid state lighting
Li et al. Highly crystallized transparent luminescent glass ceramics containing dual-phase ZnGa2O4 spinel and α-Zn2SiO4 willemite nanocrystals
Subbotin et al. Nano-glass–ceramics containing chromium-doped LiGaSiO4 crystalline phases
JP5337011B2 (ja) 磁気光学素子用酸化テルビウム結晶
Lei et al. ZrO2-doped transparent glass-ceramics embedding ZnO nano-crystalline with enhanced defect emission for potential yellow-light emitter applications
Morad et al. Crystallization‐induced valence state change of Mn2+→ Mn4+ in LiNaGe4O9 glass‐ceramics
Sukul et al. Erbium energy bridging upconversion mechanism studies on BAKL: Er 3+/Yb 3+ glass-ceramics and simultaneous enhancement of color purity of the green luminescence
Zheng et al. Ni2+-doped new silicate glass-ceramics for broadband near infrared luminescence
Meyneng et al. The role of fluorine in high quantum yield oxyfluoride glasses and glass-ceramics
Cruz et al. Rare-earth doped transparent oxyfluoride glass-ceramics: processing is the key
Naidu et al. Pr3+-doped strontium–aluminum–bismuth–borate glasses for laser applications
Gao et al. Effect of glass-ceramics network intermediate Al2O3 content on up-conversion luminescence in Er3+/Yb3+ co-doped NaYF4 oxy-fluoride glass-ceramics
Raj et al. Concentration dependent Dy3+-doped lithium fluoro borotellurophosphate glasses’ structural and optical investigations for white light emission under UV excitation for solid-state lighting applications
Vilejshikova et al. Up-Conversion Luminescence in Oxyfluoride Glass-Ceramics with PbF 2:(Yb 3+, Eu 3+, RE 3+)(RE= Tm, Ho, OR Er) Nanocrystals
Zhuang et al. Wavelength tailorability of broadband near‐infrared luminescence in Cr4+‐activated transparent glass‐ceramics
CN108314325B (zh) 具有超宽带近红外发光的自析晶微晶玻璃及其制备方法和应用
Cao et al. Tunable broadband photoluminescence from bismuth‐doped calcium aluminum germanate glasses prepared in oxidizing atmosphere
Liu et al. Effect of adjusting composition on the crystallization and luminescence properties in NaYF4: Er3+ embedded glass ceramics
Morimoto et al. Optical properties of Cr3+ ion in lithium metasilicate Li2O· SiO2 transparent glass–ceramics
RU2616648C1 (ru) Способ получения стеклокристаллического материала с наноразмерными кристаллами ниобатов редкоземельных элементов
Suzuki et al. Synthesis and luminescent properties of transparent oxyfluoride glass-ceramics containing Er3+: YLiF4 nanocrystals

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160323