RU2492157C2 - Способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидом иттрия и/или скандия - Google Patents
Способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидом иттрия и/или скандия Download PDFInfo
- Publication number
- RU2492157C2 RU2492157C2 RU2011149859/03A RU2011149859A RU2492157C2 RU 2492157 C2 RU2492157 C2 RU 2492157C2 RU 2011149859/03 A RU2011149859/03 A RU 2011149859/03A RU 2011149859 A RU2011149859 A RU 2011149859A RU 2492157 C2 RU2492157 C2 RU 2492157C2
- Authority
- RU
- Russia
- Prior art keywords
- temperature
- oxide
- glycine
- annealing
- carboxylic acid
- Prior art date
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Изобретение относится к химической промышленности, в частности к способам получения тонкодисперсных порошков на основе оксида циркония, который может быть использован для производства плотной износостойкой керамики, материалов для имплантологии, твердых электролитов. Предлагается способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидами иттрия и/или скандия, включающий получение исходной смеси нитратов соответствующих металлов и глицина, нагревание смеси до температуры 160-250°С и выдержку при этой температуре с последующим отжигом. В исходную смесь дополнительно вводят карбоновую кислоту и/или аммонийные соли карбоновой кислоты или аминоуксусной кислоты в количестве 5-20 масс.% от содержания глицина. Отжиг осуществляют при температуре 550-570°С. Способ является высоко экологичным, т.к. исключает необходимость сброса сточных вод в технологическом цикле. Технический результат изобретения - получение активных к спеканию нанопорошков, позволяющих изготовить высокоплотную керамику на их основе. 5 пр.
Description
Изобретение относится к химической промышленности, в частности к способам получения тонкодисперсных порошков на основе оксида циркония, который может быть использован для производства плотной износостойкой керамики, материалов для имплантологии, твердых электролитов.
Известен способ получения оксида циркония, стабилизированного оксидом иттрия, в котором для получения максимально гомогенного порошка в исходный раствор солей циркония и иттрия вводят аммиак, мочевину, карбонат аммония или аммоний углекислый кислый, предпочтительно мочевину, добиваясь рН более 7 (патент Японии 04-031359, МПК С04В 35/48, 1992 год).
Недостатком способа является необходимость многократной промывки осажденного гидроксида большим количеством дистиллированной воды и последующей утилизации маточных растворов, что увеличивает стоимость процесса и его продолжительность. В процессе сушки продукта происходит выделение большого количества газообразного аммиака.
Наиболее близким (прототип) к предлагаемому техническому решению является способ получения наноразмерного порошка оксида металла, в частности оксида циркония, стабилизированного оксидом иттрия, включающий приготовление исходной гомогенной смеси, содержащей по крайней мере одну водорастворимую соль соответствующего металла, в частности нитраты циркония и иттрия и водорастворимую самовоспламеняющуюся кислоту, в частности глицин, упаривание водной исходной смеси до получения промежуточного продукта с концентрацией компонентов, обеспечивающей самовозгорание, нагревание до температуры, инициирующей возгорание, выдержку при этой температуры с последующим отжигом, в случае использования нитратов, при температуре 600-700°С (патент США 5114702, МПК С01В 13/18, 1992 год).
Недостатками известного способа являются достаточно высокая температура отжига полученного на первой стадии продукта (600-700°С), а также недостаточно высокая плотность керамики на основе полученного известным способом порошка оксида (95% от теоретически возможной).
Таким образом, перед авторами стояла задача разработать способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидами иттрия и/или скандия, обеспечивающего получение более плотной керамики на его основе.
Поставленная задача решена в предлагаемом способе получения нанодисперсного порошка оксида циркония, стабилизированного оксидами иттрия и/или скандия, включающем получение исходной смеси нитратов соответствующих металлов и глицина, нагревание смеси до температуры 160-250°С и выдержку при этой температуре с последующим отжигом, в котором в исходную смесь дополнительно вводят карбоновую кислоту и/или аммонийную соль карбоновой кислоты или аминоуксусной кислоты в количестве 5-20 масс.% от содержания глицина и отжиг осуществляют при температуре 550-570°С.
Из патентной и научно-технической литературы не известен способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидами иттрия и/или скандия, в котором в исходную смесь дополнительно вводят карбоновую кислоту и/или аммонийную соль карбоновой кислоты или аминоуксусной кислоты в количестве 5-20 масс.% от содержания глицина, а отжиг промежуточного продукта осуществляют при температуре значительно ниже, чем в известных способах.
Авторами предлагается способ получения нанодисперсного порошка оксида циркония, содержащего 1-20 вес.% оксида иттрия и/или оксида скандия, путем дополнительного введения в раствор, содержащий азотнокислые соли циркония, иттрия и/или скандия и глицина (Gly) в мольном соотношении к сумме катионов металла (Zr4+, Y3+, Sc3+) от 1,55:1 до 2,3:1; карбоновую кислоту и/или аммонийные соли карбоновой кислоты или аминоуксусной кислоты в количестве 5-20 масс.% от содержания глицина с последующим выпариванием исходного раствора при 160-250°С до воспламенения и отжигом полученного порошка при температуре не выше 570°С.
Исследования, проведенные авторами, выявили возможность снижения температуры отжига промежуточного продукта и увеличение плотности керамики на основе полученного оксида в случае дополнительного введения в исходный раствор наряду с глицином (Gly) карбоновой кислоты и/или аммонийной соли карбоновой кислоты или аминокислоты. В данном случае не только глицин, но и карбоновая кислота и/или аммонийная соль карбоновой кислоты или аминоуксусной кислоты образуют прочные хелатные комплексы с катионами Y3+, Sc3+ ZrO2+. Образование дополнительных хелатных комплексов способствует в процессе упаривания и последующего возгорания смеси большему выделению при разложении карбонитратного комплекса паров воды, углекислого газа и элементарного азота, что и обусловливает снижение количества выделяемой энергии при самопроизвольной реакции горения и предотвращает рост кристаллитов получаемого продукта. Суммарное количество органического восстановителя обеспечивает полную конверсию оксидов азота в молекулярный азот, но, в тоже время, сохраняет режим самораспространяющегося синтеза. Присутствие в реакционной смеси избытка органического растворителя, содержащего смесь глицина и карбоновой кислоты и/или аммонийной соли карбоновой кислоты или аминокислоты, приводит к формированию на поверхности получаемого нанопорошка частиц углерода, окисление которых в процессе отжига позволяет снизить температуру отжига. Снижение температуры отжига до 550-570°С предотвращает уменьшение удельной поверхности порошка, что приводит к получению более плотной керамики на его основе.
Экспериментальные исследования, проведенные авторами, позволили определить оптимальные количественные соотношения исходных компонентов, полностью исключающие выделение оксидов азота, например, в соответствии со следующими реакциями:
0.97ZrO(NO3)2+0.06Y(NO3)3+1.6H2N(CH2)COOH+0,0286H3C6H5O7·H2O+(0.923-x)O2=(ZrO2)0.97·(Y2O3)0,03+3.64N+(3.211-x)CO2+3.943H2O+xC (5% лимонной
кислоты)
0.97ZrO(NO3)2+0.2Sc(NO3)3+2,5H2N(CH2)COOH+0,15H2N(CH2)COONH4+(3,075-x)O2=(ZrO2)0.9·(Sc2O3)0.1+5,2N+(5,3-x)CO2+6.85H2O+xC (7.4% аммония амино-уксуснокислого)
0.9ZrO(NO3)2+0.1Y(NO3)3+0.1Sc(NO3)3+1.6H2N(CH2)COOH+0,115NH4C6H7O7+(1.119-x)O2=(ZrO2)0.9·(Y2O3)0,05·(Sc2O3)0.05+4.115N+(3.89-x)CO2+4.623H2O+xC (20% аммония лимоннокислого однозамещенного)
Установлено, что отжиг полученных нанодисперсных и субмикронных порошков выше 570°С в 5-6 раз уменьшает удельную поверхность порошков, что приводит в дальнейшем к уменьшению плотности керамики, полученной на их основе. Сжигание реакционной смеси при температуре реакции менее 550°С также приводит к снижению удельной поверхности. Экспериментальным путем авторы подобрали оптимальное соотношение количества глицина и карбоновой кислоты или аммонийной соли карбоновой кислоты или аминоуксусной кислоты к составу оксида, которое обеспечивает по окончании реакции горения оптимальное количество (2-8%) углерода. Превышение содержания карбоновой кислоты или аммонийной соли карбоновой кислоты или аминоуксусной кислоты выше 20 масс.% от количества глицина увеличивает время выжигания углерода и риск укрупнения порошка. Снижение содержания карбоновой кислоты или аммонийной соли карбоновой кислоты или аминоуксусной кислоты ниже 5 масс.% от количества глицина приводит к повышению температуры отжига.
Предлагаемый способ может быть осуществлен следующим образом. В водный раствор, содержащий цирконил азотнокислый, иттрий азотнокислый и/или скандий азотнокислый, взятые в соотношении Zr:(Y+Sc)=0,97:0,06-0,9:0,2; добавляют при перемешивании глицин из расчета 1,55-2,3 моль на 1г-атом суммарного содержания катионов металлов и дополнительно от 5 до 20 масс.% карбоновой кислоты и/или аммонийной соли карбоновой кислоты или аминоуксусной кислоты. Полученный реакционный раствор нагревают в открытом реакторе из кислото- и термически стойкого материала при температуре нагревателя 160-250°С. В процессе нагревания реакционный раствор формирует желеобразную массу, превращающуюся в ксерогель, в котором развивается реакция СВС (самовоспламеняющегося синтеза) с выделением летучих компонентов (углекислого газа, и азота) и воды в виде пара и формированием порошка стабилизированного оксида циркония. После окончания процесса горения, по данным рентгено-фазового и химического анализа, полученный полупродукт представляет собой аморфный оксид циркония, содержащий до 8% углерода. Его загружают в корундовые тигли и отжигают несколько часов при температуре 550-570°С. После отжига продукт не содержит следов углерода и летучих примесей, представляет собой слабо агломерированный нанопорошок белого цвета, с высокой удельной поверхностью. Морфология и микроструктура порошка стабилизированного оксида циркония позволяет получать из него высокоплотную (98,5% от теоретической) керамику.
Пример 1.
Берут водный раствор, содержащий 200 г цирконила азотнокислого, 15,1 г иттрия азотнокислого, взятые в соотношении Zr:Y=0,97:0,06; добавляют при перемешивании 107 г глицина из расчета 1,55 г-моль на 1 г-атом суммарного содержания катионов металлов и дополнительно 5,88 г лимонной кислоты (5 масс.% от массы введенного глицина). Полученный реакционный раствор нагревают в открытом реакторе из кислото- и термически стойкого материала при температуре нагревателя 160°С. В процессе нагревания реакционный раствор формирует желеобразную массу, превращающуюся в ксерогель, в котором развивается реакция СВС (самовоспламеняющегося синтеза) с выделением углекислого газа и азота, а также воды в виде пара и формированием порошка частично стабилизированного оксида циркония. После окончания процесса горения, по данным рентгено-фазового и химического анализа, полученный полупродукт представляет собой аморфный оксид циркония-иттрия, содержащий до 8% углерода. Его загружают в корундовые тигли и отжигают несколько часов при температуре 550°С. После отжига продукт не содержит следов углерода и летучих примесей, представляет собой слабо агломерированный порошок белого цвета, с удельной поверхностью 15,7 г/см2. Морфология и микроструктура порошка стабилизированного оксида циркония позволяет получать из него высокоплотную (98,5% от теоретической) керамику.
Пример 2.
Берут водный раствор, содержащий 200 г цирконила азотнокислого, 22,196 г скандия азотнокислого и 26,42 иттрия азотнокислого, взятые в соотношении Zr:(Sc+Y)=0,9:0,1; добавляют при перемешивании 165,8 г глицина из расчета 2,3 г-моль на 1 г-атом суммарного содержания катионов металлов и дополнительно 8,3 г аммония лимоннокислого однозамещенного (5 масс.% от массы введенного глицина). Полученный реакционный раствор нагревают в открытом реакторе из кислото- и термически стойкого материала при температуре нагревателя 200°С. В процессе нагревания реакционный раствор формирует желеобразную массу, превращающуюся в ксерогель, в котором развивается реакция СВС (самовоспламеняющегося синтеза) с выделением углекислого газа и азота, а также воды в виде пара и формированием порошка частично стабилизированного оксида циркония. После окончания процесса горения, по данным рентгено-фазового и химического анализа, полученный полупродукт представляет собой аморфный оксид циркония-иттрия-скандия, содержащий до 8% углерода. Его загружают в корундовые тигли и отжигают несколько часов при температуре 550°С. После отжига продукт не содержит следов углерода и летучих примесей, представляет собой слабо агломерированный порошок белого цвета, с удельной поверхностью 14,6 г/см2. Морфология и микроструктура порошка стабилизированного оксида циркония позволяет получать из него высокоплотную (98,5% от теоретической) керамику.
Пример 3.
Берут водный раствор, содержащий 200 г цирконила азотнокислого, 52,84 г иттрия азотнокислого, взятые в соотношении Zr:Y=0,9:0,1; добавляют при перемешивании 115,3 г глицина из расчета 1,6 г-моль на 1 г-атом суммарного содержания катионов металлов и дополнительно 6,0 г аммония лимоннокислого однозамещенного (5,2 масс.% от массы введенного глицина) и 6 г лимонной кислоты (5,2 масс.% от массы введенного глицина). Полученный реакционный раствор нагревают в открытом реакторе из кислото- и термически стойкого материала при температуре нагревателя 200°С. В процессе нагревания реакционный раствор формирует желеобразную массу, превращающуюся в ксерогель, в котором развивается реакция СВС (самовоспламеняющегося синтеза) с выделением углекислого газа и азота, а также воды в виде пара и формированием порошка частично стабилизированного оксида циркония. После окончания процесса горения, по данным рентгено-фазового и химического анализа, полученный полупродукт представляет собой аморфный оксид циркония-иттрия, содержащий до 8% углерода. Его загружают в корундовые тигли и отжигают несколько часов при температуре 550°С. После отжига продукт не содержит следов углерода и летучих примесей, представляет собой слабо агломерированный порошок белого цвета, с удельной поверхностью 18,9 г/см2. Морфология и микроструктура порошка стабилизированного оксида циркония позволяет получать из него высокоплотную (98,2% от теоретической) керамику.
Пример 4.
Берут водный раствор, содержащий 200 г цирконила азотнокислого, 15,1 г иттрия азотнокислого, взятые в соотношении Zr:Y=0,97:0,06; добавляют при перемешивании 138 г глицина из расчета 2,0 г-моль на 1 г-атом суммарного содержания катионов металлов и дополнительно 6,9 г аммония аминоуксуснокислого (5 масс.% от массы введенного глицина). Полученный реакционный раствор нагревают в открытом реакторе из кислото- и термически стойкого материала при температуре нагревателя 160°С. В процессе нагревания реакционный раствор формирует желеобразную массу, превращающуюся в ксерогель, в котором развивается реакция СВС (самовоспламеняющегося синтеза) с выделением углекислого газа и азота, а также воды в виде пара и формированием порошка частично стабилизированного оксида циркония. После окончания процесса горения, по данным рентгено-фазового и химического анализа, полученный полупродукт представляет собой аморфный оксид циркония-иттрия, содержащий до 8% углерода. Его загружают в корундовые тигли и отжигают несколько часов при температуре 570°С. После отжига продукт не содержит следов углерода и летучих примесей, представляет собой слабо агломерированный порошок белого цвета, с удельной поверхностью 11,6 г/см2. Морфология и микроструктура порошка стабилизированного оксида циркония позволяет получать из него высокоплотную (98,5% от теоретической) керамику.
Пример 5.
Берут водный раствор, содержащий 200 г цирконила азотнокислого, 22,196 г скандия азотнокислого и 26,42 иттрия азотнокислого, взятые в соотношении Zr:(Sc+Y)=0,9:0,1; добавляют при перемешивании 129,7 г глицина из расчета 1,8 г-моль на 1 г-атом суммарного содержания катионов металлов и дополнительно 26 г лимонной кислоты (20 масс.% от массы введенного глицина). Полученный реакционный раствор нагревают в открытом реакторе из кислото- и термически стойкого материала при температуре нагревателя 200°С. В процессе нагревания реакционный раствор формирует желеобразную массу, превращающуюся в ксерогель, в котором развивается реакция СВС (самовоспламеняющегося синтеза) с выделением углекислого газа и азота, а также воды в виде пара и формированием порошка частично стабилизированного оксида циркония. После окончания процесса горения, по данным рентгено-фазового и химического анализа, полученный полупродукт представляет собой аморфный оксид циркония-иттрия-скандия, содержащий до 8% углерода. Его загружают в корундовые тигли и отжигают несколько часов при температуре 570°С. После отжига продукт не содержит следов углерода и летучих примесей, представляет собой слабо агломерированный порошок белого цвета, с удельной поверхностью 14,0 г/см2. Морфология и микроструктура порошка стабилизированного оксида циркония позволяет получать из него высокоплотную (98,0% от теоретической) керамику.
Таким образом, авторами предлагается способ получения порошка оксида циркония, стабилизированного оксидом иттрия и/или скандия, обеспечивающий получение активных к спеканию нанопорошков, позволяющих получить высокоплотную керамику на их основе. Способ является высоко экологичным, т.к. исключает необходимость сброса сточных вод в технологическом цикле.
Claims (1)
- Способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидами иттрия и/или скандия, включающий получение исходной смеси нитратов соответствующих металлов и глицина, нагревание смеси до температуры 160-250°С и выдержку при этой температуре с последующим отжигом, отличающийся тем, что в исходную смесь дополнительно вводят карбоновую кислоту и/или аммонийные соли карбоновой кислоты или аминоуксусной кислоты в количестве 5-20 мас.% от содержания глицина и отжиг осуществляют при температуре 550-570°С.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011149859/03A RU2492157C2 (ru) | 2011-12-07 | 2011-12-07 | Способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидом иттрия и/или скандия |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011149859/03A RU2492157C2 (ru) | 2011-12-07 | 2011-12-07 | Способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидом иттрия и/или скандия |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011149859A RU2011149859A (ru) | 2013-06-20 |
RU2492157C2 true RU2492157C2 (ru) | 2013-09-10 |
Family
ID=48784952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011149859/03A RU2492157C2 (ru) | 2011-12-07 | 2011-12-07 | Способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидом иттрия и/или скандия |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2492157C2 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2600400C1 (ru) * | 2015-06-11 | 2016-10-20 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) | Способ получения наноразмерного порошка стабилизированного диоксида циркония |
RU2723166C1 (ru) * | 2019-12-13 | 2020-06-09 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук | Способ получения порошка простого или сложного оксида металла |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5114702A (en) * | 1988-08-30 | 1992-05-19 | Battelle Memorial Institute | Method of making metal oxide ceramic powders by using a combustible amino acid compound |
US6093234A (en) * | 1992-01-16 | 2000-07-25 | Institute Of Gas Technology | Process for preparing submicron/nanosize ceramic powders from precursors incorporated within a polymeric foam |
RU2424604C1 (ru) * | 2007-05-31 | 2011-07-20 | Элкоген Ас | Способ изготовления одиночного твердооксидного топливного элемента |
-
2011
- 2011-12-07 RU RU2011149859/03A patent/RU2492157C2/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5114702A (en) * | 1988-08-30 | 1992-05-19 | Battelle Memorial Institute | Method of making metal oxide ceramic powders by using a combustible amino acid compound |
US6093234A (en) * | 1992-01-16 | 2000-07-25 | Institute Of Gas Technology | Process for preparing submicron/nanosize ceramic powders from precursors incorporated within a polymeric foam |
RU2424604C1 (ru) * | 2007-05-31 | 2011-07-20 | Элкоген Ас | Способ изготовления одиночного твердооксидного топливного элемента |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2600400C1 (ru) * | 2015-06-11 | 2016-10-20 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) | Способ получения наноразмерного порошка стабилизированного диоксида циркония |
RU2723166C1 (ru) * | 2019-12-13 | 2020-06-09 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук | Способ получения порошка простого или сложного оксида металла |
Also Published As
Publication number | Publication date |
---|---|
RU2011149859A (ru) | 2013-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Toniolo et al. | Synthesis of alumina powders by the glycine–nitrate combustion process | |
Tarwal et al. | Photoluminescence of zinc oxide nanopowder synthesized by a combustion method | |
Civera et al. | Combustion synthesis of perovskite-type catalysts for natural gas combustion | |
TWI837083B (zh) | 鋰離子陰極的製造方法及鋰離子陰極及包含該鋰離子陰極的電池 | |
Jung et al. | Quantitative effects of fuel on the synthesis of Ni/NiO particles using a microwave-induced solution combustion synthesis in air atmosphere | |
Riahi-Noori et al. | Synthesis of ZnO nano powder by a gel combustion method | |
Stella et al. | Effect of fuels on the combustion synthesis of NiAl2O4 spinel particles | |
JP5024796B2 (ja) | ナノサイズ粉体の製造方法 | |
Farbun et al. | Optimal design of powdered nanosized oxides of high surface area and porosity using a citric acid aided route, with special reference to ZnO | |
Traversa et al. | Thermal evolution of the microstructure of nanosized LaFeO3 powders from the thermal decomposition of a heteronuclear complex, La [Fe (CN) 6]· 5H2O | |
Mirbagheri et al. | Structural and optical properties of ZnAl2O4 powders synthesized by solution combustion method: Effects of mixture of fuels | |
chandra Dhal et al. | Solution combustion synthesis of perovskite-type catalysts for diesel engine exhaust gas purification | |
Bachina et al. | Peculiarities of LaFeO3 nanocrystals formation via glycine-nitrate combustion | |
JP6803176B2 (ja) | 多孔質アルミナ粒子材料の製造方法 | |
RU2492157C2 (ru) | Способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидом иттрия и/или скандия | |
Roque-Ruiz et al. | Synthesis of α-Al2O3 nanopowders at low temperature from aluminum formate by combustion process | |
RU2641203C2 (ru) | Способ получения нанопорошка феррита висмута | |
Chandradass et al. | Influence of citric acid to aluminium nitrate molar ratio on the combustion synthesis of alumina–zirconia nanopowders | |
Park et al. | Preparation of La1− xSrxMnO3 powders by combustion of poly (ethylene glycol)–metal nitrate gel precursors | |
Zhang et al. | Preparation and characterization of pyrochlore oxide Y2Ti2O7 nanocrystals via gel-combustion route | |
Zhuravlev et al. | Synthesis of functional materials in combustion reactions | |
Hayashi et al. | Hydrothermal synthesis of yttria stabilized ZrO2 nanoparticles in subcritical and supercritical water using a flow reaction system | |
Qiu et al. | Pb (Zr 0.95 Ti 0.05) O 3 Powders synthesized by pechini method: effect of molecular weight of polyester on the phase and morphology | |
JP2004075445A (ja) | 酸化チタン・アパタイト複合体及びその製造方法 | |
CN104071844A (zh) | 一种燃烧法制备钇钽酸锶粉体的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20151208 |