RU2491429C2 - Способ организации работы дизельного двигателя со сверхвысокой степенью сжатия (свсс) - Google Patents

Способ организации работы дизельного двигателя со сверхвысокой степенью сжатия (свсс) Download PDF

Info

Publication number
RU2491429C2
RU2491429C2 RU2010141695/06A RU2010141695A RU2491429C2 RU 2491429 C2 RU2491429 C2 RU 2491429C2 RU 2010141695/06 A RU2010141695/06 A RU 2010141695/06A RU 2010141695 A RU2010141695 A RU 2010141695A RU 2491429 C2 RU2491429 C2 RU 2491429C2
Authority
RU
Russia
Prior art keywords
cycle
pressure
polytropic
stroke
compression ratio
Prior art date
Application number
RU2010141695/06A
Other languages
English (en)
Other versions
RU2010141695A (ru
Inventor
Игорь Петрович Седунов
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный архитектурно-строительный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный архитектурно-строительный университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный архитектурно-строительный университет"
Priority to RU2010141695/06A priority Critical patent/RU2491429C2/ru
Publication of RU2010141695A publication Critical patent/RU2010141695A/ru
Application granted granted Critical
Publication of RU2491429C2 publication Critical patent/RU2491429C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

Изобретение относится к двигателям внутреннего сгорания. Техническим результатом применения политропно-изобарного теплового цикла является повышение его индикаторного КПД. Сущность изобретения заключается в том, что ускоряют рабочий процесс путем максимального увеличения геометрической степени сжатия (ε) рабочего тела до 35-65 единиц, с давлением сжимаемого воздуха (Рс), соответствующим максимально достижимому в цикле давлению сгорания топлива (Pz). Регенеративная энергия, подводимая на такте сжатия воздухом, по абсолютному значению может превышать теплоту, вводимую в цикл с топливом. Во всех случаях начало тепловыделения начинается за ВМТ, с вершины политропы, в сторону ниспадающей ветви индикаторной диаграммы цикла. 4 з.п. ф-лы, 3 ил.

Description

Изобретение относится к тепловым машинам объемного действия, а более конкретно - к способам организации рабочего процесса при сжигании углеводородного топлива в двигателях внутреннего сгорания (ДВС) высокофорсированных дизелей.
В двигателестроении нашли применение три основных способа организации рабочего процесса: изохорный рабочий процесс с циклом Бо-дэ-Роша - Отто, используемый в бензиновых двигателях; цикл Тринклера-Сабатэ - воспроизводящий смешанный, изохорно-изобарный рабочий процесс, применяемый во всех без исключения дизельных двигателях; цикл Рудольфа Дизеля, с изобарным подводом теплоты на базе компрессорного впрыска, нашедший ограниченное применение только на первой стадии развития дизелей. В подавляющем большинстве случаев, применительно к современным энергетическим установкам объемного действия, используются только два первых способа организации рабочего процесса.
Известные способы организации горения топлива в камерах сгорания ДВС - изохорный, изобарно-изохорный, достигли предела своих потенциальных возможностей, и уже не отвечают все возрастающим требованиям по рациональному сжиганию топлива, как по экономическим соображениям, так и по экологическим характеристикам выхлопа. Не может быть востребован и основной резерв улучшения характеристик тепловых циклов - рост степени сжатия: у дизелей, ввиду ограниченности прочностных свойств материалов, из-за высоких развиваемых давлений (Pz); в бензиновых моторах, ограниченностью роста степени сжатия, ввиду наступления детонации. В двигателях с изобарным подводом теплоты, наоборот, при самом благоприятном характере нагружения кинематических пар циллиндро-поршневой группы, закон тепловыделения наиболее трудно осуществимый, так как связан со значительным усложнением конструкции двигателя.
Известен единственный способ применения изобарного подвода теплоты к рабочему телу на умеренных степенях сжатия (патент №37207 от 28.02.1892 г. МКИ F02B 75/02 F02B 9/04 F02B 3/06), применяемый лишь на рубеже 19-20 веков, когда дизельное топливо в камере сгорания распыливалось от независимого компрессора при давлениях порядка 60 бар (см. напр. А.Е. Тиман: «Быстроходные транспортные дизеля», стр.51, перевод с немецкого, под ред. проф. В.В. Власова, изд. ОГИЗ ГОСТРАНСИЗДАТ, Москва-Ленинград, 1931 г.). Пневматический распыл топлива способствовал получению необходимой мелкодисперсности распыливаемого топлива, вследствие чего рабочий процесс протекал достаточно экономично.
Однако наличие компрессора высокого давления состоящего из двух или даже трех ступеней сжатия с ресивером и дополнительными коммуникациями сильно усложняло дизеля, делало их тихоходными. Попытки заменить компрессорный распыл топлива механическим насосом высокого давления, в частности двухступенчатым распылом топлива, не смогли обеспечить необходимый циклу характер тепловыделения. Учитывая, что при вводе топлива по изобаре, такому циклу отводится наименьший среди других тепловых циклов период на смесеобразование, горение и расширение, то на первом месте стоит проблема, как уместиться в отводимое для рабочего хода временные рамки (см. напр. проф. Д.Д. Брозэ: «Сгорание в поршневых двигателях», стр.132, перевод с английского под ред. д.т.н. А.Н. Воинова изд. «Машиностроение»; Москва, 1969 г.). И если в бензиновом двигателе, в котором реализуется сгорание газов по изохоре и процесс смесеобразования не ограничен только пределами рабочего цилиндра, и соответственно есть дополнительное время на подготовку топливо-воздушной смеси к сгоранию в цилиндре, то в дизельном двигателе, работающем по циклу Тринклера-Сабатэ, время на подготовку рабочего тела ограничено периодом впрыска топлива в камеру сгорания. Но и в первом и во втором случае воспламенение топлива в цилиндрах двигателей происходит с некоторым опережением относительно ВМТ (рис.1, 2), удлиняя таким образом общее время процесса горения, кроме того часть топлива (пилотная доза) для резкого подъема давления вводится на линии сжатия против хода поршня. За счет поглощения газом и стенками цилиндропоршневой группы теплоты пилотной дозы (которая безвозвратно потеряна для цикла) обеспечивается резкое поднятие давления в цилиндре двигателя до точки максимально возможного давления сгорания ((Pz) в районе ВМТ.
Специфика же изобарного подвода теплоты в дизельном двигателе такова, что приращение объема камеры сгорания для сохранения определенного давления, должно уравновешиваться приращением объема газа от сжигания топлива, вводимого после ВМТ. Впрыск на начальной стадии горения должен обеспечивать тепловыделение с медленно нарастающей скоростью, а в дальнейшем процесс горения должен сильно ускоряться. Но такой способ, в котором рабочее тело - газ, будет какое-то время удерживаться под определенным давлением на каком-то одном уровне, в рамках принятой совокупности используемых параметров цикла, практически неосуществим.
Технический результат, который достигается при реализации настоящего изобретения заключается в частичном или полном устранении недостатков, ограничивающих эффективность тепловыделения в камерах сгорания ДВС на такте расширения и в создании теплового двигателя с максимально возможным КПД
Для достижения данного технического результата, с целью получения максимально возможного индикаторного КПД путем значительного увеличения геометрической степени сжатия (ε) до 35-65 единиц, давление сжимаемого по политропе воздуха (Рс) предельно приближают в двигателе к максимальному давлению сгорания (Pzmax), под показатель степени повышения давления (λ) в цикле, близкий к единице.
Технический результат достигается также и тем, что тепловыделение по изобаре в цикле начинают осуществлять за верхней мертвой точкой (ВМТ), на сходе с вершины политропы.
Технический результат достигается и тем, что избыток остаточной энергии сжатого воздуха регенеративно возвращают в цикл на такте рабочего хода.
Технический результат достигается и тем, что давление максимально сжимаемого по политропе воздуха используют для повышения КПД тепловых двигателей, работающих по четырехтактному и по двухтактному циклам.
Технический результат достигается и тем, что для организации тепловыделения по обусловленному закону удерживания давления сгорания на максимально возможном за ВМТ уровне (Pzmax), в нем осуществляют управляемый многоточечный впрыск, например, с помощью аккумуляторной системы топливоподачи, типа: «Common Rail.».
Введение в предлагаемый способ организации работы дизельного двигателя перечисленной совокупности отличительных признаков позволяет реконструировать изобарный цикл под рабочий процесс, в котором закладывается значительное превышение температуры сжимаемого воздуха от ее минимально необходимого уровня, что приводит к сокращению задержки воспламенения со снижением скорости нарастания давления (dP/dφ) на начальном этапе горения и ускоряет сгорание во время завершающей стадии горения, препятствуя затяжному процессу догорания топлива.
Существенная новизна изобретения заключается в том, что в цикле с изобарным подводом теплоты, производится резкая интенсификация всех этапов рабочего процесса, инициированного путем значительного увеличения геометрической степени сжатия (ε) рабочего тела от значений порядка 20-25 единиц до значений в 35-65 единиц, с приближением завершающей стадии политропно (без ввода топлива) сжимаемого воздуха (Рс) к максимально достижимому в цикле давлению сгорания (Pzmax), когда показатель степени повышения давления (λ) принимается равным или близким к единице, а также и в том, что тепловыделение начинается за ВМТ на ниспадающей ветви политропы расширения таким образом, что кривая подъема и падения давления рабочего тела на индикаторной диаграмме напоминает синусоиду, тогда как у других тепловых циклов, индикаторная диаграмма напоминает профиль зуба храпового колеса. Указанный цикл можно охарактеризовать как политропно-изобарный, ввиду значительной доли энергии (назовем ее «теплотой или энергией замещения»), вводимой на компрессорном такте от сжимаемого воздуха и обладающей новым свойством - возвращаться на такте расширения в цикл, а ее величина по абсолютному значению может превышать теплоту, вводимую в других циклах при сгорании пилотной и основной дозы топлива.
Политропно-изобарный цикл, кроме этого обеспечивает сгорание топлива в условиях наименьших тепловых потерь, так как основная фаза тепловыделения на стадии горения происходит в защемленном объеме камеры сгорания, в которой соотношение площади поверхности к рабочему объему цилиндров меньше, чем в любом другом тепловом цикле.
Изобретение поясняется следующими чертежами, где на фиг.1 представлена совмещенная индикаторная диаграмма термодинамических циклов в координатах P-V; 1-2р-6-7-1 - изобарный цикл Р. Дизеля (ε=20-25); 1-2-4-7-1 - политропно-изобарный цикл (ε=35-65); 1-2р-3-4-7-1 - изохорно-изобарный цикл Тринклера-Сабатэ (ε=15-23); 1-2v-5-7-1 - изохорный цикл Бо-дэ-Роша (ε=12-13). Из графика следует, что цикл с политропно-изобарным подводом теплоты в силу равенства существующих ограничений (Pzmax) единственный из всех использует всю полноту индикаторной диаграммы. На фиг.2 представлены примеры соотношения уровней давлений на пусковых оборотах, различных циклов, по величине замера компрессии: для бензинового двигателя при изохорном сжатии - кривая 1; для дизельного двигателя при изобарно-изохорном сжатии - кривая 2; для дизельного двигателя при политропно-изобарном сжатии - кривая 3. Указанное обстоятельство предполагает, в рассматриваемом цикле, установку более мощного пускового устройства для запуска двигателя. На фиг.3 представлена развернутая индикаторная диаграмма политропно-изобарного цикла, где степень сжатия (Рс) предельно приближена к развиваемому в цикле максимальному давлению сгорания (Pzmax), характеризуемого показателем степени повышения (изменения) давления в цикле (λ).
Рабочий процесс двигателя со сверхвысокой степенью сжатия осуществляется следующим образом. Воздух на такте всасывания через впускные органы поступает в цилиндры двигателя, и с момента их закрытия начинает сжиматься до предельно возможного давления в цикле (Рс), близкого к максимальному давлению сгорания (Pzmax), с получением в конце сжатия температуры, значительно более высокой, чем это требуется для обеспечения самовоспламенения топлива. Значительное превышение температуры сжатия, приводит к тому, что начало горения практически совпадает с моментом впрыска топлива, сводя к минимуму задержку самовоспламенения в период индукции.
В целом, физическое состояние газовой среды при степенях сжатия порядка пятидесяти единиц представляет собой уже совершенно иную субстанцию, напоминающую квазижидкость. В свою очередь распыливаемое топливо максимально приближено к квазигазовой среде, что предполагает их одинаковое агрегатное состояние в том смысле, что горение возможно только в однофазной среде. При атмосферном давлении и при умеренных степенях сжатия (до 20-25 единиц) рабочая смесь типа «нефть+воздух» представляет не гомогенную, а гетерогенную систему, где расстояние между атомами углерода в цепочках радикалов топлива С-С…С на три порядка меньше расстояния между молекулами воздуха - газа. Кроме того, в воздухе на каждые четыре молекулы балластного азота N2 приходится только одна молекула окислителя O2, поэтому на малых степенях сжатия молекулам окислителя трудно добраться до сверхкомпактных молекул горючего компонента. По этой причине из углеводородных радикалов, не обеспеченных окислителем, летят сажа и бензпирены, а вовсе не CO2. Расчеты показывают, что разница в плотностях реагирующих компонентов, при степени сжатия воздуха как окислителя в 50 и более раз, уменьшается с ~3 порядков до ~ полутора крат, т.е. в этом случае молекулы смешиваемых компонентов сближаются настолько, что они практически соприкасаются друг с другом. Близость молекул топлива исключает их длительный переход, в этом случае молекулы углерода не успевают превратиться в сажу, что коренным образом улучшает процесс горения.
С экологической точки зрения, полное окисление молекул топлива с молекулами кислорода воздуха возможно лишь при равном для смешиваемых компонентов агрегатном состоянии, что и соответствует в заявляемом способе.

Claims (5)

1. Способ организации работы дизельного двигателя со сверхвысокой степенью сжатия, отличающийся тем, что, с целью получения максимально возможного индикаторного КПД, путем значительного увеличения геометрической степени сжатия (ε) до 35-65 единиц, давление сжимаемого по политропе воздуха (Рс) предельно приближено в двигателе к максимальному давлению сгорания (Pzmax) под показатель степени повышения давления (λ) в цикле, близкий к единице.
2. Способ по п.1, отличающийся тем, что начало тепловыделения по изобаре в цикле начинают осуществлять за верхней мертвой точкой (ВМТ), на сходе с вершины политропы.
3. Способ по п.1, отличающийся тем, что избыток остаточной энергии сжатого воздуха регенеративно возвращают в цикл на такте рабочего хода.
4. Способ по п.1, отличающийся тем, что давление максимально сжимаемого по политропе воздуха используют для повышения КПД тепловых двигателей, работающих по четырехтактному и по двухтактному циклам.
5. Способ по п.1, отличающийся тем, что, с целью организации тепловыделения по обусловленному закону, например удерживания давления сгорания на максимально возможном за ВМТ уровне (Pz), в нем осуществляют управляемый многоточечный впрыск, например, с помощью аккумуляторной системы топливоподачи, типа: «Common Rail.».
RU2010141695/06A 2010-10-11 2010-10-11 Способ организации работы дизельного двигателя со сверхвысокой степенью сжатия (свсс) RU2491429C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010141695/06A RU2491429C2 (ru) 2010-10-11 2010-10-11 Способ организации работы дизельного двигателя со сверхвысокой степенью сжатия (свсс)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010141695/06A RU2491429C2 (ru) 2010-10-11 2010-10-11 Способ организации работы дизельного двигателя со сверхвысокой степенью сжатия (свсс)

Publications (2)

Publication Number Publication Date
RU2010141695A RU2010141695A (ru) 2012-04-20
RU2491429C2 true RU2491429C2 (ru) 2013-08-27

Family

ID=46032251

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010141695/06A RU2491429C2 (ru) 2010-10-11 2010-10-11 Способ организации работы дизельного двигателя со сверхвысокой степенью сжатия (свсс)

Country Status (1)

Country Link
RU (1) RU2491429C2 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU861677A1 (ru) * 1979-12-17 1981-09-07 Центральный научно-исследовательский дизельный институт Способ работы двигател внутреннего сгорани
US4798184A (en) * 1986-11-17 1989-01-17 Sandor Palko Extended expansion diesel cycle engine
EP0621400A1 (de) * 1993-04-23 1994-10-26 Mercedes-Benz Ag Luftverdichtende Einspritzbrennkraftmaschine mit einer Abgasnachbehandlungseinrichtung zur Reduzierung von Stickoxiden
WO2000061927A1 (en) * 1999-04-09 2000-10-19 Scania Cv Aktiebolag (Publ) Method for fuel injection in an internal combustion engine and internal combustion engine
RU2164300C2 (ru) * 1999-02-23 2001-03-20 Открытое акционерное общество "Коломенский завод" Способ работы двигателя внутреннего сгорания
RU2370657C2 (ru) * 2003-12-30 2009-10-20 Дженерал Электрик Компани Устройство, система и способ для уменьшения выбросов из дизельных двигателей

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU861677A1 (ru) * 1979-12-17 1981-09-07 Центральный научно-исследовательский дизельный институт Способ работы двигател внутреннего сгорани
US4798184A (en) * 1986-11-17 1989-01-17 Sandor Palko Extended expansion diesel cycle engine
EP0621400A1 (de) * 1993-04-23 1994-10-26 Mercedes-Benz Ag Luftverdichtende Einspritzbrennkraftmaschine mit einer Abgasnachbehandlungseinrichtung zur Reduzierung von Stickoxiden
RU2164300C2 (ru) * 1999-02-23 2001-03-20 Открытое акционерное общество "Коломенский завод" Способ работы двигателя внутреннего сгорания
WO2000061927A1 (en) * 1999-04-09 2000-10-19 Scania Cv Aktiebolag (Publ) Method for fuel injection in an internal combustion engine and internal combustion engine
RU2370657C2 (ru) * 2003-12-30 2009-10-20 Дженерал Электрик Компани Устройство, система и способ для уменьшения выбросов из дизельных двигателей

Also Published As

Publication number Publication date
RU2010141695A (ru) 2012-04-20

Similar Documents

Publication Publication Date Title
US5103645A (en) Internal combustion engine and method
Christensen et al. Supercharged homogeneous charge compression ignition
US10174703B2 (en) Combined homogeneous compression ignition and diffused compression ignition combustion control method for low-octane-value gasoline
US20070044778A1 (en) Engine which operates repeatedly with a multi-stage combustion process
JP2022545877A (ja) エンジン用の改善されたアンモニア系燃料
CN1793626A (zh) 一缸两活塞对置内燃机
CA2463791A1 (en) Method for injecting gaseous fuels into an internal combustion engine at high pressures
KR101629608B1 (ko) 예연소 암모니아 엔진 및 제어 방법
CN110344940A (zh) 超高始燃压往复活塞式内燃机及其设计制造方法
RU2491429C2 (ru) Способ организации работы дизельного двигателя со сверхвысокой степенью сжатия (свсс)
WO2020078088A1 (zh) 弹性变长活塞及其设计制造方法
US9869241B2 (en) Split cycle engine and method of operation
CN106224087B (zh) 一种应用高压低燃值气体燃料的发动机
RU2008118690A (ru) Поршневой двухвальный двигатель внутреннего сгорания с противоположно движущимися поршнями и способ его работы
CN101289959A (zh) 一种提高内燃机效率的方法及高效内燃机
CN204476553U (zh) 二冲程纯氧发动机用废气膨胀机构
KR101910956B1 (ko) 재압축 반응 동반 천연가스 압축점화엔진
JP2022547398A (ja) 内燃機関用燃料噴射装置
CN104632362B (zh) 二冲程纯氧发动机用废气膨胀机构
JPS62214256A (ja) 独立燃焼室型エンジン
CN104040136B (zh) Ic发动机气缸和活塞
WO2013002677A2 (ru) Способ работы двигателя внутреннего сгорания
Alqahtani et al. Evaluation of the effect of variable compression ratios performance on opposed piston 2-stroke engine
RU2445476C1 (ru) Способ работы двигателя внутреннего сгорания
KR20120018545A (ko) 저압가스 공급 방식의 2행정 대형 엔진

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20120813

FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20130124

MM4A The patent is invalid due to non-payment of fees

Effective date: 20141012