RU2487216C1 - Устройство управления подъемно-копающими механизмами - Google Patents

Устройство управления подъемно-копающими механизмами Download PDF

Info

Publication number
RU2487216C1
RU2487216C1 RU2011151393/03A RU2011151393A RU2487216C1 RU 2487216 C1 RU2487216 C1 RU 2487216C1 RU 2011151393/03 A RU2011151393/03 A RU 2011151393/03A RU 2011151393 A RU2011151393 A RU 2011151393A RU 2487216 C1 RU2487216 C1 RU 2487216C1
Authority
RU
Russia
Prior art keywords
adsorbers
air
nozzle
compressor
receiver
Prior art date
Application number
RU2011151393/03A
Other languages
English (en)
Other versions
RU2011151393A (ru
Inventor
Николай Сергеевич Кобелев
Сергей Геннадьевич Емельянов
Татьяна Васильевна Алябьева
Елена Георгиевна Храмцова
Виктор Васильевич Свиридов
Сергей Валерьевич Катунин
Анатолий Платонович Дубяга
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority to RU2011151393/03A priority Critical patent/RU2487216C1/ru
Publication of RU2011151393A publication Critical patent/RU2011151393A/ru
Application granted granted Critical
Publication of RU2487216C1 publication Critical patent/RU2487216C1/ru

Links

Images

Landscapes

  • Compressor (AREA)
  • Drying Of Gases (AREA)

Abstract

Изобретение относится к пневматическим системам управления экскаваторами и кранами, работающими в условиях отрицательных температур. Устройство управления подъемно-копающими механизмами содержит компрессор, масловлагоотделитель и ресивер, пневматически последовательно соединенные между собой. При этом выход ресивера пневматически подключен к входам адсорберов с равномерно распределенными подогревателями, а выводы адсорберов пневматически подключены к потребителю. Компрессор снабжен всасывающим фильтром, содержащим корпус с коническим днищем, штуцер вывода очищенного воздуха, конденсатоотводчик, расположенный в отверстии днища, отражательную перегородку и штуцер ввода очищаемого воздуха. Корпус фильтра выполнен в виде двухслойной рубашки с воздушной полостью, соединенной штуцером ввода обогревающего отрегенерированного воздуха посредством трубопровода и регулирующего клапана с адсорберами и штуцером вывода в атмосферу обогревающего отрегенерированного воздуха. Равномерно распределенные подогреватели в адсорберах отделены перегородками от зерен адсорбента. При этом каждая из перегородок выполнена из биметалла. Причем материал биметалла со стороны подогревателя имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем материал со стороны зерен адсорбента. Техническим результатом является поддержание эффективной работы при длительной эксплуатации устройства управления подъемно-копающими механизмами путем обеспечения заданного качества осушки сжатого воздуха за счет устранения термического разрушения зерен адсорбента. 3 ил.

Description

Изобретение относится к пневматическим системам управления экскаваторами и кранами, работающими в условиях отрицательных температур.
Известно устройство управления подъемно-копающими механизмами (см. патент РФ 2158805, МПК E02F 9/22, опубл. 10.11.2000), содержащее компрессор, масловлагоотделитель и ресивер, пневматически последовательно соединенные между собой, а выход ресивера пневматически к входам адсорберов с равномерно распределенными подогревателями, и выводы адсорберов пневматически подключены к потребителю, компрессор снабжен всасывающим фильтром, содержащим корпус с коническим днищем и отверстием в его нижней части, штуцер вывода очищенного воздуха, конденсатоотводчик, расположенный в отверстии днища, отражательную перегородку, штуцеры ввода очищаемого воздуха, корпус фильтра выполнен в виде двухслойной рубашки с воздушной полостью, соединенной штуцером ввода обогревающего отрегенерированного воздуха посредством трубопровода и регулирующего клапана с адсорберами и штуцером вывода обогревающего отрегенерированного воздуха в атмосферу.
Недостатком являются энергозатраты, обусловленные увеличением аэродинамического сопротивления воздушного фильтра из-за наличия во всасываемом атмосферном воздухе значительного количества твердых частиц технологической пыли, определяемых специфическими условиями эксплуатации, а наличие твердых частиц в полости компрессора не только снижает его массовую производительность по сжатому воздуху, но и способствует аварийному режиму, что в конечном итоге снижает эффективность работы подъемно-копающих механизмов.
Известно устройство управления подъемно-копающими механизмами (см. патент РФ 2400598, МПК E02F 9/22, опубл. 27.09.2010), содержащее компрессор, масловлагоотделитель и ресивер, пневматически последовательно соединенные между собой, а выход ресивера пневматически подключен к входам адсорберов с равномерно распределенными подогревателями, и выводы адсорберов пневматически подключены к потребителю, при этом компрессор снабжен всасывающим фильтром, содержащим корпус с коническим днищем и отверстием в его нижней части, штуцер вывода очищенного воздуха, конденсатоотводчик, расположенный в отверстии днища, отражательную перегородку, штуцер ввода очищаемого воздуха, а корпус фильтра выполнен в виде двухслойной рубашки с воздушной полостью, соединенной штуцером ввода обогревающего отрегенерированного воздуха посредством трубопровода и регулирующего клапана с адсорберами и штуцером вывода в атмосферу обогревающего отрегенерированного воздуха.
Недостатком является снижение качества осушки сжатого воздуха из-за термического разрушения зерен адсорбента, контактирующих с равномерно распределенными подогревателями по объему адсорбера, что приводит к ухудшению работы как пневмооборудования, так и в целом подъемно-копательных механизмов.
Технической задачей является поддержание эффективной работы при длительной эксплуатации устройства управления подъемно-копающими механизмами путем обеспечения заданного качества осушки сжатого воздуха за счет устранения термического разрушения зерен адсорбента при непосредственном контакте их с равномерно распределенными по всему объему адсорберов подогревателями.
Технический результат достигается тем, что устройство управления подъемно-копающими механизмами содержит компрессор, масловлагоотделитель и ресивер, пневматически последовательно соединенные между собой, а выход ресивера пневматически подключен к входам адсорберов с равномерно распределенными подогревателями, и выводы адсорберов пневматически подключены к потребителю, при этом компрессор снабжен всасывающим фильтром, содержащим корпус с коническим днищем и отверстием в его нижней части, штуцер вывода очищенного воздуха, конденсатоотводчик, расположенный в отверстии днища, отражательную перегородку, штуцер ввода очищаемого воздуха, а корпус фильтра выполнен в виде двухслойной рубашки с воздушной полостью, соединенной штуцером ввода обогревающего отрегенерированного воздуха посредством трубопровода и регулирующего клапана с адсорберами и штуцером вывода в атмосферу обогревающего отрегенерированного воздуха, причем на внутренней поверхности штуцера ввода очищаемого воздуха, выполненного в виде суживающегося сопла, расположены криволинейные канавки с профилем в виде ласточкина хвоста, а у его входного отверстия выполнена круговая канавка, соединенная с устройством удаления загрязнений, при этом круговая канавка соединена с криволинейными канавками и снабжена сеткой.
На фиг.1 изображена принципиальная схема устройства управления подъемно-копающими механизмами; на фиг.2 - профиль криволинейных канавок в виде ласточкина хвоста; на фиг.3 - внутренняя поверхность штуцера ввода очищаемого воздуха с устройством удаления загрязнений.
Устройство состоит из соединенных последовательно системой трубопроводов (воздуховодов) 1 всасывающего фильтра 2, компрессора 3, масловлагоотделителя 4, ресивера 5, двух циклично работающих адсорберов 6 и 7, подогревателя 8 с терморегуляторами 9, закрепленными на каждом элементе подогревателя 8. При этом всасывающий фильтр 2 включает корпус 10, выполненный в виде двухслойной рубашки с воздушной полостью, коническим днищем 11 с отверстием 12 в его нижней части, штуцер вывода очищенного всасываемого воздуха 13, штуцеры ввода очищаемого воздуха 14, конденсатоотводчик 15, расположенный в отверстии 12 конического днища 11, отражательную перегородку 16, штуцер ввода обогревающего воздуха 17, трубопровод 18, соединяющий через регулирующий клапан 19 штуцер 17 с адсорберами 6 и 7, штуцер сброса обогреваемого воздуха в атмосферу 20, при этом регулирующий клапан 19 обеспечивает также сброс воздуха после регенерации адсорберов в атмосферу при положительных температурах окружающей среды. На внутренней поверхности 21 штуцера ввода очищаемого воздуха 14, выполненного в виде суживающегося сопла, расположены криволинейные канавки 22 с профилем в виде ласточкина хвоста, а у его входного отверстия 23 выполнена круговая канавка 24, соединенная с устройством удаления загрязнений 25, при этом круговая канавка 24 соединена с криволинейными канавками 22 и снабжена сеткой 26.
Подогреватели 8 в двух циклично работающих адсорберах 6 и 7 от зерен адсорбента 27 отделяют перегородками 28, каждая из которых выполнена из биметалла, причем материал 29 со стороны подогревателя 8 имеет коэффициент теплопроводности (например, коэффициент теплопроводности алюминия равен 207 Вт/(м·г), см., Нащекин В.В. Техническая термодинамика и теплопередача. М., 1980. - 469 с. ил.) в 2,0-2,5 раза выше, чем материал 30 (например, коэффициент тепловодности латуни равен 85 Вт/(м·г)) со стороны зерен адсорбента 27.
Устройство работает следующим образом.
Известно, что при высокой температуре воздуха или газа в процессе регенерации адсорбента и, особенно, при непосредственном контакте зерен адсорбента с подогревателем наблюдается термическое их разрушение, путем растрескивания (см., например, Серпионова Е.Н. Промышленная адсорбция газов и паров. М.: Высшая школа, 1989. - 368 с.ил.). В результате резко снижается качество очистки сжатого воздуха и эксплуатационная надежность в целом устройства управления подъемно-копающими механизмами. При устранении непосредственного контакта зерен адсорбента 27 и подогревателей 8 путем использования перегородок 28 из биметалла наблюдается перераспределение теплового потока, т.к. теплопроводность материала 29 более высокая, то теплота от подогревателей 8 достаточно быстро передается по материалу 29 перегородки 28, а после контакта с материалом 30 снижает скорость распространения теплового потока (см., например, стр.40. Цой П.В. Методы расчета отдельных задач тепломассопереноса. М.: Энергия, 1971. - 384 с.ил.). Это приводит к равномерности прогрева зерен адсорбента с постепенно возрастающим градиентом температур до нормированных значений, например 100°С, т.е. поддерживать заданный процесс регенерации, предотвращающий термическое разрушение зерен адсорбента.
Кроме того, выполненная перегородка 28 из биметалла приводит при прохождении через нее теплового потока к образованию термовибрации (см., например, Дмитриев В.Г. Биметаллы. Пермь, 1990. - 297 с.ил.). Это препятствует налипанию зерен адсорбента на перегородку 28, а в процессе термовибрации точки соприкосновения перегородки 28 с зернами адсорбента непрерывно перемещаются по их поверхности, что практически ускоряет температурное напряжение, способствующее разрушению адсорбента.
Специфика условий эксплуатации подъемно-копающих механизмов обусловлена наличием значительного количества твердых частиц технологической и атмосферной пыли во всасываемом компрессором 3 атмосферном воздухе, поэтому в начале его работы данная смесь воздуха и массы загрязнений перемещается к штуцеру ввода очищаемого воздуха 14 и контактирует с сеткой 26, при этом крупные частицы отделяются от потока, а более мелкие через входное отверстие 23 проникают во внутреннюю полость штуцера ввода очищаемого воздуха 14. Так как штуцер ввода очищаемого воздуха 14 выполнен в виде суживающегося сопла, поток всасываемого воздуха с загрязнениями увеличивает свою скорость и, перемещаясь по криволинейным канавкам 22, закручивается. В результате твердые частицы, прошедшие сетку 26, центробежной силой отбрасываются к внутренней поверхности 21 штуцера ввода очищаемого воздуха 14 и заполняют полости криволинейных канавок 22, где накапливаются и, вследствие выполнения данных полостей по профилю в виде ласточкина хвоста, не выпадают вновь в движущийся поток, а смещаются в сторону круговой канавки 24, откуда под действием силы тяжести перемещаются в устройство удаления загрязнений 25 для последующего удаления вручную или автоматически (на фиг.1 не показано).
Оставшиеся мельчайшие твердые частицы с потоком закручиваемого всасываемого атмосферного воздуха, выходя из штуцера ввода очищаемого воздуха 14, выполненного в виде суживающегося сопла, ударяются об отражательную перегородку 16. В результате контакта потока всасываемого атмосферного воздуха с отражательной перегородкой 16 твердые частицы загрязнений с каплеобразной или льдообразной влагой в своем большинстве выпадают в коническое днище 11, где накапливаются по мере накопления и выбрасываются из всасывающего фильтра 2 конденсатоотводчиком 15 через отверстие 11.
Очищенный от загрязнений всасываемый воздух через штуцер вывода очищенного всасываемого воздуха 13 по воздуховоду 1 поступает на сжатие в компрессор 3, после чего через маслоотделитель 4, ресивер 5 направляется на осушку в адсорберы, например в адсорбер 6. Очистка всасываемого атмосферного воздуха от твердых частиц и капельной или льдообразной влаги обеспечивает снижение энергоемкости производства пневмоэнергии от 12% до 18% в зависимости от условий эксплуатации компрессора.
Осушенный сжатый воздух подается к пневмоаппаратуре системы управления подъемно-копающими механизмами. Одновременно часть осушенного воздуха направляется во второй адсорбер 7, находящийся в режиме регенерации. Первый по ходу регенерирующего воздуха элемент подогревателя 8 включается терморегулятором 9 и подогревает воздух. Ко второму элементу подогревателя регенерирующий воздух поступает с температурой 100°С. Мощность потребления вторым элементом подогревателя ниже мощности первого и складывается из затрат на потери тепла корпусом адсорбера в окружающую среду и необходимого тепла для регенерации. Аналогично работают остальные элементы подогревателя, причем каждый из них имеет индивидуальное подключение к источнику питания через терморегулятор 9.
Всасывающий фильтр 2 компрессора 3 находится в кузовном помещении, где температура всасываемого воздуха близка к температуре окружающей среды, или же всасывающий фильтр 2 выносится наружу из кузовного помещения. В результате при низких температурах окружающей среды и особенно при метелях, наличии инея или дождях наблюдается налипание твердых загрязнений и каплеобразной или льдообразной влаги по сечению входного отверстия воздушного фильтра. Это приводит в конечном итоге к возрастанию гидравлического сопротивления во всасывающем тракте компрессора 3 и, как следствие, увеличивает энергозатраты на производство сжатого воздуха. Кроме того, наличие дополнительной влаги в сжатом воздухе приводит к более тяжелым условиям работы масловлагоотделителя 4, а возможное поступление влаги в адсорберы 6 и 7 приводит к растрескиванию зерен адсорбера, что резко ухудшает процесс осушки и значительно сокращает эффективность эксплуатации пневмооборудования подъемно-копающих механизмов. Поэтому предлагаемая конструкция всасывающего фильтра компрессора 3 обеспечивает дополнительную очистку атмосферного воздуха, особенно при отрицательных температурах окружающей среды.
Сжатый воздух после регенерации, например, адсорбера 7 с температурой около 80°С по трубопроводу 18 направляется через регулирующий клапан 19 к штуцеру ввода обогревающего воздуха 17 и заполняет воздушную полость в двухслойной рубашке, в виде которой выполнен корпус 10 всасывающего фильтра 2. Обогревающий воздух, отдав тепло корпусу 10, выбрасывается в атмосферу через штуцер 20.
При положительных температурах окружающей среды, когда не требуется обогрева корпуса 10 всасывающего фильтра 2, нагретый сжатый воздух после процесса регенерации адсорберов 6 или 7 по трубопроводу 18 через регулирующий клапан 19 выбрасывается непосредственно в атмосферу. Капельная же влага, выбрасываемая с регенерирующим воздухом в атмосферу и частично вновь поступающая с атмосферным воздухом во всасывающий фильтр 2 компрессора 3, пройдя штуцер 14, ударяется об отражательную перегородку 16, накапливается в днище 11 и посредством конденсатоотводчика 15 выбрасывается наружу.
Оригинальность предлагаемого технического решения заключается в том, что выполнение перегородки, отделяющей от непосредственного контакта подогревателя и зерен адсорбента, из биметалла приводит как к устранению термического разрушения адсорбента, так и к оптимальному прогреву зерен адсорбента. При этом непрерывно под действием термовибрации перемещаются точки контакта по поверхности зерен с движущимся потоком тепла, что также улучшает процесс регенерации, а это не только поднимает качество осушки сжатого воздуха, но и в целом повышает эффективность работы устройства управления подъемно-копающими механизмами.

Claims (1)

  1. Устройство управления подъемно-копающими механизмами, содержащее компрессор, масловлагоотделитель и ресивер, пневматически последовательно соединенные между собой, а выход ресивера пневматически подключен к входам адсорберов с равномерно распределенными подогревателями, и выводы адсорберов пневматически подключены к потребителю, при этом компрессор снабжен всасывающим фильтром, содержащим корпус с коническим днищем и отверстием в его нижней части, штуцер вывода очищенного воздуха, конденсатоотводчик, расположенный в отверстии днища, отражательную перегородку, штуцер ввода очищаемого воздуха, а корпус фильтра выполнен в виде двухслойной рубашки с воздушной полостью, соединенной штуцером ввода обогревающего отрегенерированного воздуха посредством трубопровода и регулирующего клапана с адсорберами и штуцером вывода в атмосферу обогревающего отрегенерированного воздуха, отличающееся тем, что равномерно распределенные подогреватели в адсорберах от зерен адсорбента отделены перегородками, при этом каждая из перегородок выполнена из биметалла, причем материал биметалла со стороны подогревателя имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем материал со стороны зерен адсорбента.
RU2011151393/03A 2011-12-15 2011-12-15 Устройство управления подъемно-копающими механизмами RU2487216C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011151393/03A RU2487216C1 (ru) 2011-12-15 2011-12-15 Устройство управления подъемно-копающими механизмами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011151393/03A RU2487216C1 (ru) 2011-12-15 2011-12-15 Устройство управления подъемно-копающими механизмами

Publications (2)

Publication Number Publication Date
RU2011151393A RU2011151393A (ru) 2013-06-20
RU2487216C1 true RU2487216C1 (ru) 2013-07-10

Family

ID=48785226

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011151393/03A RU2487216C1 (ru) 2011-12-15 2011-12-15 Устройство управления подъемно-копающими механизмами

Country Status (1)

Country Link
RU (1) RU2487216C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2597334C1 (ru) * 2015-06-01 2016-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Устройство управления подъемно-копающими механизмами

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1237751A1 (ru) * 1984-06-08 1986-06-15 Курский Политехнический Институт Устройство управлени подъемно-копающими механизмами
GB2281229A (en) * 1993-08-27 1995-03-01 Boc Group Plc An adsorber vessel
RU2136819C1 (ru) * 1998-04-02 1999-09-10 Курский государственный технический университет Устройство управления подъемно-копающими механизмами
RU2158805C1 (ru) * 1999-03-09 2000-11-10 Курский государственный технический университет Устройство управления подъемно-копающими механизмами
RU48809U1 (ru) * 2005-07-18 2005-11-10 Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" Установка для осушки чистого воздуха
RU2400598C1 (ru) * 2009-06-08 2010-09-27 Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" Устройство управления подъемно-копающими механизмами

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1237751A1 (ru) * 1984-06-08 1986-06-15 Курский Политехнический Институт Устройство управлени подъемно-копающими механизмами
GB2281229A (en) * 1993-08-27 1995-03-01 Boc Group Plc An adsorber vessel
RU2136819C1 (ru) * 1998-04-02 1999-09-10 Курский государственный технический университет Устройство управления подъемно-копающими механизмами
RU2158805C1 (ru) * 1999-03-09 2000-11-10 Курский государственный технический университет Устройство управления подъемно-копающими механизмами
RU48809U1 (ru) * 2005-07-18 2005-11-10 Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" Установка для осушки чистого воздуха
RU2400598C1 (ru) * 2009-06-08 2010-09-27 Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" Устройство управления подъемно-копающими механизмами

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2597334C1 (ru) * 2015-06-01 2016-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Устройство управления подъемно-копающими механизмами

Also Published As

Publication number Publication date
RU2011151393A (ru) 2013-06-20

Similar Documents

Publication Publication Date Title
RU2648062C1 (ru) Установка адсорбционной осушки газов
JP2011115789A (ja) 吸着乾燥装置、吸着乾燥ユニットおよび吸着乾燥方法
CN207042199U (zh) 机车用空气干燥装置
US9463434B2 (en) Heat reactivated adsorbent gas fractionator and process
JP2017528637A5 (ru)
RU2487216C1 (ru) Устройство управления подъемно-копающими механизмами
RU2400598C1 (ru) Устройство управления подъемно-копающими механизмами
RU2597334C1 (ru) Устройство управления подъемно-копающими механизмами
KR20180070918A (ko) 압축 공기의 수분 제거 장치 및 방법
RU2478758C1 (ru) Устройство управления подъемно-копающими механизмами
JP6345541B2 (ja) オイルセパレータ
RU126719U1 (ru) Устройство управления подъемно-копающими механизмами
RU2158805C1 (ru) Устройство управления подъемно-копающими механизмами
WO2018104986A1 (ja) 脱臭装置
RU78091U1 (ru) Установка адсорбционной осушки и очистки газа
RU48809U1 (ru) Установка для осушки чистого воздуха
KR102030366B1 (ko) 공기 처리 시스템의 흡입 공기의 여과 장치
RU2412746C2 (ru) Установка осушки газа
KR101735801B1 (ko) 가스제습장치 및 그를 포함하는 합성가스정제장치
RU157326U1 (ru) Установка адсорбционной осушки природного газа
WO2018167832A1 (ja) 脱臭装置
CN103816735A (zh) 气体过滤系统及装置
CN206905017U (zh) 一种建筑采暖烟气净化装置
RU2570056C1 (ru) Устройство очистки воздуха
KR102127618B1 (ko) 제습 장치

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131216