RU2486957C1 - Способ приготовления катализатора и катализатор окисления водорода для устройств его пассивной рекомбинации - Google Patents

Способ приготовления катализатора и катализатор окисления водорода для устройств его пассивной рекомбинации Download PDF

Info

Publication number
RU2486957C1
RU2486957C1 RU2011153119/04A RU2011153119A RU2486957C1 RU 2486957 C1 RU2486957 C1 RU 2486957C1 RU 2011153119/04 A RU2011153119/04 A RU 2011153119/04A RU 2011153119 A RU2011153119 A RU 2011153119A RU 2486957 C1 RU2486957 C1 RU 2486957C1
Authority
RU
Russia
Prior art keywords
catalyst
oxide
intermediate coating
coating
temperature
Prior art date
Application number
RU2011153119/04A
Other languages
English (en)
Inventor
Наталья Васильевна Мальцева
Евгений Александрович Власов
Аркадий Юрьевич Постнов
Татьяна Алексеевна Вишневская
Дмитрий Михайлович Шигорин
Дмитрий Валерьевич Ислентьев
Original Assignee
Наталья Васильевна Мальцева
Евгений Александрович Власов
Аркадий Юрьевич Постнов
Татьяна Алексеевна Вишневская
Дмитрий Михайлович Шигорин
Дмитрий Валерьевич Ислентьев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Наталья Васильевна Мальцева, Евгений Александрович Власов, Аркадий Юрьевич Постнов, Татьяна Алексеевна Вишневская, Дмитрий Михайлович Шигорин, Дмитрий Валерьевич Ислентьев filed Critical Наталья Васильевна Мальцева
Priority to RU2011153119/04A priority Critical patent/RU2486957C1/ru
Application granted granted Critical
Publication of RU2486957C1 publication Critical patent/RU2486957C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

Изобретение относится к катализаторам и их получению. Описан способ приготовления катализатора, включающий предварительную обработку инертного блочного носителя из Al-содержащей фольги посредством прокаливания при температуре (850-920)°С в токе воздуха в течение (12-15) часов, а затем нанесение при комнатной температуре на его поверхность промежуточного покрытия - модифицированного оксида алюминия из суспензии, включающей гидроксид алюминия, азотнокислый алюминий, цирконила дигидрофосфат, азотнокислый лантан, оксид циркония с преобладающим размером частиц (1-3) мкм и микроигольчатый волластонит - природный силикат кальция CaSiO3 с характеристическим отношением l:d=(12-20):1 при длине микроигл 1<20 мкм и воду, термообработку блока с промежуточным покрытием осуществляют в токе воздуха при температуре (620-650)°С с выдержкой (1,8-2,0) ч и последующее нанесение одного или нескольких каталитически активных металлов платиновой группы с последующим восстановлением в токе водорода при температуре (350-400°С) с выдержкой (5-6) ч, причем промежуточное покрытие наносят из суспензии, имеющей следующее соотношение компонентов, % масс.: гидроксид алюминия (псевдобемит) - (10,1-16,3), азотнокислый алюминий - (5,2-8,9), оксид циркония - (8,3-18,7), дигидрофосфат цирконила (0,3-0,8), азотнокислый лантан - (0,5-1,0) и микроигольчатый волластонит - природный силикат кальция CaSiO3 с характеристическим отношением l:d=(12-20):1 при длине микроигл 1<20 мкм - (1,1-2,9), вода - до 100. Описан катализатор, приготовленный указанным выше способом, включающий блочный металлический носитель, промежуточное покрытие из модифицированного оксида алюминия и нанесенную на пористую поверхность промежуточного покрытия активную фазу из благородных металлов платиновой группы, содержащий (9-20) масс.% модифицированного указанным выше образом Al2O3, имеющего удельную поверхность (120-140) м2/г, причем компоненты покрытия находятся в следующем массовом соотношении (%): оксид алюминия (38,4-61,0), оксид циркония (30,0-55,7), оксид лантана (0,8-1,2), цирконила дигидрофосфат (1,2-2,2), силикат кальция (3,1-7,4). Технический результат - повышение прочности, водостойкости и термостабильности полученного катализатора. 2 н. ф-лы, 2 табл., 9 пр.

Description

Изобретение относится к области газоочистки на объектах атомной энергетики, в частности к катализаторам окисления водорода в составе устройств удаления водорода из герметичных помещений атомных станций (далее - АЭС), и может быть использовано в системе обеспечения безопасности АЭС. Изобретение также может быть использовано в области получения катализаторов обезвреживания выхлопных газов автотранспорта и отходящих газов промышленных производств.
В условиях аварии в герметичном объеме возможно выделение водорода во взрывоопасных концентрациях. С целью предотвращения взрыва в помещениях АЭС, где вероятно накопление водорода, устанавливают каталитические рекомбинаторы водорода - устройства, позволяющие окислять водород на поверхности специального катализатора. Катализаторы - это вещества, изменяющие скорость реакций посредством многократного промежуточного химического взаимодействия с участниками реакций и не входящие в состав продуктов реакции. В результате каталитической реакции окисления водорода кислородом воздуха образуется водяной пар, а концентрация водорода в помещении снижается до безопасного уровня.
Из уровня техники известны катализаторы в составе устройств для удаления водорода из герметичных оболочек АЭС.
К таким устройствам относятся обогреваемые контактные аппараты (рекомбинаторы) с принудительной прокачкой газовой среды, содержащей водород, устанавливаемые за пределами герметичной зоны (Энергетика и электрификация. Серия: Атомная энергетика за рубежом. Выпуск 6. Каталитические и искровые воспламенители водорода. Москва, 1989, стр.15-20) [1].
Однако перечисленные устройства не являются пассивными и требуют принудительной подачи воздушного потока на очистку, то есть зависят от работы подключенного к ним электроснабжения и при авариях с длительным отключением электроснабжения они не работают.
С позиций надежности систем обеспечения безопасности несомненное преимущество имеют так называемые пассивные каталитические рекомбинаторы водорода (далее - ПКРВ). В них при контакте катализатора с воздухом, содержащим водород, реализуется экзотермическая реакция окисления водорода кислородом воздуха. Пассивные каталитические рекомбинаторы водорода содержат корпус с входным и выходным участками, в нижней части корпуса размещены каталитические элементы таким образом, чтобы не препятствовать продвижению газовоздушной смеси вверх к выходному отверстию, что и происходит за счет разности в плотности нагретого на катализаторе воздуха.
Известен катализатор для рекомбинации водорода в устройстве (сжигателе) пассивного типа: катализатор выполнен в виде стержней, изготовленных из материала катализатора, такого как платина, палладий, осмий, иридий, рутений, родий (авторское свидетельство №1779191, G21C 9/04, 1996) [2].
Недостатком этого катализатора и подобных ему в составе рекомбинатора является значительная вероятность возникновения пламенного горения и взрыва водородовоздушной смеси в процессе работы из-за значительного саморазогрева массивного рабочего элемента катализатора.
Известен катализатор в составе устройства для рекомбинации водорода и кислорода, содержащего вертикальный корпус с открытыми отверстиями для впуска и выпуска газа, размещенный в начальном участке корпуса на пути прохождения газа; катализатор выполнен в виде массивных тел, образующих множество параллельных каналов протекания газа (патент RU №2069582, G21C 9/06, 1996) [3].
Недостатком известного катализатора является то, что он работает в достаточно узком диапазоне концентрации водорода.
Известен также катализатор в составе пассивного рекомбинатора водорода и кислорода, имеющего корпус с входным и выходным участками и теплопроводящим каналом между ними; катализатор размещен в корпусе рекомбинатора на пути прохождения газовой смеси вдоль теплопроводящего канала (патент RU №2264853, G21C 9/06, 2005) [4].
Недостатком известного устройства является то, что катализатор характеризуется низкими каталитической активностью и устойчивостью к действию каталитических ядов.
Известны способ получения и катализатор в составе пассивного каталитического рекомбинатора водорода с входным и выходным участками; катализаторы размещены в нижней части корпуса, при этом катализатор получен гидротермальным синтезом путем осаждения гидроксида алюминия в суспензии наночастиц диоксида циркония, а катализатор состоит из нанодисперсного диоксида циркония и нанокомпозита, состоящего из аморфного оксида алюминия и нанодисперсного диоксида циркония в количестве 10-50 мас.% (патент RU №2360734, G21C 9/06, B01J 21/06, B01J 21/04, B82B 1/00, 2009) [5]. Указано также «внесение в состав катализатора благородных материалов платиновой группы в минимально необходимой концентрации».
При рассмотрении патента RU №2360734 следует учитывать очевидную упрощенность приведенной информации, а именно, в нем описаны получение и испытания катализатора из композита Al2O3-ZrO2, синтезированного гидротермально, в виде таблеток, компактированных сухим прессованием. Образец сравнения состава Al2O3-Co3O4-MnO2 также был подготовлен к испытаниям в виде таблеток сухим прессованием. Формирование катализатора в виде таблеток выполнено для сравнения его характеристик при окислении водорода и является очевидным упрощением, ограничивающим оценку эффективности его использования в составе пассивного рекомбинатора.
Между тем для эффективного использования катализатора в составе ПКРВ он должен быть сформирован в виде пластин, блоков сотовой структуры и т.п. или нанесен в виде покрытия на носители указанной формы, поскольку при пассивной рекомбинации (в условиях естественной конвекции) реакционная зона с катализатором должна характеризоваться минимальным аэродинамическим сопротивлением.
Для обеспечения этого требования целесообразным является формирование катализатора в виде покрытия на первичном металлическом носителе заданной формы (пластины, блоки с продольными каналами и иное). В этом случае крайне важным для обеспечения стабильности работы катализатора является возможность его формирования на поверхности первичного носителя в виде тонкослойного покрытия с высокой механической прочностью, т.е. устойчивостью к разрушению под воздействием каких-либо нагрузок (термических, механических, капельной влаги, повышенной влажности, в т.ч. капельной влаги и др.). Показатели прочности, водостойкости и термостойкости катализатора крайне важны, так как условия эксплуатации рекомбинаторов характеризуются резким разогревом катализатора от 20 вплоть до 500°C, повышенным содержанием паров воды, а также возможностью попадания на катализаторы аэрозолей спринклерных растворов, что при недостаточно высокой прочности закрепления катализатора на носителе приводит к его трещинам, отслоению и уносу из реакционной зоны. Последнее, в свою очередь, может привести к снижению степени рекомбинации водорода.
Для оценки прочности каталитического покрытия из композита гидротермального синтеза по примеру патента RU №2360734 была приготовлена высокодисперсная суспензия, из которой сформирован Al2O3-ZrO2-слой (14 масс.% от массы носителя - алюминиевой фольги 0,05 мм) методом многократного повторения операций «окунание пластины в суспензию - снятие излишков суспензии центрифугированием - термообработка при 650°C». Механическая прочность образца в виде каталитического покрытия, определенная как массовая доля уцелевшего (П, % масс.) покрытия после воздействия механических нагрузок (ударные нагрузки с помощью механической качалки 100 ударов в минуту 30 минут в присутствии свободно перемещающегося кварцевого песка), составила лишь П=52,3%.
Водостойкость (В) образца каталитического покрытия, определенная как массовая доля уцелевшего покрытия после воздействия погружения на 1 ч в воду и последующей дегидратации в течение 1 ч при (200±10)°С, составила лишь В=66% масс.
Для оценки устойчивости катализатора к термическим нагрузкам в условиях повышенной влажности (термостойкости) образец катализатора в виде покрытия был подвергнут термоциклированию: 10-кратному воздействию «выдержка 1 ч при 20°С и относительной влажности φ=0,99» - «выдержка 1 ч при 500°С» - с последующим определением механической прочности по вышеописанной методике. Индекс устойчивости катализатора к термическим нагрузкам ( И т / у ϕ )
Figure 00000001
, определенный как отношение значений механический прочности до (Писх=52,3% масс.) и после ( П т / ц ϕ = 44,5 % м а с с . )
Figure 00000002
термоциклирования, составил И т / у ϕ = 0,85
Figure 00000003
, т.е. значительно меньше 1. Еще одним показателем термостабильности каталитического покрытия является сопоставление величин удельной поверхности образца до и после термоциклирования.
Таким образом, недостатком известного [5] катализатора являются пониженные прочность, водостойкость и термостойкость катализаторов в условиях эксплуатации рекомбинаторов, характеризующихся резким разогревом катализатора вплоть до 500°C, а также возможностью попадания на катализаторы аэрозолей спринклерных растворов, что при недостаточно высокой прочности закрепления катализатора на носителе приводит к его трещинам, отслоению и уносу из реакционной зоны. Последнее, в свою очередь, может привести к снижению степени рекомбинации водорода.
Наиболее близкими способом приготовления катализатора и катализатором к заявляемым являются способ приготовления катализатора и катализатор, описанные в патенте [6] (РФ 2348457 С2, МПК B01J 37/025, B01J 23/63, B01D 53/94, опубл. 10.03.2008) (прототип).
По [6] с целью повышения прочности и термостабильности каталитического покрытия способ его приготовления включает: предварительную обработку инертного носителя, представляющего собой блок из Al-содержащей фольги, посредством прокаливания (12-15) часов при (850-920)°C в токе воздуха или кислорода для миграции Al и образования на поверхности фольги Al2O3 - центров адсорбции, значительно повышающих адгезию последующего промежуточного оксидного покрытия; нанесение на поверхность блока промежуточного покрытия из модифицированного оксида алюминия суспензионным методом при соотношении компонентов суспензии, % масс: гидроксид алюминия - (22-32), азотнокислый алюминий - (2-4), азотнокислый церий - (2-5), ортофосфорная кислота (1-2), цирконила дигидрофосфат (1-3), вода до 100; термообработку блока с промежуточным покрытием осуществляют при (620-650)°C с выдержкой (1,8-2) часа. Катализатор включает блочный металлический носитель, промежуточное покрытие из модифицированного оксида алюминия и нанесенную на пористую поверхность промежуточного покрытия активную фазу из благородных металлов платиновой группы; катализатор, содержащий (7-14) % масс. модифицированного оксида алюминия, имеющего удельную поверхность (120-130) м2/г, отличается тем, что модифицированный оксид алюминия дополнительно содержит алюминия фосфат и цирконила дигидрофосфат, а компоненты покрытия находятся в следующем массовом соотношении (%): оксид алюминия (89,7-71,4), оксид церия (3,5-9,7), алюминия фосфат (3,6-8,1), цирконила дигидрофосфат (3,2-10,9). Нанесение на промежуточное оксидное покрытие одного или нескольких каталитически активных металлов платиновой группы (Pt-Rh, Pt-Pd, Pt-Pd-Rh) проводят из водных растворов их солей с последующей сушкой блока при (100-120)°C и восстановлением водородом при ступенчатом подъеме температуры до (350-400)°C и выдержке 6 часов.
К недостаткам вышеописанного способа и получаемого катализатора, принятых за прототипы, следует отнести:
Во-первых, низкая водостойкость промежуточного покрытия вследствие его усадки при дегидратации нанесенной на металлический носитель суспензии и формирование напряженной структуры, склонной к растрескиванию в условиях повышенной влажности и термоударов, имеющих место при эксплуатации ПКРВ. В [6] не приведены оценки водостойкости покрытия. Для образца носителя, приготовленного в соответствии с примером, иллюстрирующим изобретение [6], по вышеописанным методикам определены водостойкость: она составила В=73% масс., а также прочность покрытия П=88,6% масс.
Во-вторых, сниженная термостойкость промежуточного покрытия (в условиях повышенной влажности и резкого повышения температуры) вследствие его усадки при дегидратации нанесенной на металлический носитель суспензии и формирования напряженной структуры, склонной к растрескиванию в условиях повышенной влажности и термоударов, имеющих место при эксплуатации ПКРВ. В [6] не приведены оценки термостойкости покрытия в условиях повышенной влажности. Для образца носителя, приготовленного в соответствии с примером, иллюстрирующим изобретение [6], определен по вышеописанной методике индекс термостойкости в условиях повышенной влажности: И т / у ϕ = 0,91
Figure 00000004
, что ниже 1 ( П т / ц ϕ = 80,6 % м а с с . )
Figure 00000005
. Величина удельной поверхности образца, после термоциклирования в условиях повышенной влажности по сравнению с исходным образцом также снизилась и составила 102 м2/г.
В-третьих, повышенная (66°C) температура «зажигания» приготовленного образца катализатора прототипа (0,3% масс Pd) по сравнению с требованиями к низкотемпературным катализаторам для пассивной рекомбинации водорода (которая не должна превышать 50°C), определенная в реакции окисления H2 на лабораторной проточной установке в условиях, указанных в [5] (исходная концентрация водорода (0,98±0,02) об.%; объемный расход газовой смеси в каталитическом реакторе V=1,8 с-1); определение каталитической активности образца прототипа - исходного (свежеприготовленного) и после термоциклирования показало повышение температуры достижения 90%-ной степени рекомбинации H2(X=90%): 142°C у исходного и 162°C - после термоциклирования.
Для устранения указанных недостатков был создан катализатор на основе композита Al2O3-La2O3-ZrO2-ZrO(H2PO4)2-CaSiO3 в виде тонкослойного промежуточного носителя с нанодисперсно распределенным на его поверхности палладием.
Техническим результатом заявляемого изобретения является создание низкотемпературного катализатора, устойчивого к разрушающим нагрузкам, - механическим, термическим и контакту с влагой - при высокой скорости окисления водорода в условиях естественной конвекции за счет повышенных прочности, водостойкости и термостойкости эффективного низкотемпературного катализатора, промотированного палладием, с температурой «зажигания» при окислении 1% об. водорода не выше 50°C.
Поставленная задача решается за счет способа приготовления катализатора, включающего предварительную обработку инертного блочного носителя из Al-содержащей фольги посредством прокаливания при температуре (850-920)°C в токе воздуха в течение (12-15) часов, а затем нанесение при комнатной температуре на его поверхность промежуточного покрытия - модифицированного оксида алюминия из суспензии, включающей гидроксид алюминия, азотнокислый алюминий, цирконила дигидрофосфат и воду, термообработку блока с промежуточным покрытием в токе воздуха и последующее нанесение одного или нескольких каталитически активных металлов платиновой группы; промежуточное покрытие наносят из суспензии, содержащей дополнительно азотнокислый лантан, оксид циркония с преобладающим размером частиц (1-3) мкм и микроигольчатый волластонит - природный силикат кальция CaSiO3 с характеристическим отношением l:d=(12-20):1 при длине микроигл l<20 мкм, при следующем соотношении компонентов в суспензии, % масс.: гидроксид алюминия (псевдобемит) - (10,1-16,3), азотнокислый алюминий - (5,2-8,9), оксид циркония - (8,3-18,7), дигидрофосфат цирконила (0,3-0,8), азотнокислый лантан - (0,5-1,0) и микроигольчатый волластонит - природный силикат кальция CaSiO3 с характеристическим отношением l:d=(12-20):1 при длине микроигл l<20 мкм - (1,1-2,9), вода - до 100; термообработку блока с промежуточным покрытием осуществляют при температуре (620-650)°C с выдержкой (1,8-2,0) ч.
Поставленная задача решается также за счет катализатора с повышенными прочностью, водостойкостью и термостабильностью. Катализатор включает блочный металлический носитель, промежуточное покрытие из модифицированного оксида алюминия и нанесенную на пористую поверхность промежуточного покрытия активную фазу из благородных металлов платиновой группы; катализатор, содержащий (9-20) масс.% модифицированного Al2O3, имеющего удельную поверхность (120-140) м2/г, отличается тем, что модифицированный оксид алюминия дополнительно содержит оксид лантана, оксид циркония и микроигольчатый волластонит - природный силикат кальция CaSiO3 с характеристическим отношением l:d=(12-20):1 при длине микроигл l<20 мкм, а компоненты покрытия находятся в следующем массовом соотношении (%): оксид алюминия (38,4-61,0), оксид циркония (30,0-55,7), оксид лантана (0,8-1,2), цирконила дигидрофосфат (1,2-2,2), силикат кальция (3,1-7,4).
Существенным отличием предлагаемого изобретения является использование при приготовлении катализатора для нанесения промежуточного покрытия - покрывной суспензии, представляющей собой водный раствор, в котором диспергировано от 10,1 до 16,3% масс. гидроксида алюминия AlO(OH), от 0,3 до 0,8% масс. дигидрофосфата цирконила и дополнительно от 8,3 до 18,7 оксида циркония ZrO2 с преобладающим размером частиц (1-3) мкм и от 1,1 до 2,9% масс. микроигольчатого волластонита - природного силиката кальция CaSiO3 с характеристическим отношением l:d=(12-20):1 при длине микроигл l<20 мкм, и растворено от 5,2 до 8,9% масс. азотнокислого алюминия Al(NO3)3 и дополнительно от 0,5 до 1,0% масс. азотнокислого лантана La(NO3)3 (вода - до 100% масс.).; суспензия, в отличие от прототипа, не содержит азотнокислый церий Ce(NO3)3. В известном уровне техники аналогичной совокупности ингредиентов покрывной суспензии с указанным массовым соотношением (%) не обнаружено и получение катализатора с повышенными показателями прочности, водостойкости и термостабильности обусловлено следующим:
Использование суспензии предлагаемого совокупного ингредиентного состава обеспечивает при нанесении на блок за один раз от 9 до 20% масс. промежуточного покрытия (в пересчете на дегидратированный модифицированный оксид алюминия), снижение усадки его при сушке-прокаливании и формирование ненапряженной структуры, не склонной к растрескиванию при термоударах и повышенных нагрузках и влажности, т.е. повышение прочности, водостойкости и термостабильности, в т.ч. в условиях повышенной влажности.
Дополнительное введение в покрывную суспензию от 8,3 до 18,7% масс. оксида циркония ZrO2 с преобладающим размером частиц (1-3) мкм - обеспечивает в совокупности ингредиентного состава упрочнение, водостойкость и термостабилизацию структуры покрытия за счет распределения частиц диоксида циркония в структурированной суспензии в качестве гетерофазной добавки, регулирующей взаимную упаковку частиц ее дисперсной фазы и создающей своеобразный «жесткий каркас» покрытия, способствующий при сушке-прокаливании снижению усадки покрытия, т.е. образованию менее напряженного и, следовательно, более прочного, водо- и термостойкого катализатора.
Дополнительное введение в покрывную суспензию от 8,3 до 18,7% масс. оксида циркония ZrO2 - в совокупности ингредиентного состава повышает, в качестве нестехиометрического оксида, активность каталитического покрытия в реакции окисления водорода, снижая температуру «зажигания» при его рекомбинации в условиях низких концентраций (начиная с 1% об.).
Дополнительное введение в покрывную суспензию от 1,1 до 2,9% масс. микроигольчатого волластонита - природного силиката кальция CaSiO3 с характеристическим отношением l:d-(12-20):1 при длине микроигл l<20 мкм - обеспечивает в совокупности ингредиентного состава упрочнение, водостойкость и термостабилизацию структуры покрытия за счет его армирования микроигольчатыми частицами и образования при сушке-прокаливании прочных и термостойких кристаллизационно-конденсационных контактов из продуктов взаимодействия поверхности частиц дисперсной фазы суспензии - гидроксида алюминия и силиката кальция - с раствором азотнокислого алюминия и азотнокислого лантана.
Дополнительное введение в покрывную суспензию 1,1 до 2,9% масс. микроигольчатого волластонита - природного силиката кальция CaSiO3 с характеристическим отношением l:d=(12-20):1 при длине микроигл l<20 мкм - обеспечивает повышение термостабильности не только модифицированного оксида алюминия, но и каталитических контактов, т.е. катализатора в целом, за счет формирования в совокупности всего ингредиентного состава при сушке-прокаливании покрытия энергетической неоднородности его поверхности, что повышает дисперсность распределения на ней каталитических контактов (нанесенных благородных металлов) и, препятствуя их миграции, уменьшает спекание при высокотемпературном воздействии.
Дополнительное введение в состав суспензии от 0,5 до 1,0% масс. азотнокислого лантана - оказывает, совместно с азотнокислым алюминием, пептизирующее (диспергирующее) воздействие на компоненты дисперсной фазы суспензии, образуя при гидролизе и взаимодействии с гидроксидом алюминия AlOOH (высокореакционно-способный псевдобемит) оксинитраты, обладающие, как известно, пластифицирующими и вяжущими свойствами, тем самым обеспечивая образование струкурированной вязкопластичной нерасслаивающейся суспензии, а при сушке-прокаливании после нанесения суспензии на металлический носитель - прочных и термостойких кристаллизационно-конденсационных контактов между частицами дисперсной фазы суспензии и оксидированной поверхностью металлического носителя.
Дополнительное введение в состав суспензии от 0,5 до 1,0% масс. азотнокислого лантана - повышает, в качестве известной термостабилизирующей добавки, термостойкость пористой структуры модифицированного оксида алюминия, образующегося из гидроксида алюминия при сушке-прокаливании суспензии, обеспечивая сохранение высокой удельной поверхности оксидного покрытия и высокодисперсного распределения активного компонента, т.е. высокой каталитической активности в условиях эксплуатации рекомбинатора.
Существенным отличием предлагаемого изобретения является также образование катализатора, содержащего промежуточное покрытие из модифицированного оксида алюминия составом, масс.%: оксид алюминия (38,4-61,0), оксид циркония (30,0-55,7), оксид лантана (0,8-1,2), цирконила дигидрофосфат (1,2-2,2), силикат кальция (3,1-7,4). В известном уровне техники аналогичной совокупности ингредиентов с указанным массовым соотношением (%) не обнаружено; получение катализатора с повышенными показателями прочности, водостойкости и термостойкости обусловлено: взаимодействием ингредиентов состава и микроигольчатого волластонита с образованием прочных кристаллизационно-конденсационных контактов между частицами модифицированного оксида алюминия и микроигольчатыми частицами волластонита; термостабилизирующим воздействием оксида лантана на фазовый состав и пористую структуру модифицированного оксида алюминия, формированием ненапряженной структуры каталитического покрытия, армированного микроигольчатыми частицами волластонита и частицами оксида циркония; а также энергетической неоднородностью его поверхности, повышающей дисперсность нанесенных благородных металлов, препятствующей их миграции и уменьшающей спекание при высокотемпературном воздействии.
Таким образом, заявляемая совокупность признаков является существенной и соответствует изобретательскому уровню.
В качестве инертного носителя используют свернутые в блок гофрированную и гладкую ленты из стальной фольги Х15Ю5, содержащей около 5% алюминия. Эту фольгу термообрабатывают при температуре (850-920)°C в токе воздуха в течение (12-15) часов. При этом происходит миграция атомов Al к поверхности ленты и окисление их до Al2O3. Образующийся на поверхности ленты оксид алюминия обеспечивает адгезию промежуточного покрытия к поверхности стальной фольги.
На обработанный таким образом первичный носитель наносят суспензионным методом промежуточное покрытие. Излишки суспензии отдувают сжатым воздухом в емкость с суспензией или центрифугируют. Температура суспензии - комнатная. После этого блок провяливают на воздухе в течение нескольких часов. Затем его сушат при температуре 100-120°C и прокаливают. Прокаливание проводят при температуре (620-650)°C с выдержкой 1,8-2,0 часа.
Суспензия представляет собой водный раствор, в котором диспергировано от 10,1 до 16,3% масс. гидроксида алюминия AlOOH, от 8,3 до 18,7% масс. оксида циркония ZrO2, от 0,3 до 0,8% масс. цирконила дигидрофосфата ZrO(H2PO4)2, от 1,1 до 2,9% масс. микроигольчатого волластонита - природного силиката кальция CaSiO3 с характеристическим отношением l:d=(12-20):1 при длине микроигл l<20 мкм; растворено от 5,2 до 8,9% масс. азотнокислого алюминия Al(NO3)3 и дополнительно от 0,5 до 1,0% масс. азотнокислого лантана La(NO3)3, вода - до 100%. Суспензия, в отличие от прототипа, не содержит азотнокислый церий и ортофосфорную кислоту.
Использование предлагаемой суспензии позволяет за один раз нанести на блочный носитель от 9 до 20% масс. промежуточного покрытия (в пересчете на дегидратированный модифицированный оксид алюминия).
После нанесения промежуточного покрытия его пропитывают водным раствором, содержащим H2PtCl6 и RhCl3 или PdCl2 и RhCl3 или H2PtCl6, PdCl2 и RhCl3.
После пропитки катализатор сушат и восстанавливают в токе водорода при ступенчатом подъеме температуры и выдержке при 350-400°C в течение (6-5) часов.
Выход за указанные параметры приводит к снижению механической прочности и термостабильности катализатора. Это связано с тем, что, во-первых, качественный и количественный состав суспензии напрямую связан с количеством и качеством наносимого промежуточного покрытия, а следовательно, и с дисперсностью и термостабильностью нанесенных каталитических контактов; во-вторых, указанные температурные и временные параметры обеспечивают формирование прочных межчастичных контактов и оптимальные фазовые и структурные характеристики промежуточного покрытия и катализатора.
Изобретение иллюстрируется следующим примером (таблица 1, образец 5.1). Для приготовления катализатора использовали блок из гофрированной фольги Х15Ю5 диаметром и высотой 20 мм. В прокалочной печи металлический блочный носитель прокаливали при температуре 900°С в токе воздуха. Длительность процесса составляла 12 часов. После охлаждения блок погружали в суспензию следующего состава, масс.%: гидроксид алюминия - 10,8, азотнокислый алюминий - 5,6, азотнокислый лантан - 0,5, оксид циркония -12,2, цирконила дигидрофосфат - 0,55, микроигольчатый волластонит - природный силикат кальция CaSiO3 с характеристическим отношением l:d=(12-20):1 при длине микроигл l<20 мкм - 1,5, вода - остальное. Затем блок вынимали из суспензии, излишки суспензии выдували воздухом из каналов блока и провяливали на воздухе около 5 часов. Далее блок высушивали при температуре (100-120)°C в течение 2 часов и прокаливали в токе воздуха при 635°C с выдержкой 2 часа. При отключенном нагреве блок охлаждался в печи до комнатной температуры, после чего по привесу блока определялась масса промежуточного покрытия, которая в данном случае составила 12,1 масс.%. Удельная поверхность покрытия составила 133 м2/г. Затем на промежуточное покрытие методом пропитки наносили активную фазу - металлы платиновой группы из расчета, масс.%: 0,1 - Pt и 0,2 - Rh. Для этого блок с промежуточным покрытием из модифицированного оксида алюминия пропитывали соответствующим количеством водного раствора хлорида палладия. Образец высушивали при температуре (100-120)°C и восстанавливали водородом в трубчатой печи при ступенчатом подъеме температуры до 400°C и выдержке при этой температуре в течение 5 часов.
В таблицах 1 и 2 приведены условия получения и характеристики образцов катализатора, приготовленных аналогично вышеописанному способу, используя заявляемый состав суспензии, % масс.: (10,1-16,3) гидроксида алюминия AlOOH, (8,3-18,7) оксида циркония ZrO2, (0,3-0,8) цирконила дигидрофосфата ZrO(H2PO4)2, (1,1-2,9) микроигольчатого волластонита - природного силиката кальция CaSiO3, (5,2-8,9) азотнокислого алюминия Al(NO3)3 и (0,5-1,0) азотнокислого лантана La(NO3)3, вода - до 100%.
В качестве активной фазы наносили аналогично вышеприведенному примеру:
0,3% масс. Pt (пример 2); 0,15% масс. Pt, 0,15% масс. Pd (пример 8);
0,3% масс. Pd - пример 9.
Полученные образцы разработанного катализатора испытывали по показателям: «Удельная поверхность» (S, м2/г) - методом низкотемпературной десорбции аргона по БЭТ.
«Механическая прочность» (П, масс.%) - по доле сохранившейся массы покрытия блока после воздействия ударных нагрузок с помощью механической качалки 100 ударов в минуту 30 минут в присутствии свободно перемещающегося кварцевого песка;
«Степень рекомбинации» (X, % отн.) - по степени превращения H2 в H2O на лабораторной проточной установке при рабочих условиях, аналогичных указанным в [5]: газовоздушная смесь - 1 об.%. H2, объемная скорость газового потока - 1,8 с-1; в качестве точек сравнения выбраны температуры (в °C): температура «зажигания» tзажиг и температура достижения 90%-ной степени превращения t90%.
«Термостойкость» оценивалась сопоставлением вышеуказанных характеристик исходных образцов катализатора и образцов после термоциклирования (500°C) в условиях повышенной влажности по вышеописанной методике.
«Индекс термостойкости» оценивался как «сохраняемость» в массовых долях характеристик прочности исходных образцов катализатора и образцов после термоциклирования (500°C) в условиях повышенной влажности по вышеописанной методике ( И т / у ϕ = П / П т / ц ϕ )
Figure 00000006
.
«Водостойкость» оценивалась как массовая доля уцелевшего покрытия после погружения на 1 ч в воду и последующей дегидратации 1 ч при (200±10)°C 1 ч.
Примеры 1 и 1.1., 3.2-3.4 иллюстрируют влияние продолжительности от 12 до 15 часов предварительной обработки инертного блочного носителя из Al-содержащей фольги посредством прокаливания при температуре (850-920)°C в токе воздуха. Увеличение продолжительности прокаливания от 12 до 15 часов при прочих равных условиях получения приводит:
примеры 1 и 1.1 (12 и 15 часов при температуре 850°C) к увеличению прочности покрытия (исходная - 94,6 и 97,3; после термоциклирования - 92,8 и 96,1% масс. соответственно) и обеспечению стабильно высоких показателей водостойкости покрытия (исходная - 98,9 и 99,1% масс. соответственно), примеры 3.2, 3.3 и 3.4 (12, 14 и 15 часов при температуре 920°C) к обеспечению стабильно высоких показателей прочности покрытия (исходная - 98,9, 99,1 и 99,5; после термоциклирования - 98,7, 98,8 и 99,2% масс. соответственно) и его водостойкости (исходная - 99,2, 99,0 и 99,3% масс. соответственно).
Примеры 3, 3.1, 3.2 и 4.2, 4.3 иллюстрируют влияние температуры прокаливания инертного блочного носителя. Увеличение температуры прокаливания от 850 до 920°C в течение 14 часов при прочих равных условиях получения катализатора приводит к обеспечению стабильно высоких показателей прочности покрытия и его водостойкости:
примеры 3, 3.1, 3.2 (850, 890 и 920°C): прочность исходная - 98,2, 98,4 и 98,9; прочность после термоциклирования - 97,9, 98,3 и 98,7% масс. соответственно; водостойкость исходная - 99,1, 99,1 и 99,2% масс. соответственно;
примеры 4.2 и 4.3 (890 и 920°C): прочность исходная - 99,4, 99,1; прочность после термоциклирования - 99,2 и 98,9% масс. соответственно; водостойкость исходная - 99,3, 99,1% масс. соответственно;
Примеры 4, 4.1, 4.2 иллюстрируют влияние температуры прокаливания блока с промежуточным покрытием. Температура прокаливания в интервале от 620 до 650°C в течение 2,0 ч при прочих равных условиях получения катализатора приводит к обеспечению стабильно высоких показателей прочности и водостойкости покрытия:
примеры 4, 4.1, 4.2 (620, 635 и 650°C): прочность исходная - 99,4, 99,2 и 99,4; прочность после термоциклирования - 99,2, 99,0 и 99,2% масс. соответственно, водостойкость исходная - 99,2, 99,2 и 99,3% масс., соответственно;
Примеры 2.1, 2.2 показывают, что временной интервал прокаливания блока с промежуточным покрытием в (1,8-2,0) ч при прочих равных условиях получения катализатора обеспечивает стабильно высокие, практически одинаковые показатели прочности и водостойкости покрытия:
1,8 и 2,0 ч, соответственно: прочность исходная - 99,3 и 99,3, прочность после термоциклирования - 99,1 и 99,2% масс. соответственно, исходная водостойкость 99,2 и 99,0,соответственно).
Примеры 2, 2.1 и 2.2, 2.3 показывают, что температурный интервал обработки блоков катализаторов при восстановлении в 350-400°C и временной интервал в 5-6 часов при прочих равных условиях получения катализатора обеспечивают стабильно высокие, практически одинаковые показатели прочности покрытия и его водостойкости:
примеры 2, 2.1 (350 и 400°C при продолжительности 6 часов): прочность исходная - 98,9 и 99,3; прочность после термоциклирования - 98,7 и 99,1% масс. соответственно; исходная водостойкость 99,0 и 99,2% масс. соответственно;
примеры 2.2, 2.3 (6 и 5 часов при 400°C): прочность исходная - 99,3 и 99,7; прочность после термоциклирования - 99,2 и 99,0% масс. соответственно, исходная водостойкость - 99,0 и 99,1% масс., соответственно.
Примеры 5, 5.1-5.6, 6 и 7 показывают влияние массовой доли ингредиентов в покрывной суспензии при прочих равных или близких условиях на состав получаемого покрытия и его свойства - механическую прочность, водостойкость, удельную поверхность, каталитическую активность и их термостойкость:
примеры 5.5 и 5.6 (12,8 и 15,8% масс. гидроксида алюминия, 7,6 и 5,2% масс. азотнокислого алюминия, 0,74 и 0,95% масс. азотнокислого лантана - при 15,1 и 15,5% масс. оксида циркония, 0,74 и 0,80% масс. цирконила дигидрофосфата, 2,6 и 2,8 волластонита, вода - до 100% масс.);
примеры 5.1 и 6 (12,2 и 17,2% масс. оксида циркония, 0,55 и 0,33% масс. цирконила дигидрофосфата, 0,5 и 0,8% масс. азотнокислого лантана и 1,5 и 2,4% масс. волластонита - при 10,8 и 10,1% масс. гидроксида алюминия, 5,6 и 5,2% масс. азотнокислого алюминия, вода-до 100% масс.);
примеры 5.3 и 5.4 (0,34 и 0,60% масс. цирконила дигидрофосфата, 0,67 и 0,80% масс. азотнокислого лантана, 1,1 и 1,6% масс. волластонита - при 10,4 и 10,7% масс. гидроксида алюминия, 5,5 и 5,6% масс. азотнокислого алюминия, 18,7, 17,6% масс. оксида циркония, вода - до 100% масс.);
примеры 4 и 7 (16,4 и 10,1% масс. оксида циркония, 0,8 и 0,4% масс. цирконила дигидрофосфата, 0,74 и 0,54% масс. азотнокислого лантана, 2,9 и 2,3% масс. волластонита - при 16,3 и 16,0% масс. гидроксида алюминия и 8,9 и 8,6% масс. азотнокислого алюминия, вода - до 100% масс.);
примеры 5 и 5.2 (8,3 и 14,3% масс. оксида циркония, 0,3 и 0,63% масс. цирконила дигидрофосфата при 11,4 и 10,1% масс. гидроксида алюминия, 6,0 и 5,3% масс. азотнокислого алюминия, 0,6 и 0,66% масс. азотнокислого лантана и 1,9 и 2,0% масс. волластонита, вода - до 100% масс.).
Примеры 2, 8 и 9 показывают, что введение в состав активной фазы катализатора палладия взамен платины при прочих равных условиях его получения обеспечивают стабильно высокие и близкие показатели каталитической активности в процессе окисления CO: пример 2-0,3% масс. Pt - у исходного образца температура «зажигания» в условиях испытаний tзажиг=39°C, а 90%-ная степень превращения H2 (t90%H2) достигается при 97°C, у образца после термоциклирования - 47 и 113°C, соответственно;
пример 8 - 0,15% масс. Pt, 0,15% масс. Pd - у исходного образца tзажиг=33°C в условиях испытаний, a t90%H2=97°C, у образца после термоциклирования - 45 и 111°C, соответственно;
пример 9 - 0,3% масс. Pd - у исходного образца tзажиг=35°C, a t90%H2=95°C, у образца после термоциклирования - 48 и 110°C, соответственно.
Измерения структурно-прочностных характеристик образцов примеров таблиц 1 и 2 показали, что все образцы катализатора, приготовленные заявляемым способом, имеют содержание (9-20% масс.) покрытия из модифицированного оксида алюминия, его ингредиентный состав (масс.%): оксид алюминия (38,4-61,0), оксид циркония - (30,0-55,7), оксид лантана (0,8-1,2), цирконила дигидрофосфат - (1,2-2,2), волластонита - силиката кальция (3,1-7,4) и удельную поверхность (120-140) м2/г в заявляемом интервале их значений и характеризуются повышенными показателями механической прочности - П=(94,6-99,9)% масс. по сравнению с 88,6% масс. у образца «прототипа»; повышенными по сравнению с «прототипом» показателями водостойкости В=(98,9-99,3)% масс. (у образца «прототипа» В=73% масс.); не уступающей «прототипу» каталитической активностью, характеризуемой tзажиг - от 35 до 44°C (у «прототипа» 66°C) и t90%H2=(94-98)°C (у «прототипа» 142°C); а также термостойкостью, оцениваемой сопоставлением показателей - исходных и после термоциклирования в условиях повышенной влажности, а именно, после термоциклирования: П т / ц ϕ = ( 92,8 99,8 ) % м а с с .
Figure 00000007
, S т / ц ϕ = ( 106 123 ) м 2 / г
Figure 00000008
, tзажиг=(40-49)°C, t90%H2=(103-117)°C, тогда как у образца «прототипа» эти показатели после термоциклирования составляют П т / ц ϕ = 80,6 % м а с с .
Figure 00000009
, S т / ц ϕ = 102 м 2 / г
Figure 00000010
, tзажиг=81°C и t90%H2=162°C, соответственно.
Figure 00000011
Figure 00000012
Таким образом, заявляемый способ позволяет существенно повысить механическую прочность, водостойкость и термостабильность катализатора за счет использования покрывной суспензии определенного состава, дополнительно содержащей оксид циркония, азотнокислый лантан, микроигольчатый волластонит - природный силикат кальция с характеристическим отношением l:d=(12-20):1 при длине микроигл l<20 мкм, и получить катализатор, обладающий высокой эффективностью в процессе окисления водорода для устройств его пассивной рекомбинации.

Claims (2)

1. Способ приготовления катализатора, включающий предварительную обработку инертного блочного носителя из Al-содержащей фольги посредством прокаливания при температуре 850-920°С в токе воздуха в течение 12-15 ч, а затем нанесение при комнатной температуре на его поверхность промежуточного покрытия - модифицированного оксида алюминия из суспензии, включающей гидроксид алюминия, азотно-кислый алюминий, цирконила дигидрофосфат и воду, термообработку блока с промежуточным покрытием осуществляют в токе воздуха при температуре 620-650°С с выдержкой 1,8-2,0 ч, и последующее нанесение одного или нескольких каталитически активных металлов платиновой группы с последующим восстановлением в токе водорода при температуре 350-400°С с выдержкой 5-6 ч, отличающийся тем, что промежуточное покрытие наносят из суспензии, содержащей дополнительно азотно-кислый лантан, оксид циркония с преобладающим размером частиц 1-3 мкм и микроигольчатый волластонит - природный силикат кальция CaSiO3 с характеристическим отношением l:d=(12-20):1 при длине микроигл l<20 мкм, при следующем соотношении компонентов в суспензии, мас.%: гидроксид алюминия (псевдобемит) 10,1-16,3, азотно-кислый алюминий 5,2-8,9, оксид циркония 8,3-18,7, дигидрофосфат цирконила 0,3-0,8, азотно-кислый лантан 0,5-1,0 и микроигольчатый волластонит - природный силикат кальция CaSiO3 с характеристическим отношением l:d=(12-20):1 при длине микроигл l<20 мкм 1,1-2,9, вода до 100.
2. Катализатор, приготовленный по п.1, включающий блочный металлический носитель, промежуточное покрытие из модифицированного оксида алюминия и нанесенную на пористую поверхность промежуточного покрытия активную фазу из благородных металлов платиновой группы, содержащий 9-20 мас.% модифицированного Al2O3, имеющего удельную поверхность 120-140 м2/г, включающего оксид алюминия, цирконила дигдрофосфат, отличающийся тем, что модифицированный оксид алюминия дополнительно содержит оксид лантана, оксид циркония и микроигольчатый волластонит - природный силикат кальция CaSiO3 с характеристическим отношением l:d=(12-20):1 при длине микроигл l<20 мкм, а компоненты покрытия находятся в следующем массовом соотношении (%): оксид алюминия 38,4-61,0, оксид циркония 30,0-55,7, оксид лантана 0,8-1,2, цирконила дигидрофосфат 1,2-2,2, силикат кальция 3,1-7,4.
RU2011153119/04A 2011-12-23 2011-12-23 Способ приготовления катализатора и катализатор окисления водорода для устройств его пассивной рекомбинации RU2486957C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011153119/04A RU2486957C1 (ru) 2011-12-23 2011-12-23 Способ приготовления катализатора и катализатор окисления водорода для устройств его пассивной рекомбинации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011153119/04A RU2486957C1 (ru) 2011-12-23 2011-12-23 Способ приготовления катализатора и катализатор окисления водорода для устройств его пассивной рекомбинации

Publications (1)

Publication Number Publication Date
RU2486957C1 true RU2486957C1 (ru) 2013-07-10

Family

ID=48788142

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011153119/04A RU2486957C1 (ru) 2011-12-23 2011-12-23 Способ приготовления катализатора и катализатор окисления водорода для устройств его пассивной рекомбинации

Country Status (1)

Country Link
RU (1) RU2486957C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1001023A (en) * 1961-01-05 1965-08-11 California Research Corp Preparation of 1-alkenes
JP2001011368A (ja) * 1999-07-01 2001-01-16 Otsuka Chem Co Ltd 不飽和ポリエステル樹脂系塗料及び塗装金属板
RU2169614C1 (ru) * 2000-03-31 2001-06-27 Научно-исследовательский физико-химический институт им. Л.Я. Карпова Способ приготовления катализатора и катализатор для очистки выхлопных газов двигателей внутреннего сгорания
RU2215578C2 (ru) * 2000-10-06 2003-11-10 Акцо Нобель Н.В. Носитель катализатора, способ его получения, суспензия для использования при его получении, катализатор и его применение для получения пероксида водорода
US20070259779A1 (en) * 2004-09-13 2007-11-08 Collier Paul J Catalyst Carrier Substrate Coated with Washcoat Comprising Fibrous Material
RU2348457C2 (ru) * 2007-03-28 2009-03-10 Общество с ограниченной ответственностью "Научно-производственная фирма "Катализаторы, сорбенты, носители-технологии" (ООО "КСН-технологии") Способ приготовления катализатора и катализатор для очистки выхлопных газов двигателей внутреннего сгорания

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1001023A (en) * 1961-01-05 1965-08-11 California Research Corp Preparation of 1-alkenes
JP2001011368A (ja) * 1999-07-01 2001-01-16 Otsuka Chem Co Ltd 不飽和ポリエステル樹脂系塗料及び塗装金属板
RU2169614C1 (ru) * 2000-03-31 2001-06-27 Научно-исследовательский физико-химический институт им. Л.Я. Карпова Способ приготовления катализатора и катализатор для очистки выхлопных газов двигателей внутреннего сгорания
RU2215578C2 (ru) * 2000-10-06 2003-11-10 Акцо Нобель Н.В. Носитель катализатора, способ его получения, суспензия для использования при его получении, катализатор и его применение для получения пероксида водорода
US20070259779A1 (en) * 2004-09-13 2007-11-08 Collier Paul J Catalyst Carrier Substrate Coated with Washcoat Comprising Fibrous Material
RU2348457C2 (ru) * 2007-03-28 2009-03-10 Общество с ограниченной ответственностью "Научно-производственная фирма "Катализаторы, сорбенты, носители-технологии" (ООО "КСН-технологии") Способ приготовления катализатора и катализатор для очистки выхлопных газов двигателей внутреннего сгорания

Similar Documents

Publication Publication Date Title
CN105188920B (zh) 具有改进的水热稳定性和nox转化率的nox储存催化剂
US9511353B2 (en) Firing (calcination) process and method related to metallic substrates coated with ZPGM catalyst
US8784759B2 (en) NOx storage catalyst with reduced Rh loading
US7341975B2 (en) Exhaust gas purification catalytic material and method for fabricating the same
JP6753811B2 (ja) 排ガス浄化用触媒
KR20170093899A (ko) 배기 시스템용 아산화질소 제거 촉매
CN112384292A (zh) 用于处理柴油发动机废气的scr催化剂
KR20200067216A (ko) 삼-방향 촉매 적용을 위한 로듐 지지체로서의 산화 니오븀-도핑된 물질
EP2579983B2 (en) Nox storage catalyst system with reduced rh loading
BR112019004067B1 (pt) Processo para preparar um catalisador de oxidação de metano e método de oxidação de metano
KR20230066347A (ko) 배기 가스 수소 풍부화를 통한 백금-함유 촉매의 성능 향상
Aguero et al. Influence of the support on MnOx metallic monoliths for the combustion of volatile organic compounds
RU2486957C1 (ru) Способ приготовления катализатора и катализатор окисления водорода для устройств его пассивной рекомбинации
RU2470708C2 (ru) Способ приготовления катализатора и катализатор окисления и очистки газов
Wahlberg et al. Preparation, evaluation and characterization of copper catalysts for ethanol fuelled diesel engines
US9789479B2 (en) Catalyst with highly annealed Pd layer
KR20210057775A (ko) 가솔린-천연 가스 응용 분야에서의 삼원 전환 촉매
JP2008062130A (ja) 酸素吸蔵材粒子を含有する排気ガス浄化用触媒
LÖÖ et al. TPD And XPS Studies of CO and NO on Highly Dispersed Pt+ Rh Automotive Exhaust Catalysts: Evidence for Noble Metal-Ceria Interaction
CN101874980B (zh) 过渡金属取代型六铝酸盐高温催化材料在漆包线废气处理中的应用
Wu et al. Preparation and catalytic properties of honeycomb catalyst for hydrogen isotope oxidation
RU2537300C1 (ru) Катализатор разложения озона и способ его приготовления
Almohamadi et al. Washcoat overlayer for improved activity and stability of natural gas vehicle monolith catalysts operating in the presence of H2O and SO2
EP1941945A2 (en) Catalyst for removing particulate matter and method using the same for removing particulate matter
JP6197052B2 (ja) 燃料改質触媒

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131224