RU2486666C1 - Кварцевый резонатор - Google Patents

Кварцевый резонатор Download PDF

Info

Publication number
RU2486666C1
RU2486666C1 RU2012113602/08A RU2012113602A RU2486666C1 RU 2486666 C1 RU2486666 C1 RU 2486666C1 RU 2012113602/08 A RU2012113602/08 A RU 2012113602/08A RU 2012113602 A RU2012113602 A RU 2012113602A RU 2486666 C1 RU2486666 C1 RU 2486666C1
Authority
RU
Russia
Prior art keywords
quartz
mhz
coefficient
electrodes
frequency
Prior art date
Application number
RU2012113602/08A
Other languages
English (en)
Inventor
Сергей Сергеевич Пашков
Ольга Владимировна Чернова
Павел Николаевич Шахов
Original Assignee
Открытое акционерное общество "Завод "Метеор" (ОАО "Завод "Метеор")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Завод "Метеор" (ОАО "Завод "Метеор") filed Critical Открытое акционерное общество "Завод "Метеор" (ОАО "Завод "Метеор")
Priority to RU2012113602/08A priority Critical patent/RU2486666C1/ru
Application granted granted Critical
Publication of RU2486666C1 publication Critical patent/RU2486666C1/ru

Links

Classifications

    • Y02B60/50

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

Изобретение относится к радиоэлектронике, а именно к кварцевым резонаторам, являющимся основой высокостабильных генераторов, применяемых в устройствах стабилизации частоты, в связной аппаратуре и навигационной аппаратуре. Технический результат - снижение относительной спектральной плотности мощности фазовых шумов, увеличение пределов перестройки частоты резонатора, улучшение стабильности частоты резонатора. Предложенный кварцевый резонатор SC-среза, изготовленный по 3-й механической гармонике на частоты от 40 МГц до 100 МГц, содержит кварцевую пластину, заключенную между электродами, геометрические размеры кварцевой пластины и электродов определены заданными соотношениями. 5 з.п. ф-лы, 2 ил., 2 табл.

Description

Область техники
Изобретение относится к радиоэлектронике, а именно к кварцевым резонаторам, являющимися основой высокостабильных кварцевых генераторов.
Предшествующий уровень техники
Одной из проблем, возникающих при изготовлении высокостабильных кварцевых генераторов, является высокая относительная спектральная плотность мощности фазовых шумов - в дальнейшем относительная СПМ фазовых шумов кварцевых резонаторов.
Величина относительной СПМ фазовых шумов кварцевых резонаторов зависит от многих факторов: частоты резонатора (толщины кварцевой пластины); качества применяемого кварца; качества обработки поверхности пластины; качества электродов (шумы с поверхности раздела между электродом и кварцевой пластиной, неоднородности по толщине электрода, подпыление материала электродов на их краях); влияния монтажной системы; наличия загрязнений на поверхности пьезоэлемента; качества газа внутри корпуса; качества герметизации [И.К.Йонг, Дж.Р.Виг «Загрязнение поверхности резонатора - причина флуктуации частоты?». Материалы 42 Симпозиума по стабилизации частоты, США, 1988 г., стр.397; Gagnepain J. Fundamental noise studies of quartz crystal resonators, 30 Annual Frequency Control Symposium. 1976, p.84; Carlson E.E., Wickard T. A study on the measured correlation of drive level dependency and phase noise of quartz crystal resonators. 55 Annual Frequency Control Symposium. 2001. p.338].
Существует неоднозначное мнение относительно взаимосвязи между относительной СПМ фазовых шумов и величиной площади электродов кварцевого пьезоэлемента. Авторы работы [И.К.Йонг, Дж.Р.Виг «Загрязнение поверхности резонатора - причина флуктуации частоты?». Материалы 42 Симпозиума по стабилизации частоты, США, 1988 г., стр.397] утверждают, что при уменьшении электродов относительная СПМ фазовых шумов увеличивается, а в работе [Gagnepain J. Fundamental noise studies of quartz crystal resonators. 30 Annual Frequency Control Symposium. 1976. p.84] приведены данные об уменьшении относительной СПМ фазовых шумов при уменьшении площади электродов.
В заявке 2009110644 RU, опубликованной 27.10.2009 для кварцевых резонаторов, содержащих металлические электроды и заключенную между ними пластину пьезоэлемента, с целью уменьшения относительной СПМ фазовых шумов выбрано отношение диаметра электрода к толщине пластины пропорциональным десятичному логарифму частоты резонатора в мегагерцах. При этом для резонаторов SC-среза коэффициент пропорциональности выбирается равным 13 с допуском ±5%.
Следовательно, показано, что для резонаторов SC-среза [В.А.Мостяев, В.И.Дюжиков «Технология пьезо- и акустоэлектронных устройств. - М., Ягуар, 1993 г., с.280] относительная СПМ фазовых шумов зависит не только от величины площади электродов, но и от толщины пластины, а также от соотношения величин площади электродов и толщины пластины.
Предложенное условие соотношения геометрических размеров элементов кварцевого резонатора позволило уменьшить относительную СПМ фазовых шумов в полосе анализа 1 Гц при отстройке от несущей 100 Гц, но при этом не достигается оптимизация эквивалентного сопротивления и индуктивности, так как они могут увеличиваться, одновременно уменьшая перестройку частоты.
Раскрытие изобретения
Техническим результатом предложенного кварцевого резонатора SC-среза, изготовленного по 3-й механической гармонике на частоты f от 40 МГц до 100 МГц, является снижение относительной спектральной плотности мощности фазовых шумов (далее - относительная СПМ фазовых шумов) при оптимальных величинах эквивалентного сопротивления (R1) и эквивалентной индуктивности (L1) резонатора, увеличение пределов перестройки частоты резонатора в схеме генератора, улучшение стабильности частоты резонатора, уменьшение трудоемкости изготовления, увеличение процента выхода годных и снижение стоимости изделия.
В соответствии с изобретением технический результат достигается тем, что предложенный кварцевый резонатор SC-среза, изготовленный по 3-й механической гармонике на частоты f от 40 МГц до 100 МГц, содержит кварцевую пластину пьезоэлемента, заключенную между электродами. Определены соотношения геометрических размеров кварцевой пластины и электродов, изменяющиеся в следующих диапазонах значений. Так, отношение диаметра Dэ, мм, каждого из электродов к толщине tпл, мм, кварцевой пластины равно коэффициенту пропорциональности K1, мм, изменяющемуся от 18 до 26; отношение толщины tэ, мм, каждого из электродов к толщине tпл, мм, кварцевой пластины, умноженное на десять в третьей степени, равно коэффициенту пропорциональности К2, мм, изменяющемуся от 1,58 до 4,0; диаметр Dпл, мм, кварцевой пластины не менее чем в 2,5 раза превышает диаметр Dэ, мм, электрода.
Существенное отличие предложенного нового кварцевого резонатора основано на выборе оригинальных соотношений геометрических размеров кварцевой пластины и электродов, являющихся фундаментальным условием достижения заявленного технического результата.
Предложенное решение весьма актуально, так как выяснено, что при уменьшении величины диаметра электродов относительная СПМ фазовых шумов уменьшается, но одновременно увеличиваются эквивалентное сопротивление (R1) и эквивалентная индуктивность (L1) резонаторов. При этом, начиная с некоторой величины электродов, при их дальнейшем уменьшении относительная СПМ фазовых шумов уменьшается незначительно, а величины R1 и L1 возрастают в разы. Это приводит к ухудшению стабильности частоты резонаторов и генераторов и резкому уменьшению пределов перестройки частоты резонаторов в схеме генераторов. Уменьшение перестройки частоты резонатора приводит к ужесточению допуска на точность его настройки, а следовательно, к увеличению трудоемкости изготовления, к уменьшению процента выхода годных, к значительному росту стоимости.
При увеличении диаметра электродов относительная СПМ фазовых шумов увеличивается. Начиная с некоторой величины диаметра электродов, значительно увеличивается величина близлежащих негармонических колебаний сдвига по толщине и влияние монтажной системы резонатора на колебания на рабочей частоте. В результате появляются перескоки частоты на паразитные колебания, ухудшаются температурно-частотные характеристики, механическая устойчивость резонатора и его долговременная стабильность.
Уменьшение толщины электродов эквивалентно увеличению их диаметра. Начиная с некоторой величины, также наблюдается ухудшение вышеперечисленных параметров резонаторов.
Увеличение толщины электродов эквивалентно уменьшению их диаметра. Пределы перестройки частоты резонаторов уменьшаются, величины R1 и L1 увеличиваются. Кроме того, происходит увеличение амплитуды близлежащих колебаний сдвига по толщине, что приводит к перескокам частоты резонатора в интервале температур.
Предложенные нами оригинальные соотношения геометрических размеров кварцевой пластины и электродов позволили исключить описанные выше последствия для параметров резонаторов при несогласованных изменениях диаметров и толщин как кварцевой пластины, так и каждого из электродов. Коэффициенты K1 и K2 зависят от частоты f. Нами выяснены диапазоны изменения коэффициентов K1 и K2 внутри рекомендуемого диапазона частот. Уменьшение отношения Dпл к Dэ менее 2,5 эквивалентно увеличению диаметра электродов или уменьшению их толщины, относительная СПМ фазовых шумов увеличивается, а остальные характеристики резонаторов ухудшаются.
Технический результат достигается также тем, что в диапазоне частот, f, от 40 МГц до 50 МГц коэффициент K1 имеет значения не менее 18 и не более 20, а коэффициент K2 имеет значения не менее 1,58 и не более 2,0,
Технический результат достигается также тем, что в диапазоне частот, f, свыше 50 МГц до 60 МГц имеются значения коэффициента K1 более 20 и не более 22, а коэффициента K2 более 2,0 и не более 2,38.
Технический результат достигается также тем, что в диапазоне частот, f, свыше 60 МГц до 70 МГц имеются значения коэффициента K1 более 22 и не более 24, а коэффициента K2 более 2,38 и не более 2,77.
Технический результат достигается также тем, что в диапазоне частот, f, свыше 70 МГц до 85 МГц имеются значения коэффициента K1 более 24 и не более 25, а коэффициента K2 более 2,77 и не более 3,3.
Технический результат достигается также тем, что в диапазоне частот, f, свыше 85 МГц до 100 МГц имеются значения коэффициента K1 более 25 и не более 26, а коэффициента K2 более 3,38 и не более 4,0.
Анализ патентных материалов и технической литературы показал, что совокупность представленных существенных отличительных признаков изобретения нова, обладает изобретательским уровнем.
Технологическая реализация предложенных в настоящем изобретении оригинальных соотношений параметров электродов и кварцевой пластины основана на известных базовых технологических процессах, которые к настоящему времени хорошо разработаны и широко применяются. Предложение удовлетворяет критерию «промышленная применимость».
Краткое описание чертежей
Настоящее изобретение поясняется фигурами 1 и 2.
На фиг.1 схематически изображен вид сверху предложенного пьезоэлемента кварцевого резонатора SC-среза.
На фиг.2 схематически изображено поперечное сечение предложенного пьезоэлемента кварцевого резонатора SC-среза.
Осуществление изобретения
В дальнейшем изобретение поясняется конкретными вариантами его выполнения со ссылками на прилагаемые чертежи. Приведенные примеры модификаций кварцевого резонатора не являются единственными и предполагают наличие других реализаций (в том числе в известных диапазонах длин волн), особенности которых отражены в совокупности признаков формулы изобретения.
Пример 1. Для кварцевого резонатора (см. фиг.1 и 2) на частоту 84 МГц была выбрана кварцевая пластина 1 диаметром Dпл, равным 5,0(±0,05) мм, пьезоэлемента 2 и шлифовкой с последующей полировкой ее толщина tпл доведена до 0,062(±0,001) мм. Методом вакуумного напыления нанесены одинаковые серебряные электроды 3 диаметром Dэ, равным 1,5(±0,05) мм, и толщиной tэ, равной 0,21×10-3(±5%) мм. В данном случае отношение Dэ к tпл, а именно коэффициент пропорциональности K1 равен 24,2, т.е. удовлетворяет диапазону 24…25 для K1. Отношение tэ к tпл, умноженное на 103, а именно коэффициент пропорциональности K2 равен 3,22, т.е. удовлетворяет диапазону 12,77…3,88 для K2. Кроме того, отношение Dпл к Dэ равно 3,3, т.е. больше, чем 2,5.
В таблице 1 приведены примеры зависимости относительной СПМ фазовых шумов, эквивалентного сопротивления R1 и эквивалентной индуктивности L1 от соотношения Dэ к tпл, равного K1, для кварцевых резонаторов на частоту 84 МГц.
В данном случае величина K1 равна 24,2.
При ее уменьшении до 15,2 относительная СПМ фазовых шумов изменяется на -3 дБ/Гц от -130 дБ/Гц до -133 дБ/Гц. Величина эквивалентного сопротивления увеличивается от 48 Ом до 85 Ом, а величина эквивалентной индуктивности - от 15 мГн до 38 мГн.
При увеличении K1 от 24,2 до 39,3 относительная СПМ фазовых шумов изменяется от -130 дБ/Гц до -102 дБ/Гц, т.е. почти на 30 дБ/Гц, эквивалентное сопротивление R1 уменьшается от 48 Ом до 35 Ом, а эквивалентная индуктивность L1 также уменьшается от 15 мГн до 9 мГн. Таким образом, изменение относительной СПМ фазовых шумов значительно превышает изменение R1 и L1.
Зависимость относительной СПМ фазовых шумов R1 и L1 от величины K1 получена при величине K2 равной t э t п л 10 3 = 3,22
Figure 00000001
. Отклонение от этой величины более чем ±25% приводит к изменению относительной СПМ фазовых шумов на 5…8 дБ/Гц.
Величина отношения Dпл к Ds на частоте 84 МГц равняется 3,3.
Как было показано ранее, величины коэффициентов K1 и K2 зависят от частоты резонатора. Для упрощения изготовления определены конкретные величины коэффициентов K1 и K2 внутри рекомендуемого диапазона частот, которые приведены в таблице 2.
Выполнение соотношения Dпл к Dэ не менее 2,5 зависит от габаритных размеров резонатора.
Пример 2. Для кварцевого резонатора на частоту 45 МГц была выбрана кварцевая пластина 1 диаметром Dпл, равным 5,5(±0,05) мм, пьезоэлемента 2 и толщиной tпл, равной 0,117(±0,001) мм. Нанесены одинаковые серебряные электроды 3 диаметром Dэ, равным 2,2(±0,05) мм, и толщиной tэ, равной 0,2×10-3(±5%) мм. В данном случае отношение Dэ к tпл равно 18,8, т.е. удовлетворяет диапазону не менее 18 и не более 20 для K1. Отношение tэ к tпл, умноженное на 103, равно 1,71, т.е. удовлетворяет диапазону не менее 1,58 и не более 2,0 для K2. Кроме того, отношение Dпл к Dэ равно 2,5. В результате получены оптимальные величины эквивалентной индуктивности, эквивалентного сопротивления и низкие значения относительной СПМ фазовых шумов. Средние значения в партии резонаторов, соответственно, равны L1=46,7 мГн, R1=58,0 Ом, относительная СПМ фазовых шумов: -130,1 дБ/Гц при отстройке 100 Гц; -151,5 дБ/Гц при отстройке 1000 Гц; -161,2 дБ/Гц при отстройке 10000 Гц.
Пример 3. Для кварцевого резонатора на частоту 55 МГц была выбрана кварцевая пластина 1 диаметром Dпл, равным 5,5(±0,05) мм, пьезоэлемента 2 и толщиной tпл, равной 0,096(±0,001) мм. Нанесены одинаковые серебряные электроды 3 диаметром Dэ, равным 2,0(±0,05) мм, и толщиной tэ, равной 0,2×10-3(±5%) мм. В данном случае отношение Dэ к tпл равно 20,8, т.е удовлетворяет диапазону более 20 и не более 22 для K1. Отношение tэ к tпл, умноженное на 103, равно 2,08, т.е. удовлетворяет диапазону более 2,0 и не более 2,38 для K2. Кроме того, отношение Dпл к Dэ равно 2,75, т.е. больше 2,5. В результате получены оптимальные величины эквивалентной индуктивности, эквивалентного сопротивления и низкие значения относительной СПМ фазовых шумов. Средние значения в партии резонаторов, соответственно, равны L1=36,3 мГн, R1=48,1 Ом, относительная СПМ фазовых шумов: -130,2 дБ/Гц при отстройке 100 Гц; -151,7 дБ/Гц при отстройке 1000 Гц; -162,3 дБ/Гц при отстройке 10000 Гц.
Пример 4. Для кварцевого резонатора на частоту 65 МГц была выбрана кварцевая пластина 1 диаметром Dпл, равным 5,5(±0,05) мм, пьезоэлемента 2 и толщиной tпл, равной 0,08(±0,001) мм. Нанесены одинаковые серебряные электроды 3 диаметром Dэ, равным 1,9(±0,05) мм, и толщиной tэ, равной 0,2×10-3(±5%) мм. В данном случае отношение Dэ к tпл равно 23,7, т.е. удовлетворяет диапазону более 22 и не более 24 для K1. Отношение tэ к tпл, умноженное на 103, равно 2,62, т.е. удовлетворяет диапазону более 2,38 и не более 2,77 для K2. Кроме того, отношение Dпл к Dэ равно 2,9, т.е. больше, чем 2,5. В результате получены оптимальные величины эквивалентной индуктивности, эквивалентного сопротивления и низкие значения относительной СПМ фазовых шумов. Средние значения в партии резонаторов, соответственно, равны L1=19,2 мГн, R1=50,2 Ом, относительная СПМ фазовых шумов: -131,0 дБ/Гц при отстройке 100 Гц; -150,3 дБ/Гц при отстройке 1000 Гц; -161,2 дБ/Гц при отстройке 10000 Гц.
Пример 5. Для кварцевого резонатора на частоту 95 МГц была выбрана кварцевая пластина 1 диаметром Dпл, равным 5,0(±0,05) мм, пьезоэлемента 2 и толщиной tпл, равной 0,056(±0,001) мм. Нанесены одинаковые серебряные электроды 3 диаметром Dэ, равным 1,4(±0,05) мм, и толщиной tэ, равной 0,19×10-3(±5%) мм. В данном случае отношение Dэ к tпл равно 25, т.е удовлетворяет диапазону более 25 и не более 26 для K1. Отношение tэ к tпл, умноженное на 103, равно 3,39, т.е. удовлетворяет диапазону более 3,38 и не более 4,0 для K2. Кроме того, отношение Dпл к Dэ равно 3,57, т.е. больше, чем 2,5. В результате получены оптимальные величины эквивалентной индуктивности, эквивалентного сопротивления и низкие значения относительной СПМ фазовых шумов. Средние значения в партии резонаторов, соответственно, равны L1=13,6 мГн, R1=49,3 Ом, относительная СПМ фазовых шумов: -129,1 дБ/Гц при отстройке 100 Гц; -148,7 дБ/Гц при отстройке 1000 Гц; -160,0 дБ/Гц при отстройке 10000 Гц.
Предложенные кварцевые резонаторы позволили получить низкие значения относительной СПМ фазовых шумов при оптимальных величинах эквивалентного сопротивления (R1) и эквивалентной индуктивности (L1) резонатора. Увеличиваются также пределы перестройки частоты резонатора в схеме генератора, улучшается стабильность частоты резонатора, уменьшается трудоемкость изготовления, увеличивается процент выхода годных и снижается стоимость изделия.
Промышленная применимость
Кварцевые резонаторы используются в высокостабильных кварцевых генераторах, применяемых в устройствах стабилизации частоты, в связной аппаратуре и навигационной аппаратуре.
Таблица 1
Dэ/tпл=K1, ед. 15,2 20,3 24,2 29 35,1 39,3
Относительная СПМ фазовых шумов при отстройке от несущей частоты 100 Гц, дБ/Гц -133 -132 -130 -122 -113 -102
Эквивалентное сопротивление R1, Ом 85 71 48 42 38 35
Эквивалентная индуктивность L1, мГн 38 26 15 12 10 9
Таблица 2
Диапазон частот, МГц от 40 до 50 св. 50 до 60 св. 60 до 70 св. 70 до 85 св. 85 до 100
Величина коэффициента K1, ед. от 18 до 20 св. 20 до 22 св. 22 до 24 св. 24 до 25 св. 25 до 26
Величина коэффициента K2, ед. от 1,58 до 2,0 св. 2,0 до 2,38 св. 2,38 до 2,77 св. 2,77 до 3,38 св. 3,38 до 4,0

Claims (6)

1. Кварцевый резонатор SC-среза, изготовленный по 3-й механической гармонике на частоты f от 40 МГц до 100 МГц, содержащий кварцевую пластину, заключенную между электродами, отличающийся тем, что диапазоны соотношений геометрических размеров кварцевой пластины и электродов определены следующими, так отношение диаметра DЭ, мм, каждого из электродов к толщине tпл, мм, кварцевой пластины равно коэффициенту пропорциональности K1, изменяющемуся в диапазоне значений от 18 до 26, отношение толщины tэ, мм, каждого из электродов к толщине tпл, мм, кварцевой пластины умноженное на десять в третьей степени равно коэффициенту пропорциональности К2, мм, изменяющемуся в диапазоне значений от 1,58 до 4,0, а диаметр Dпл, мм, кварцевой пластины не менее чем в 2,5 раза превышает диаметр DЭ, мм, электрода.
2. Кварцевый резонатор по п.1, отличающийся тем, что в диапазоне частот, f, от 40 МГц до 50 МГц коэффициент K1 имеет значения не менее 18 и не более 20, а коэффициент К2 имеет значения не менее 1,58 и не более 2,0.
3. Кварцевый резонатор по п.1, отличающийся тем, что в диапазоне частот, f, свыше 50 МГц до 60 МГц имеются значения коэффициента K1 более 20 и не более 22, а коэффициента К2 более 2,0 и не более 2,38.
4. Кварцевый резонатор по п.1, отличающийся тем, что в диапазоне частот, f, свыше 60 МГц до 70 МГц имеются значения коэффициента K1 более 22 и не более 24, а коэффициента К2 более 2,38 и не более 2,77.
5. Кварцевый резонатор по п.1, отличающийся тем, что в диапазоне частот, f, свыше 70 МГц до 85 МГц, имеются значения коэффициента K1 более 24 и не более 25, а коэффициента К2 более 2,77 и не более 3,38.
6. Кварцевый резонатор по п.1, отличающийся тем, что в диапазоне частот, f, свыше 85 МГц до 100 МГц имеются значения коэффициента K1 более 25 и не более 26, а коэффициента К2 более 3,38 и не более 4,0.
RU2012113602/08A 2012-04-09 2012-04-09 Кварцевый резонатор RU2486666C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012113602/08A RU2486666C1 (ru) 2012-04-09 2012-04-09 Кварцевый резонатор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012113602/08A RU2486666C1 (ru) 2012-04-09 2012-04-09 Кварцевый резонатор

Publications (1)

Publication Number Publication Date
RU2486666C1 true RU2486666C1 (ru) 2013-06-27

Family

ID=48702446

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012113602/08A RU2486666C1 (ru) 2012-04-09 2012-04-09 Кварцевый резонатор

Country Status (1)

Country Link
RU (1) RU2486666C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU313286A1 (ru) * Сверхвысокочастотный кварцевый резонатор
US6274964B1 (en) * 1997-12-16 2001-08-14 Murata Manufacturing Co., Ltd. Piezoelectric resonator
US6525449B1 (en) * 1997-12-04 2003-02-25 Murata Manufacturing Co., Ltd. Piezoelectric resonator utilizing a harmonic in a thickness-extensional vibration mode
RU2246791C1 (ru) * 2003-09-08 2005-02-20 Мацак Андрей Николаевич Пьезоэлектрический резонатор
RU2334353C1 (ru) * 2007-06-29 2008-09-20 Николай Дмитриевич Дронов-Дувалджи Пьезоэлектрический резонатор

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU313286A1 (ru) * Сверхвысокочастотный кварцевый резонатор
US6525449B1 (en) * 1997-12-04 2003-02-25 Murata Manufacturing Co., Ltd. Piezoelectric resonator utilizing a harmonic in a thickness-extensional vibration mode
US6274964B1 (en) * 1997-12-16 2001-08-14 Murata Manufacturing Co., Ltd. Piezoelectric resonator
RU2246791C1 (ru) * 2003-09-08 2005-02-20 Мацак Андрей Николаевич Пьезоэлектрический резонатор
RU2334353C1 (ru) * 2007-06-29 2008-09-20 Николай Дмитриевич Дронов-Дувалджи Пьезоэлектрический резонатор

Similar Documents

Publication Publication Date Title
US20170366159A1 (en) Bulk acoustic wave resonator having a plurality of compensation layers and duplexer using same
US9800225B2 (en) Elastic wave device
US11750170B2 (en) Guided SAW device
JP2001244778A (ja) 高周波圧電振動子
US4211947A (en) Thickness-shear mode quartz oscillator with an added non-circular mass
US4114062A (en) Thickness shear resonator for use as an over-tone quartz crystal
JP2007158486A (ja) 水晶振動素子、水晶振動子、及び水晶発振器
JP3622202B2 (ja) 弾性表面波装置の温度特性調整方法
US3128397A (en) Fork-shaped quartz oscillator for audible frequency
JP2007281701A (ja) 弾性表面波装置の製造方法、及び弾性表面波装置
US8242666B2 (en) Contour resonator and method for adjusting contour resonator
RU2486666C1 (ru) Кварцевый резонатор
US11031539B2 (en) Piezoelectric vibrator and sensor
JP2006108949A (ja) 水晶振動子
JP2013258452A5 (ru)
JP3456213B2 (ja) 矩形状atカット水晶片、水晶振動体および水晶振動子
TWI747636B (zh) 彈性波元件
JPH0157521B2 (ru)
JP2001326554A (ja) 圧電振動子
JPH0888536A (ja) オーバートーン矩形水晶振動子
Wuthrich et al. Batch fabrication of AT-cut crystal resonators up to 200 MHz
JP7265384B2 (ja) 周波数ディップ発生温度調整方法
JP3279054B2 (ja) 厚みすべり水晶振動子の製造方法
US20220385269A1 (en) Crystal unit, semimanufactured crystal unit, and method for manufacturing crystal unit
JP2884568B2 (ja) 矩形状atカット水晶振動子の製造方法