RU2483003C2 - Силовая конструкция пилона подвески - Google Patents

Силовая конструкция пилона подвески Download PDF

Info

Publication number
RU2483003C2
RU2483003C2 RU2010143736/11A RU2010143736A RU2483003C2 RU 2483003 C2 RU2483003 C2 RU 2483003C2 RU 2010143736/11 A RU2010143736/11 A RU 2010143736/11A RU 2010143736 A RU2010143736 A RU 2010143736A RU 2483003 C2 RU2483003 C2 RU 2483003C2
Authority
RU
Russia
Prior art keywords
design
turbojet engine
aircraft
central plate
wing
Prior art date
Application number
RU2010143736/11A
Other languages
English (en)
Other versions
RU2010143736A (ru
Inventor
Жан-Бернар ВАШ
Original Assignee
Эрсель
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эрсель filed Critical Эрсель
Publication of RU2010143736A publication Critical patent/RU2010143736A/ru
Application granted granted Critical
Publication of RU2483003C2 publication Critical patent/RU2483003C2/ru

Links

Images

Classifications

    • B64D27/40
    • B64D27/402
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Abstract

Изобретение относится к области авиации, более конкретно к воспринимающей нагрузки конструкции (101) пилона подвески, предназначенного для крепления турбореактивного двигателя к крылу летательного аппарата. Конструкция содержит первый боковой блок (102) и второй боковой блок (103), прикрепляемые к крылу летательного аппарата, и крепежный элемент, прикрепляемый к турбореактивному двигателю, причем указанные боковые блоки (102, 103) охватывают центральную пластину (104), по существу, удлиненную вдоль главной оси (105) указанной конструкции (101). Пластина (104) соединена с указанным крепежным элементом и изготовлена из металла или сплава, способного выдерживать температуру по меньшей мере в 1000°C в течение периода времени, равного по меньшей мере 15 минутам. Технический результат заключается в увеличении устойчивости к нагрузкам несущей конструкции. 2 н. и 10 з.п. ф-лы, 6 ил.

Description

Настоящее изобретение относится к воспринимающей нагрузки конструкции пилона подвески, предназначенного для крепления турбореактивного двигателя к крылу летательного аппарата.
Назначение пилона подвески состоит в том, чтобы обеспечить соединение между турбореактивным двигателем и крылом летательного аппарата. В связи с этим, первым концом пилон подвески прикреплен к турбореактивному двигателю посредством заднего крепежного элемента и переднего крепежного элемента, выполненного в форме пирамиды. Вторым концом пилон подвески прикреплен к крылу летательного аппарата посредством переднего крепежного элемента, заднего крепежного элемента и верхнего крепежного элемента, который называется «центрирующим выступом».
Известно, что пилон подвески предназначен для передачи на крыло летательного аппарата статических и динамических нагрузок, создаваемых турбореактивным двигателем, а именно весовой нагрузки или тягового усилия.
Для передачи указанных нагрузок пилон подвески содержит жесткую конструкцию, называемую «воспринимающей нагрузки конструкцией», или «силовой конструкцией», а также совокупность конструкций, которые называют «вспомогательные» конструкции и используют в дополнение к силовой конструкции.
Вспомогательные конструкции обеспечивают разделение и поддержание различных систем, таких как гидравлические системы, электрические системы, системы подачи топлива и системы кондиционирования. Кроме того, указанные вспомогательные конструкции предназначены для крепления аэродинамических обтекателей в виде панелей, установленных на вспомогательных конструкциях.
Как правило, турбореактивный двигатель расположен внутри гондолы, в которой также находятся средства реверсора тяги. Обычно на силовой конструкции закреплен капот гондолы, а на вспомогательных конструкциях - капот вентилятора турбореактивного двигателя.
Силовая конструкция выполнена жесткой по сравнению со вспомогательными конструкциями для того, чтобы обеспечить восприятие статических и динамических нагрузок, создаваемых турбореактивным двигателем. Вспомогательные конструкции, напротив, не предназначены для восприятия указанных нагрузок.
Традиционная силовая конструкция 1 имеет форму «короба», образованного двумя металлическими боковыми панелями 2 и 3 (см. фиг.1), одним верхним металлическим лонжероном 5 и одним нижним металлическим лонжероном 6. Лонжероны 5 и 6 скомпонованы таким образом, чтобы обеспечить присоединение, соответственно, верхней и нижней частей боковых панелей 2 и 3. Продольные 7 и поперечные 8 элементы жесткости, расположенные на каждой боковой панели 2, 3, обеспечивают жесткость силовой конструкции 1.
Внутри короба предусмотрено множество усиливающих рам 9, расположенных между металлическими лонжеронами 5 и 6 и боковыми панелями 2 и 3.
На одном конце силовой конструкции 1 предусмотрена пирамида 10, установленная на крайней усиливающей раме 9. Пирамида 10 содержит крепежный элемент, предназначенный для крепления силовой конструкции 1 к турбореактивному двигателю.
Однако силовая конструкция указанного типа имеет недостаток, который заключается в том, что изготовление и установка данной силовой конструкции на крыле летательного аппарата является довольно сложным процессом, требующим значительных затрат времени.
Для того чтобы упростить процесс изготовления и установки силовой конструкции пилона подвески, в патентной заявке FR 2889505 предложена силовая конструкция 11 (фиг.2), содержащая две боковые стенки 12 и 13, изготовленные из композиционного материала, верхний лонжерон 15 и нижний лонжерон 16. Пирамида 20, предусмотренная на одном конце силовой конструкции 11, содержит крепежный элемент, предназначенный для крепления указанной конструкции 11 к турбореактивному двигателю. Силовая конструкция данного типа не содержит продольных или поперечных элементов жесткости, а также усиливающих рам.
Тем не менее силовая конструкция данного типа имеет недостаток, состоящий в том, что указанная конструкция не обеспечивает достаточную безопасность в случае возгорания турбореактивного двигателя. По существу, в случае возгорания турбореактивного двигателя важно, чтобы силовая конструкция обеспечивала опору для турбореактивного двигателя в течение определенного периода времени, установленного в соответствии с европейскими или американскими нормативными документами. Согласно американскому стандарту FAA-АС 25-865, данный период времени обычно составляет порядка 15 минут. Силовая конструкция, тип которой описан в патентной заявке FR 2889505, разрушается, как правило, до истечения указанного периода времени.
Силовая конструкция указанного типа обладает еще одним недостатком, который заключается в том, что данная конструкция не воспринимает нагрузки вдоль главной оси, а именно вдоль длины силовой конструкции. Верхний крепежный элемент (или «центрирующий выступ»), обеспечивающий крепление к крылу, вставлен в два отверстия 17, которые выполнены в выступах боковых стенок 12 и 13. Такая конфигурация приводит к ослаблению пилона подвески.
Таким образом, цель настоящего изобретения состоит в том, чтобы предложить силовую конструкцию пилона подвески, которая обеспечит крепление турбореактивного двигателя в течение более длительного периода времени в случае его возгорания.
Кроме того, цель настоящего изобретения состоит в том, чтобы разработать силовую конструкцию пилона подвески, более устойчивую к нагрузкам, а также отличающуюся простотой в изготовлении и в монтаже на крыле летательного аппарата.
Таким образом, согласно первому аспекту изобретение относится к силовой конструкции пилона подвески, предназначенного для крепления турбореактивного двигателя к крылу летательного аппарата, которая отличается тем, что она содержит первый боковой блок и второй боковой блок, причем указанные боковые блоки охватывают центральную пластину, изготовленную из материала, способного выдерживать температуру по меньшей мере в 1000°C в течение периода времени, равного по меньшей мере 15 минутам.
Настоящее изобретение относится к воспринимающей нагрузки конструкции пилона подвески, предназначенного для крепления турбореактивного двигателя к крылу летательного аппарата, которая отличается тем, что она содержит первый боковой блок и второй боковой блок, прикрепляемые к крылу летательного аппарата, а также крепежный элемент, прикрепляемый к турбореактивному двигателю. При этом указанные боковые блоки охватывают центральную пластину, по существу, удлиненную вдоль главной оси указанной конструкции и соединенную с указанным крепежным элементом, причем центральная пластина изготовлена из металла или сплава, способного выдерживать температуру по меньшей мере в 1000°C в течение периода времени, равного по меньшей мере 15 минутам, что обеспечивает восприятие статических и динамических нагрузок, создаваемых турбореактивным двигателем вдоль главной оси.
В данном случае понятие «материал, способный выдерживать температуру по меньшей мере в 1000°C в течение периода времени, равного по меньшей мере 15 минутам» характеризует материал, который под воздействием температуры, превышающей или равной 1000°C, сохраняет механическую прочность, достаточную для обеспечения крепления турбореактивного двигателя в течение периода времени, равного по меньшей мере 15 минутам.
Предлагаемая силовая конструкция более проста в изготовлении и в монтаже по сравнению с силовыми конструкциями, известными из уровня техники. Это обусловлено тем, что предлагаемая силовая конструкция по сравнению с известными конструкциями содержит меньшее количество составных элементов - два боковых блока и одну центральную пластину.
Кроме того, наличие небольшого количества составных элементов способствует снижению массы предлагаемой силовой конструкции.
Наличие центральной пластины позволяет повысить прочность пилона подвески. Это связано с тем, что центральная пластина воспринимает различные статические и динамические нагрузки, создаваемые турбореактивным двигателем вдоль главной оси предлагаемой конструкции, а именно вдоль главной оси пилона подвески.
Более того, в случае возгорания, центральная пластина обеспечит крепление турбореактивного двигателя независимо от того, из какого материала изготовлены боковые блоки, при этом указанная пластина соединена, например, с передним крепежным элементом, выполненным в форме пирамиды и прикрепленным к турбореактивному двигателю. Это обусловлено тем, что центральная пластина изготовлена из материала, способного выдержать температуру, равную по меньшей мере 1000°C, в частности по меньшей мере 1200°C и даже 1400°C, в течение периода времени, равного по меньшей мере 15 минутам, в частности 20 минутам и даже 1 часу. В результате предлагаемая конструкция удерживает турбореактивный двигатель в течение более длительного периода времени, по сравнению с конструкцией, раскрытой в патентной заявке FR 2889505.
Таким образом, предлагаемая конструкция отвечает требованиям, установленным европейской организацией - Объединенные администрации авиации (JAA), а также Федеральным управлением гражданской авиации США (FAA), и касающимся противопожарной безопасности и, в частности, минимального периода времени удержания турбореактивного двигателя до его разрушения.
Согласно остальным признакам настоящего изобретения, предлагаемая конструкция содержит одну или несколько следующих дополнительных особенностей, которые можно рассматривать как отдельно, так и в различных сочетаниях:
материал, из которого изготовлена центральная пластина, представляет собой металл или сплав, в частности никельсодержащий сплав;
каждый боковой блок содержит боковую стенку, проходящую до L-образного верхнего элемента, выполненного таким образом, что он расположен, по существу, напротив верхнего элемента другого бокового блока;
предлагаемая конструкция имеет, по существу, трапецеидальное поперечное сечение, образующее нижнее основание и верхнее основание, что обеспечивает наиболее эффективное крепление центральной пластины и позволяет уменьшить количество составных элементов;
ширина нижнего основания меньше ширины верхнего основания, это позволяет сократить количество материалов, необходимых для изготовления боковых блоков;
первый блок и второй блок изготовлены из композиционного материала, это позволяет, во-первых, упростить процесс формования силовой конструкции, например, за счет использования RTM-метода, и, во-вторых, уменьшить массу пилона подвески;
центральная пластина содержит по меньшей мере два гофрированных листа, что способствует повышению инерции центральной пластины;
толщина центральной пластины составляет от 15 мм до 30 мм, что позволяет добиться удачного сочетания таких параметров, как обеспечение оптимальной опоры для турбореактивного двигателя в случае его возгорания и не слишком большая масса предлагаемой конструкции;
первая крышка и вторая крышка выполнены, по существу, ребристыми и установлены, соответственно, на первом боковом блоке и втором боковом блоке, что обеспечивает крепление силовой конструкции к крылу летательного аппарата, в результате чего облегчен процесс монтажа и демонтажа силовой установки, а также обеспечена возможность удержания тяжелых грузов, таких как турбореактивный двигатель;
первая и вторая крышки выполнены металлическими, в результате чего обеспечена возможность удержания турбореактивного двигателя даже в случае его возгорания.
Согласно второму аспекту, настоящее изобретение относится также к пилону подвески, предназначенному для крепления турбореактивного двигателя к крылу летательного аппарата и содержащему предлагаемую силовую конструкцию.
Изобретение станет более очевидным при прочтении приведенного далее описания неограниченных вариантов осуществления со ссылкой на прилагаемые чертежи, на которых изображено следующее:
на фиг.1 в перспективе с пространственным разделением деталей изображена силовая конструкция, известная из уровня техники;
на фиг.2 в перспективе с пространственным разделением деталей показана силовая конструкция, раскрытая в патентной заявке FR 2889505;
на фиг.3 в перспективе изображен один из вариантов осуществления предлагаемой силовой конструкции;
на фиг.4 в перспективе с пространственным разделением деталей показан вариант изобретения в соответствии с фиг.1;
на фиг.5 представлен частичный вид сверху на один из вариантов изобретения;
на фиг.6 в увеличенном масштабе изображена зона VI конструкции согласно варианту изобретения с фиг.5.
В соответствии с вариантом изобретения, показанным на фиг.3 и 4, предлагаемая конструкция 101 содержит первый боковой блок 102 и второй боковой блок 103, которые охватывают центральную пластину 104.
Предлагаемая конструкция 101 предназначена для крепления турбореактивного двигателя (не показан) к крылу летательного аппарата (не показано). Пилон подвески (не показан), содержащий предлагаемую конструкцию 101, выполнен с возможностью крепления гондолы любого типа, вмещающей турбореактивный двигатель, в частности, с возможностью крепления структурирующей гондолы, содержащей одну или несколько опор решеток, выполненных за одно целое с пилоном подвески.
Предлагаемая конструкция 101 предпочтительно содержит меньшее количество элементов по сравнению с конструкциями, известными из уровня техники. Это позволяет изготавливать силовую конструкцию с уменьшенной массой, что обусловлено отсутствием совокупности элементов, в частности элементов усиления или ребер жесткости.
Кроме того, облегчен процесс сборки указанных элементов вследствие того, что для формирования предлагаемой конструкции 101 достаточно лишь соединить первый 102 и второй 103 боковые блоки. В отличие от конструкций, известных из уровня техники, при изготовлении предлагаемой силовой конструкции отсутствует необходимость в соединении небольших элементов друг с другом или присоединении их к более крупным узлам. В результате, значительно упрощается процесс сборки предлагаемой конструкции 101.
Предлагаемая конструкция имеет, по существу, удлиненную форму, а именно длина конструкции вдоль главной оси 105 превышает ширину конструкции вдоль оси, проходящей, по существу, перпендикулярно указанной главной оси. Главная ось 105, как правило, совпадает с осью пилона подвески.
Каждый боковой блок 102 (103) предпочтительно содержит боковую стенку 107 (108), проходящую до L-образного верхнего элемента 111 (112), выполненного таким образом, что он расположен, по существу, напротив верхнего элемента (112, 111) другого бокового блока 102 (103).
В каждой боковой стенке 107 и 108 можно предусмотреть средства для крепления вспомогательных конструкций с целью формирования пилона подвески. Указанные средства представляют собой, например, рельсы 109, установленные на стенках 107, 108.
Как показано на фиг.3 и 4, верхний элемент 111, 112 содержит кромку 115, 116. Кромки 115 и 116 верхних элементов выполнены таким образом, что они проходят встык и скреплены любыми крепежным средствами, известными специалистам из уровня техники, например болтами.
Поперечное сечение предлагаемой конструкции 101, а именно сечение, перпендикулярное главной оси 105, предпочтительно имеет, по существу, трапецеидальную форму, образуя нижнее основание 121 и верхнее основание 123. В данном случае определение «трапецеидальное» характеризует сечение, нижнее 121 и верхнее 123 основания которого проходят, по существу, параллельно друг другу. Данная геометрическая форма обеспечивает наиболее эффективное крепление центральной пластины 104 между боковыми блоками 102, 103, а также обеспечивает возможность прокладки кабелей и труб, необходимых для функционирования гондолы и турбореактивного двигателя (не показаны). В соответствии с одним из предпочтительных вариантов изобретения, ширина
Figure 00000001
нижнего основания 121 меньше ширины
Figure 00000002
верхнего основания 123, что позволяет сократить количество материалов, необходимых для изготовления боковых блоков 102 и 103. Ширина
Figure 00000003
нижнего основания 121, как правило, составляет от 90 до 140 мм, в частности от 100 до 120 мм. Ширина
Figure 00000004
верхнего основания 123, как правило, составляет от 260 до 340 мм, в частности от 280 до 320 мм.
Первый боковой блок 102 и второй боковой блок 103 предпочтительно изготовлены из композиционного материала, например бисмалеинимидной смолы (БМИ), эпоксидной смолы, устойчивой к действию температур более 200°C, в частности к действию температуры, равной примерно 280°C, например PMR15®, или изготовлены из углепластика. Преимущество использования композиционных материалов состоит в том, что упрощается процесс изготовления боковых блоков 102, 103 и снижается их масса.
Боковые блоки 102 и 103 можно изготовить методом вакуумного формования с предварительной механической вытяжкой или RTM-методом (трансферным формованием пластмасс).
Метод формования с предварительной механической вытяжкой заключается в том, что пропитанные смолой волокна помещают в форму для получения необходимой предварительно отформованной заготовки, после чего в форме создают, по существу, вакуум для того, чтобы уплотнить получаемый узел. Затем изделие нагревают с целью расплавления содержащейся в волокнах смолы, в результате чего между волокнами создается необходимая связь.
RTM-метод заключается в впрыскивании смолы в волокна предварительно отформованной заготовки с предусмотренными в ней промежуточными волокнистыми слоями. В частности, узел, содержащий волокнистые предварительно отформованные заготовки, помещают в закрытую форму, геометрическая форма которой, как правило, соответствует геометрической форме изготавливаемого механического элемента. После чего производят впрыскивание смолы в форму. В результате смола пропитывает указанный узел из волокнистых предварительно отформованных заготовок.
Предпочтительным является RTM-метод, поскольку данный метод не требует значительных финансовых затрат, прост в реализации и позволяет получить материал с высокой механической прочностью.
Кроме того, элемент, полученный RTM-методом, требует лишь минимальной чистовой обработки. Это связано с тем, что элементы, извлекаемые из формы, имеют окончательные размеры, то есть не требуют механической обработки. Более того, RTM-метод обеспечивает возможность повторения геометрических размеров изготавливаемых элементов.
Боковые блоки 102 и 103 имеют, по существу, удлиненную форму. Длина указанных блоков вдоль главной оси 105 составляет, в частности, от 2050 до 2600 мм, а именно от 2200 до 2400 мм.
Центральная пластина 104 также выполнена, по существу, удлиненной, причем ее длина вдоль главной оси 105 равна или предпочтительно меньше длины боковых блоков 102 и 103. Толщина центральной пластины 104 вдоль оси, проходящей, по существу, перпендикулярно главной оси 105, как правило, меньше длины пластины. Толщина центральной пластины 104 составляет, как правило, от 15 до 20 мм, в частности от 15 до 25 мм, предпочтительно от 15 до 30 мм, что позволяет добиться удачного сочетания таких параметров, как обеспечение оптимальной опоры для турбореактивного двигателя в случае его возгорания и не слишком большая масса предлагаемой конструкции 101.
Согласно предпочтительному варианту изобретения, показанному на фиг.5, центральная пластина 104 содержит два гофрированных листа 161 и 163. Обычно оба этих листа получают путем выдавливания продольных углублений и сварки. Как правило, центральная пластина может содержать более двух гофрированных листов. В процессе сборки предлагаемой конструкции 101 гофрированные листы 161 и 163 крепят любыми средствами, известными специалистам из уровня техники, таким образом, чтобы в контактных зонах формировались воздушные полости. В результате улучшается тепловая инерция пластины 104. Кроме того, наличие гофрированных листов 161 и 163 предпочтительно приводит к сокращению количества материалов, необходимых для изготовления центральной пластины 104, при этом жесткость конструкции является достаточной для обеспечения крепления турбореактивного двигателя в случае возгорания.
Наличие центральной пластины 104 позволяет изготовить предлагаемую конструкцию 101 более устойчивой к статическим и динамическим нагрузкам. По существу, центральная пластина воспринимает статические и динамические нагрузки, создаваемые турбореактивным двигателем (не показан) вдоль главной оси 105 предлагаемой конструкции 101.
Центральная пластина 104, как правило, соединена с крепежным элементом (не показан), изготовленным из металла или любого другого пригодного материала, известного специалистам из уровня техники. Указанный крепежный элемент, как правило, выполненный в форме пирамиды, предназначен для крепления к турбореактивному двигателю. Кроме того, центральная пластина прикреплена с помощью любых средств, известных специалистам из уровня техники, в частности посредством заклепок 167, к крышке 151, которая обеспечивает крепление предлагаемой конструкции 101 к крылу летательного аппарата (см. фиг.6). Таким образом, в случае возгорания, когда температура равна по меньшей мере 1000°C, независимо от того, из какого материала изготовлены боковые блоки 102 и 103, центральная пластина 104 обеспечит крепление турбореактивного двигателя в течение по меньшей мере 15 минут, в частности более 30 минут, и даже более 1 часа. В результате турбореактивный двигатель удерживается в закрепленном состоянии в течение периода времени, по меньшей мере равного промежутку времени, установленному европейским стандартом JAA и американским стандартом FAA, а именно периоду времени, который требуется для выполнения в случае необходимости какого-либо экстренного маневра.
Центральная пластина 104 предпочтительно изготовлена из металла или сплава, предпочтительно никельсодержащего сплава. К никельсодержащим сплавам относится, например, сплав Inconel®. В частности, Inconel® представляет собой сплав, содержащий, главным образом, никель, кроме того, в состав данного сплава входят такие металлы, как хром, магний, железо и титан. Также в качестве примера можно привести сплав Inco625®, сталь или любой другой сплав, содержащий ниобий.
В случае, когда боковые блоки 102 и 103 изготовлены из углепластика или композиционного материала, они образуют вокруг центральной пластины 104 теплозащитный экран благодаря тому, что углепластик и композиционные материалы обладают низкой теплопроводностью.
Согласно одному из предпочтительных вариантов изобретения, первая крышка 130 и вторая крышка 131, выполнены, по существу, ребристыми и установлены, соответственно, на первом боковом блоке 102 и втором боковом блоке 103 с целью присоединения предлагаемой конструкции 101 к крылу летательного аппарата (не показано).
Наличие указанных крышек 130 и 131 упрощает монтаж и демонтаж силовой установки при проведении работ по техническому обслуживанию и ремонту.
Первая крышка 130 и вторая крышка 131 предпочтительно изготовлены из металла, в результате они способны удерживать большие нагрузки, например обеспечивать крепление турбореактивного двигателя даже в случае его возгорания.
Кроме того, облегчен процесс механической обработки элементов первой 130 и второй 131 крышек.
Первая 130 и вторая 131 крышки скомпонованы таким образом, чтобы обеспечить возможность прохождения через них подвижной поворотной оси крепежного элемента, соединяющего предлагаемую конструкцию с крылом летательного аппарата.
Первая и вторая крышки установлены на опорном элементе 141, который выполнен съемным относительно предлагаемой конструкции 101. В указанный опорный элемент вставлен крепежный элемент 143, соединяющий предлагаемую конструкцию 101 с крылом летательного аппарата (не показано). Крепежный элемент 143 выполнен с возможностью поворота вокруг оси 145, проходящей, по существу, перпендикулярно главной оси 105.
Более того, на верхних элементах 111 и 112 закреплена крышка 151, что обеспечивает возможность установки крепежного элемента 153, также соединяющего предлагаемую конструкцию 101 с крылом летательного аппарата, но на участке, расположенном отдельно от участка, предназначенного для установки крепежного элемента 143. Крепежный элемент 153 также выполнен с возможностью поворота вокруг оси 155, проходящей, по существу, параллельно оси 145.
Как показано на фиг.6, крышка 151 прикреплена к пластине 104, выполненной в данном случае в виде двух гофрированных листов 161 и 163, с помощью любых средств, известных специалистам из уровня техники, в частности, посредством заклепки 167 или болта.

Claims (12)

1. Воспринимающая нагрузки конструкция (101) пилона подвески, предназначенного для крепления турбореактивного двигателя к крылу летательного аппарата, отличающаяся тем, что она содержит первый боковой блок (102) и второй боковой блок (103), прикрепляемые к крылу летательного аппарата, и крепежный элемент, прикрепляемый к турбореактивному двигателю, причем указанные боковые блоки (102, 103) охватывают центральную пластину (104), по существу, удлиненную вдоль главной оси (105) указанной конструкции (101), при этом указанная пластина (104) соединена с указанным крепежным элементом и изготовлена из металла или сплава, способного выдерживать температуру по меньшей мере в 1000°C в течение периода времени, равного по меньшей мере 15 мин, что обеспечивает восприятие статических и динамических нагрузок, создаваемых турбореактивным двигателем вдоль главной оси (105).
2. Конструкция (101) по п.1, отличающаяся тем, что материал, используемый для изготовления центральной пластины (104), представляет собой металл или сплав.
3. Конструкция (101) по п.2, отличающаяся тем, что указанный материал представляет собой никельсодержащий сплав.
4. Конструкция (101) по любому из пп.1-3, отличающаяся тем, что каждый боковой блок (102, 103) содержит боковую стенку (107 108), переходящую в L-образный верхний элемент (111, 112), выполненный таким образом, что он расположен, по существу, напротив верхнего элемента (112, 111) другого бокового блока (103, 102).
5. Конструкция (101) по любому из пп.1-3, отличающаяся тем, что она имеет, по существу, трапецеидальное поперечное сечение, образующее нижнее основание (121) и верхнее основание (123).
6. Конструкция (101) по п.5, отличающаяся тем, что ширина
Figure 00000005
нижнего основания (121) меньше ширины
Figure 00000006
верхнего основания (123).
7. Конструкция (101) по любому из пп.1-3 или 6, отличающаяся тем, что первый блок (102) и второй блок (103) изготовлены из композиционного материала.
8. Конструкция (101) по любому из пп.1-3 или 6, отличающаяся тем, что центральная пластина (104) содержит по меньшей мере два гофрированных листа (161, 163)
9. Конструкция (101) по любому из пп.1-3 или 6, отличающаяся тем, что толщина центральной пластины (104) составляет от 15 до 30 мм.
10. Конструкция (101) по любому из пп.1-3 или 6, отличающаяся тем, что первая крышка (130) и вторая крышка (131) выполнены, по существу, ребристыми и установлены соответственно на первом боковом блоке (102) и на втором боковом блоке (103) для соединения силовой конструкции (101) с крылом летательного аппарата.
11. Конструкция (101) по п.10, отличающаяся тем, что первая крышка (130) и вторая крышка (131) выполнены металлическими.
12. Пилон подвески, предназначенный для крепления турбореактивного двигателя к крылу летательного аппарата, содержащий воспринимающую нагрузки конструкцию (101) по любому из пп.1-11.
RU2010143736/11A 2008-03-28 2009-02-20 Силовая конструкция пилона подвески RU2483003C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR08/01718 2008-03-28
FR0801718A FR2929245B1 (fr) 2008-03-28 2008-03-28 Structure primaire d'un mat d'accrochage.
PCT/FR2009/000189 WO2009118469A2 (fr) 2008-03-28 2009-02-20 Structure primaire d'un mât d'accrochage

Publications (2)

Publication Number Publication Date
RU2010143736A RU2010143736A (ru) 2012-05-10
RU2483003C2 true RU2483003C2 (ru) 2013-05-27

Family

ID=39916279

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010143736/11A RU2483003C2 (ru) 2008-03-28 2009-02-20 Силовая конструкция пилона подвески

Country Status (10)

Country Link
US (1) US20110011972A1 (ru)
EP (1) EP2257470B1 (ru)
CN (1) CN101980919A (ru)
AT (1) ATE551260T1 (ru)
BR (1) BRPI0909026A2 (ru)
CA (1) CA2717647A1 (ru)
ES (1) ES2384308T3 (ru)
FR (1) FR2929245B1 (ru)
RU (1) RU2483003C2 (ru)
WO (1) WO2009118469A2 (ru)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2915175B1 (fr) * 2007-04-20 2009-07-17 Airbus France Sa Mat d'accrochage de moteur pour aeronef disposant d'une poutre d'attache moteur arriere deportee du caisson
FR2965550B1 (fr) * 2010-10-05 2012-11-02 Airbus Operations Sas Attache de type spigot pourvue d'au moins un moyen de mesure de l'effort genere par un moteur d'aeronef
FR2981636B1 (fr) * 2011-10-19 2013-12-27 Airbus Operations Sas Carenage aerodynamique arriere pour dispositif d'accrochage d'un moteur d'aeronef, comprenant un bouclier thermique capable de se dilater librement
FR2982845B1 (fr) * 2011-11-22 2013-12-20 Airbus Operations Sas Carenage aerodynamique arriere de mat de moteur d'aeronef
FR2988688B1 (fr) * 2012-03-27 2014-05-09 Airbus Operations Sas Carenage aerodynamique arriere a tenue en temperature amelioree pour mat d'accrochage d'ensemble propulsif d'aeronef
US10011365B2 (en) * 2013-03-06 2018-07-03 Bombardier Inc. AFT pylon fairing for aircraft
CN105392700B (zh) 2013-07-26 2018-12-18 Mra系统有限责任公司 飞行器发动机吊架
FR3013678B1 (fr) * 2013-11-25 2015-11-20 Airbus Operations Sas Carenage aerodynamique
US9238511B2 (en) * 2014-03-04 2016-01-19 Mra Systems, Inc. Engine pylon structure
FR3021029B1 (fr) * 2014-05-16 2016-05-06 Airbus Operations Sas Carenage aerodynamique
FR3042475B1 (fr) * 2015-10-16 2018-07-13 Airbus Operations (S.A.S.) Mat porteur de moteur d'aeronef
FR3061149B1 (fr) * 2016-12-27 2023-11-03 Airbus Operations Sas Structure primaire d'un mat pour groupe propulseur d'aeronef comportant une partie pyramidale a montants convergents
EP3473548B1 (fr) * 2017-10-18 2019-12-04 Airbus Operations S.A.S. Procede d'assemblage d'une structure primaire d'un mât d'aeronef
FR3072945B1 (fr) * 2017-10-27 2020-11-20 Airbus Operations Sas Structure primaire de mat de support d'un groupe propulseur d'aeronef comportant une partie inferieure en u obtenue de maniere monobloc ou par soudage
FR3094963B1 (fr) 2019-04-15 2022-08-05 Airbus Operations Sas Outillage de maintien des panneaux latéraux d’une structure primaire d’un mât d’aéronef lors de son assemblage et procédé d’assemblage d’une structure primaire d’un mât d’aéronef utilisant ledit outillage de maintien
FR3099464A1 (fr) * 2019-07-31 2021-02-05 Airbus Operations Mat reacteur pour coupler un turboreacteur a une aile d’un aeronef
FR3102151B1 (fr) * 2019-10-21 2021-10-29 Airbus Operations Sas Aéronef comprenant une attache voilure arrière présentant au moins deux bielles latérales et un pion de cisaillement
US11679888B2 (en) 2020-10-19 2023-06-20 Spirit Aerosystems, Inc. Composite pylon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2104228C1 (ru) * 1993-07-01 1998-02-10 Самарское государственное научно-производственное предприятие "Труд" Устройство для крепления авиационного двигателя к самолету
EP1266826A1 (fr) * 2001-06-13 2002-12-18 Airbus France Dispositif de reprise d'efforts générés par un moteur d'aéronef
FR2889505A1 (fr) * 2005-08-05 2007-02-09 Airbus France Sas Structure primaire de mat de moteur d'aeronef perfectionnee
FR2891246A1 (fr) * 2005-09-26 2007-03-30 Airbus France Sas Ensemble moteur pour aeronef comprenant un moteur ainsi qu'un dispositif d'accrochage d'un tel moteur

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848832A (en) * 1973-03-09 1974-11-19 Boeing Co Aircraft engine installation
US5054715A (en) * 1988-11-10 1991-10-08 The Boeing Company Apparatus and methods for reducing aircraft lifting surface flutter
US5524847A (en) * 1993-09-07 1996-06-11 United Technologies Corporation Nacelle and mounting arrangement for an aircraft engine
FR2755944B1 (fr) * 1996-11-21 1998-12-24 Snecma Suspension avant redondante pour turbomachine
US6095456A (en) * 1996-12-23 2000-08-01 The Boeing Company Strut-wing interface having dual upper links
US6126110A (en) * 1997-12-22 2000-10-03 Mcdonnell Douglas Corporation Horizontally opposed trunnion forward engine mount system supported beneath a wing pylon
FR2793768B1 (fr) * 1999-05-17 2001-09-07 Aerospatiale Airbus Dispositif de montage sur un mat d'un ensemble propulsif d'aeronef et mat adapte a ce dispositif
FR2862944B1 (fr) * 2003-12-01 2006-02-24 Airbus France Dispositif d'accrochage d'un turbopropulseur sous une voilure d'aeronef
FR2862945B1 (fr) * 2003-12-01 2006-04-28 Airbus France Dispositif d'accrochage d'un turbopropulseur sous une voilure d'aeronef.
GB0401189D0 (en) * 2004-01-21 2004-02-25 Rolls Royce Plc Turbine engine arrangements
US7104306B2 (en) * 2004-06-14 2006-09-12 The Boeing Company Cast unitized primary truss structure and method
FR2873985B1 (fr) * 2004-08-04 2006-11-24 Airbus France Sas Ensemble moteur pour aeronef
FR2873988B1 (fr) * 2004-08-05 2007-12-21 Airbus France Sas Mat d'accrochage de turboreacteur pour aeronef
FR2883256B1 (fr) * 2005-03-18 2008-10-24 Airbus France Sas Attache moteur d'un systeme de montage interpose entre un mat d'accrochage et un moteur d'aeronef
FR2891256B1 (fr) * 2005-09-27 2007-10-26 Airbus France Sas Dispositif d'accrochage d'un moteur interpose entre une voilure d'aeronef et ledit moteur
FR2891252B1 (fr) * 2005-09-28 2007-10-26 Airbus France Sas Mat a ossature monolithique
FR2891803B1 (fr) * 2005-10-07 2007-11-30 Airbus France Sas Structure rigide pour mat d'accrochage de moteur d'aeronef, et mat comportant une telle structure
EP1950382A1 (en) * 2007-01-29 2008-07-30 Siemens Aktiengesellschaft Spoke with flow guiding element
US7966921B1 (en) * 2009-04-01 2011-06-28 The United States Of America As Represented By The Secretary Of The Navy Aircraft wing-pylon interface mounting apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2104228C1 (ru) * 1993-07-01 1998-02-10 Самарское государственное научно-производственное предприятие "Труд" Устройство для крепления авиационного двигателя к самолету
EP1266826A1 (fr) * 2001-06-13 2002-12-18 Airbus France Dispositif de reprise d'efforts générés par un moteur d'aéronef
FR2889505A1 (fr) * 2005-08-05 2007-02-09 Airbus France Sas Structure primaire de mat de moteur d'aeronef perfectionnee
FR2891246A1 (fr) * 2005-09-26 2007-03-30 Airbus France Sas Ensemble moteur pour aeronef comprenant un moteur ainsi qu'un dispositif d'accrochage d'un tel moteur

Also Published As

Publication number Publication date
RU2010143736A (ru) 2012-05-10
FR2929245B1 (fr) 2010-05-14
CA2717647A1 (fr) 2009-10-01
FR2929245A1 (fr) 2009-10-02
BRPI0909026A2 (pt) 2019-09-24
ATE551260T1 (de) 2012-04-15
WO2009118469A3 (fr) 2009-11-19
US20110011972A1 (en) 2011-01-20
WO2009118469A2 (fr) 2009-10-01
EP2257470B1 (fr) 2012-03-28
ES2384308T3 (es) 2012-07-03
EP2257470A2 (fr) 2010-12-08
CN101980919A (zh) 2011-02-23

Similar Documents

Publication Publication Date Title
RU2483003C2 (ru) Силовая конструкция пилона подвески
RU2435702C2 (ru) Фюзеляжная конструкция воздушного судна и способ ее изготовления
CA2343590C (en) Leading edge of supporting surfaces of aircraft
JP6628955B2 (ja) 垂直統合式ストリンガ
EP2164754B1 (en) Method for coupling stiffening profile elements and structural component
JP4951059B2 (ja) 航空機構成材
EP2610164B1 (en) Rear fuselage with a shield for an aircraft with fuselage-mounted engines and method for determining the area of the shield
US9248900B2 (en) Tip fairing of a horizontal airfoil of an aircraft
US20060226287A1 (en) Structural panels for use in aircraft fuselages and other structures
RU2376196C2 (ru) Рама иллюминатора летательного аппарата и способ ее изготовления
WO2001057354A2 (en) Tubular members integrated to form a structure
US9957032B2 (en) Fibre composite component, winglet and aircraft with a fibre composite component
DK2454473T3 (en) Device for assembling sections of blades for wind turbines and method for connecting sections of blades for wind turbines
US20090294579A1 (en) Primary engine strut structure of an aircraft
JP2009502642A5 (ru)
US20130004696A1 (en) Components made of thermoplastic composite materials
EP2032430B1 (en) Aircraft fuselage structure and method for its production
JP6114043B2 (ja) 航空機のパイロン、及び、航空機
WO1998015455A1 (fr) Structure precontrainte destinee a un avion et son procede de fabrication
EP3254830B1 (en) Reinforcing component for a structure of an aircraft or spacecraft, aircraft or spacecraft, and method
US20190382136A1 (en) Method for manufacturing a rear section of an aircraft and aircraft rear section manufactured by said method
KR101374737B1 (ko) 차량용 도어 충격 흡수부재
CA2754703A1 (en) Turbine engine support arms
EP1972550B1 (de) Flugzeugfahrwerk
US20200001904A1 (en) Connecting element for attaching a component to a fiber composite structrue

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140221