RU2481403C1 - Синтетические олигонуклеотидные праймеры и способ выявления днк вируса инфекционной анемии цыплят с помощью синтетических олигонуклеотидных праймеров в полимеразной цепной реакции в режиме реального времени - Google Patents

Синтетические олигонуклеотидные праймеры и способ выявления днк вируса инфекционной анемии цыплят с помощью синтетических олигонуклеотидных праймеров в полимеразной цепной реакции в режиме реального времени Download PDF

Info

Publication number
RU2481403C1
RU2481403C1 RU2011145235/10A RU2011145235A RU2481403C1 RU 2481403 C1 RU2481403 C1 RU 2481403C1 RU 2011145235/10 A RU2011145235/10 A RU 2011145235/10A RU 2011145235 A RU2011145235 A RU 2011145235A RU 2481403 C1 RU2481403 C1 RU 2481403C1
Authority
RU
Russia
Prior art keywords
virus
oligonucleotide primers
chickens
synthetic oligonucleotide
dna
Prior art date
Application number
RU2011145235/10A
Other languages
English (en)
Inventor
Наталья Андреевна Селиверстова
Юрий Георгиевич Юшков
Василий Николаевич Афонюшкин
Original Assignee
Государственное научное учреждение Институт экспериментальной ветеринарии Сибири и Дальнего Востока Российской академии сельскохозяйственных наук (ГНУ ИЭВСиДВ Россельхозакадемии)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное научное учреждение Институт экспериментальной ветеринарии Сибири и Дальнего Востока Российской академии сельскохозяйственных наук (ГНУ ИЭВСиДВ Россельхозакадемии) filed Critical Государственное научное учреждение Институт экспериментальной ветеринарии Сибири и Дальнего Востока Российской академии сельскохозяйственных наук (ГНУ ИЭВСиДВ Россельхозакадемии)
Priority to RU2011145235/10A priority Critical patent/RU2481403C1/ru
Application granted granted Critical
Publication of RU2481403C1 publication Critical patent/RU2481403C1/ru

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Изобретения относятся к биотехнологии, а именно к генетической инженерии, и представляют собой синтетические олигонуклеотидные праймеры: P1 - 5'-TGGTTACTATTCCATCACCATT-3' (сайт отжига 11-32 п.н.), Р2 - 5'-CGAAACGTCACTTTCGCAAC-3' (сайт отжига 259-278 п.н.) и способ выявления ДНК вируса инфекционной анемии цыплят с их помощью. Способ заключается в том, что праймеры фланкируют участок генома вируса, в состав которого входят CpG островки и VNTR повторы в полимеразной цепной реакции в режиме реального времени. В случае положительной реакции появляется пик кривой плавления 92°С, а при подтверждении реакции путем электрофореза в геле визуализируется фрагмент, соответствующий размеру 268 п.н. Способ диагностики позволяет определить количественное содержание вируса в тканях и может быть использован для диагностики инфекционной анемии цыплят. 2 н.п. ф-лы, 3 ил., 4 табл, 5 пр.

Description

Изобретение относится к биотехнологии, а именно к генетической инженерии, может быть использовано в диагностике инфекционных заболеваний птиц, в частности для диагностики инфекционной анемии цыплят (ИАЦ).
Известен способ диагностики инфекционной анемии цыплят, основанный на иммуноферментном анализе (ИФА). Степень инфицированности или иммунного ответа поголовья определяют по проценту цыплят, имеющих титры антител к вирусу инфекционной анемии цыплят (Смородинцев А.А. Вирусная анемия цыплят: известная и неизвестная/ А.А.Смородинцев, А.А.Сухинин, В.О.Виноходов //Ветеринария в птицеводстве. - СПб. - 2006. - Часть 5-6. - 4 с.).
Анализируя концентрации специфических к инфекционной анемии цыплят антител в сыворотках крови, невозможно дать однозначное заключение об эпизоотическом статусе стад птицы по инфекционной анемии цыплят. Для определения эпизоотологического статуса необходимо учитывать также эпизоотологические и экономические показатели. Наличие титров антител не свидетельствует о развитии и течении патологического процесса. Кроме того, во время инкубационного периода антител не образуется, что ограничивает возможность диагностики инфекционной анемии на раннем этапе заболевания.
Недостаток данного способа заключается также в том, что производить мониторинг можно только у птиц с длительным сроком жизни, а именно у родительского стада бройлеров, у яйценоских пород.
Также существует патоморфологический способ диагностики инфекционной анемии цыплят. Его сущность заключается в исследовании органов, в которых вирус локализуется. К таким органам относятся тимус, селезенка, костный мозг. В тимусе наблюдается сильное лимфоидное истощение, иногда присутствуют некроз или каверны в корковом и мозговом веществе. В селезенке атрофия лимфоидной ткани в совокупности с гиперплазией ретикулярных клеток. В костном мозге атрофия и аплазия вовлекают в патологический процесс все компоненты и кроветворные составляющие. Кроветворные клетки замещаются жировой тканью или клетками пролиферирующей стромы (Кэлнек Б.У. Болезни домашних и сельскохозяйственных птиц./ Б.У.Кэлнек. - М.: «АКВАРИУМ БУК». - 2003. - Стр.857-858).
Недостаток данного метода диагностики заключается в том, что в гистологических препаратах мы можем наблюдать только последствия действия вируса на ткани, в которых он локализуется, однако подобные изменения микроструктуры органов могут быть связаны и с воздействием других инфекционных агентов или с незаразными заболеваниями.
Для диагностики инфекционной анемии цыплят можно пользоваться показателями гемоглобина птицы. Но при помощи этого метода невозможно дифференцировать анемии по этиологическому фактору, так как анемия у птицы может быть связана не только с присутствием возбудителя инфекционной анемии цыплят, но и с неправильно сбалансированным рационом, кровопотерей и др. Поэтому данный способ диагностики не может являться основным в постановке диагноза.
Наиболее близким по технической сущности к заявляемому и взятый за прототип является способ полимеразной цепной реакции (Todd, D. Detection and Differentiation of Chicken Anemia Virus Isolates by Using the Polymerase Chain Reaction/ Daniel Todd, Karen A. Mawhinneg, and М. Stewart McNulty. - Veterinary Sciences Division, Department of Agriculture for Northern Ireland, Stormont, Belfast BT4 3SD. - 1991. - Accepted 9). Для проведения реакции используют олигонуклеотидные праймеры 5'-GAC TGT AAG ATG GCA AGA CGA GCT С-3' и 5'-GGC TGA AGG АТС ССТ CAT TC-3', специфичные для двухцепочечной последовательности ДНК штамма Cux-1 изолята CAV (9а) фланкирующие 675-п.н, который имеет в своем составе N-терминальный конец капсидного протеина CAV.
Однако данный способ не используется для количественного определения вируса. Кроме того, выполнение этого способа включает этап электрофореза, что повышает трудоемкость исследований и является основной причиной перекрестной контаминации образцов и ложноположительных результатов исследований.
Задача изобретения - расширение арсенала синтетических олигонуклеотидных праймеров и способов выявления вируса инфекционной анемии цыплят.
Поставленная задача решается тем, что синтезируются синтетические олигонуклеотидные праймеры для выявления геномной дезоксирибонуклеиновой кислоты (ДНК) вируса инфекционной анемии цыплят, согласно изобретению синтетические олигонуклеотидные праймеры имеют нуклеотидные последовательности: Р1-5' CGAAACGTCACTTTCGCAAC 3', Р2-5' TGGTTACTATTCCATCACCAT 3'.
Сущность изобретения заключается также в том, что в способе выявления геномной дезоксирибонуклеиновой кислоты вируса инфекционной анемии цыплят, включающем проведение полимеразной цепной реакции с синтетическими олигонуклеотидными праймерами, согласно изобретению, праймеры имеют нуклеотидные последовательности P1-5' CGAAACGTCACTTTCGCAAC 3', Р2-5' TGGTTACTATTCCATCACCAT 3', ограничивающие участок генома вируса, в состав которого входят CpG островки и вариабельные тандемные повторы (VNTR), полимеразную цепную реакцию осуществляют в режиме реального времени, в случае положительной реакции отмечают пик кривой плавления 92°С.
Для иллюстрации способа приведены примеры.
Пример 1. Получение синтетических олигонуклеотидных праймеров.
Для поиска новых олигонуклеотидных праймеров используют полный геном штамма вируса инфекционной анемии цыплят, состоящий из 2298 пар нуклеотидов, депонированный в базе GenBank (http://www.ncbi.nlm.nih.gov/GenBank/GenBankSerch.html). Полученные последовательности пары праймеров проверяют на специфичность, используя программу Primer-BLAST NCBI (http://www.ncbi.nlm.nih.gov/tools/primer-blast/primerinfo.html).
Окончательный выбор праймеров основывается на следующих критериях: высокий индекс сходства фрагмента и ДНК различных штаммов вируса ИАЦ, высокая температура отжига (CG-метод), наличие в ампликоне CpG-островков и VNTR повторов.
Химический синтез праймеров осуществляют амидофосфидным методом на автоматическом синтезаторе ASM-102U. Концентрацию синтетических олигонуклеотидных праймеров в маточном растворе определяют спектрометрическим методом.
Учитывая вышеизложенное, были выбраны синтетические олигонуклеотидные праймеры, имеющие следующую структуру
P1-5'CGAAACGTCACTTTCGCAAC 3';
P2-5'TGGTTACTATTCCATCACCAT 3'.
Пример 2. Способ выявления ДНК вируса инфекционной анемии цыплят с помощью синтетических олигонуклетоидных праймеров в полимеразной цепной реакции в режиме реального времени.
Способ осуществляют следующим образом.
Этап 1: Выделение ДНК вируса инфекционной анемии цыплят.
Выделение ДНК вируса производят традиционным способом с использованием коммерческого набора «ДНК-сорб» производства ФГУН «Центральный НИИ эпидемиологии» Роспотребнадзора. Для получения большего количества ДНК допустимо использовать набор QUAGEN DNA Kit.
Этап 2. Полимеразную цепную реакцию в режиме реального времени проводят в один этап в объеме 25 мкл.
Для постановки реакции используют пробирки 0,5 мл, равное количеству исследуемых проб. Компоненты реакции для исследования одного образца ДНК:
10х буфер рН 8,8-2,5 мкл.
dNTPs (по 0,5 каждого) - 3,0 мкл.
Смесь праймеров - 3,0 мкл.
Вода бидистиллированная автокл. - 12,0 мкл.
Taq-полимераза - 0,5 мкл.
Флюоресцентный краситель SYBR Green использовали в разведении 1:20000.
Для постановки реакции в пробирке эппендорфа (1,5 мл) готовят реакционную смесь на N образцов, в число которых входят положительный (ДНК из вакцины CAV) и отрицательный контроли.
Реакционную смесь перемешивают методом пипетирования и разносят по 20 мкл по предварительно промаркированным пробиркам для ПЦР (0,5 мл). В каждую пробирку вносят по 5 мкл исследуемой пробы. Сверху вносят каплю вазелинового масла. После этого пробирки ставят в амплификатор.
Полимеразную цепную реакцию в режиме реального времени проводят по следующему температурному режиму (Табл.1).
Этап 3. Определение размеров продуктов диагностической ПЦР в режиме реального времени.
Результаты полимеразной цепной реакции в режиме реального времени определяются по графикам, отображающим синтез ампликона в зависимости от циклов ПЦР и температурных режимов.
Результаты проверяются методом электрофореза в 6% полиакриламидном геле.
Чтобы определить размер ампликона, в каждую пробу вносят 3,0 мкл буфера для нанесения, содержащего бромфеноловый синий, и вносят в «карман» 6% полиакриламидного геля. Электрофорез проводят при силе тока 190 мА, 130 В, 20 Вт в течение 160 минут. Результаты ПЦР учитывают, визуализируя окрашенный бромистым этидием ПЦР-продукт (ампликон) в ультрафиолетовом свете. В случае положительной реакции в электрофорезе появляется фрагмент ДНК размером 268 п.н.
Таблица 1
Этап Температура, °С Число циклов Время, секунды
1 2 3 4
1 94 1 пауза
2 95 1 30
3 95 40 30
58 40 30
72 40 30
4 72 1 10 мин
Пример 3. Определение специфичности ПЦР в режиме реального времени.
С целью подтверждения специфичности используемой ПЦР данную реакцию ставили с геномной ДНК различных микроорганизмов и вирусов (Табл. 2). В приведенном примере показана достаточная специфичность предложенной нами реакции.
Пример 4. Определение чувствительности ПЦР в режиме реального времени.
Для оценки чувствительности метода была проведена серия десятикратных разведении вируссодержащего материала. После этого с каждым разведением была поставлена ПЦР в режиме реального времени. Учет реакции проводили на основании графиков, отражающих кривую плавления (Фиг.1, Фиг.3).
При повышении температуры ДНК расплетается и светимость, соответственно, падает. В результате произведенной реакции было установлено, что накопление продукта ПЦР начинается с 24 цикла, далее происходит стадия насыщения (плато) начиная с 34 цикла (Фиг.1).
В реакциях с матрицей мы наблюдаем один пик, соответствующий плавлению специфического продукта, который приходится на 92°С (Фиг.3). Это свидетельствует о том, что в реакции образуется один продукт амплификации.
Нами было установлено, что в пробах с наибольшим содержанием специфической ДНК ампликон нарабатывается на 29 цикле. Для визуализации ампликона в пробе с меньшим количеством ДНК должно пройти около 40 циклов (Фиг.2).
Проведение ПЦР в режиме реального времени с заведомо известными концентрациями геномной ДНК вируса позволило установить, что чувствительность реакции составляет не менее 10 копий геномной ДНК вируса ИАЦ в пробе объемом 5 мкл (Табл. 3).
Таблица 2
№ трека Проба ДНК Ампликон, специфичный для вируса ИАЦ
1 Вакцина производства «Интервет» - CAV P4 +
2 Цирковирус свиней 2-го типа -
3 Вирус синдрома снижения яйценоскости -
4 Вакцина живая на основе аттенуированного штамма вируса болезни Марека 1-го серотипа «Авивак» -
5 A. laidlawii -
6 Вирус инфекционного ларинготрахеита -
7 М. bovimastitidis -
8 Вирус инфекционного ларинготрахеита, шт.0 -
Примечание: «+» - положительный результат;
«-» - отрицательный результат.
Таблица 3
Пороговый цикл (Ct) Кол-во копий вируса в пробе
отрицательно 0
отрицательно 1
35,2 10
33 100
28 1000
Пример 5. Выявление ДНК вируса инфекционной анемии цыплят в пробах биологического материала, полученного от клинически здоровых и инфицированных птиц.
Для исследования на ИАЦ используют пробы тимуса, селезенки, костного мозга от цыплят, имеющих клинические, патоморфологические признаки, а также от птиц, не имеющих признаков инфекционной анемии цыплят.
Отбор проб биоматериала производят согласно методике (Сюрин В.Н., Самуйленко А.Я., Соловьев Б.В., Фомина Н.В. Вирусные болезни животных. - М.: ВНИТИБП. - 1998. - 928 с.).
Пробы тимуса и селезенки отбирают целиком, в качестве источника костного мозга отбирают бедренную кость целиком или часть кильевой кости.
Пробы органов и тканей перед исследованием растирают в фарфоровых ступках со стерильным песком и пестиком, добавляют 3-5 мл стерильного физиологического раствора и тщательно перемешивают. Смесь переносят в пластиковые пробирки емкостью 1,5 мл, центрифугируют при 4000 об/мин в течение 5 минут. Для выделения ДНК используют 100 мкл супернатанта.
Дальнейшая работа с материалом в ПЦР проводится согласно примеру 2. В Табл. 4 приведены результаты исследования проб биоматериала в ПЦР от птицы, имеющей патологоанатомические и патогистологические изменения, характерные для инфекционной анемии цыплят с птицефабрики, неблагополучной по инфекционной анемии (№1-7), и образцы ДНК, не содержащие геном вируса инфекционной анемии цыплят(№8-10).
Таблица 4
№ п/п Наименование пробы Результат ПЦР
1 ДНК из тимуса бройлера, 43 дня +
2 ДНК из костного мозга бройлера, 43 дня +
3 ДНК из тимуса бройлера, 44 дня +
4 ДНК из тимуса бройлера, 44 дня +
5 ДНК из тимуса бройлера, 46 дней +
6 ДНК из тимуса бройлера, 46 дней +
7 ДНК из тимуса бройлера, 46 дней +
8 ДНК из тимуса бройлера -
9 ДНК из тимуса бройлера -
10 ДНК из тимуса бройлера -
11 Положительный контроль +
12 Отрицательный контроль -
Таким образом, предложенный способ выявления геномной ДНК вируса инфекционной анемии цыплят в полимеразной цепной реакции может быть использован для количественного определения вируса в тканях, а также позволяет на раннем этапе заболевания и в короткие сроки диагностировать ИАЦ и эффективно предотвращать вспышки заболевания.

Claims (2)

1. Синтетические олигонуклеотидные праймеры для выявления геномной дезоксирибонуклеиновой кислоты вируса инфекционной анемии цыплят, отличающиеся тем, что синтетические олигонуклеотидные праймеры имеют нуклеотидные последовательности: P1 - 5'-TGGTTACTATTCCATCACCATT-3' (сайт отжига 11-32 п.н.), Р2 - 5'-CGAAACGTCACTTTCGCAAC-3' (сайт отжига 259-278 п.н.).
2. Способ выявления дезоксирибонуклеиновой кислоты вируса инфекционной анемии цыплят, включающий проведение полимеразной цепной реакции с олигонуклеотидными праймерами, отличающийся тем, что праймеры имеют нуклеотидные последовательности: P1 - 5'-TGGTTACTATTCCATCACCATT-3' (сайт отжига 11-32 п.н.), Р2 - 5'-CGAAACGTCACTTTCGCAAC-3' (сайт отжига 259-278 п.н.), ограничивающие участок генома вируса, в состав которого входят CpG островки и вариабельные тандемные повторы, полимеразную цепную реакцию осуществляют в режиме реального времени, в случае появления пика кривой плавления 92°С реакцию считают положительной.
RU2011145235/10A 2011-11-07 2011-11-07 Синтетические олигонуклеотидные праймеры и способ выявления днк вируса инфекционной анемии цыплят с помощью синтетических олигонуклеотидных праймеров в полимеразной цепной реакции в режиме реального времени RU2481403C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011145235/10A RU2481403C1 (ru) 2011-11-07 2011-11-07 Синтетические олигонуклеотидные праймеры и способ выявления днк вируса инфекционной анемии цыплят с помощью синтетических олигонуклеотидных праймеров в полимеразной цепной реакции в режиме реального времени

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011145235/10A RU2481403C1 (ru) 2011-11-07 2011-11-07 Синтетические олигонуклеотидные праймеры и способ выявления днк вируса инфекционной анемии цыплят с помощью синтетических олигонуклеотидных праймеров в полимеразной цепной реакции в режиме реального времени

Publications (1)

Publication Number Publication Date
RU2481403C1 true RU2481403C1 (ru) 2013-05-10

Family

ID=48789505

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011145235/10A RU2481403C1 (ru) 2011-11-07 2011-11-07 Синтетические олигонуклеотидные праймеры и способ выявления днк вируса инфекционной анемии цыплят с помощью синтетических олигонуклеотидных праймеров в полимеразной цепной реакции в режиме реального времени

Country Status (1)

Country Link
RU (1) RU2481403C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111733292A (zh) * 2020-07-21 2020-10-02 广西壮族自治区兽医研究所 鉴定禽肾炎病毒和鸡传染性贫血病毒的引物组及其应用
CN112522447A (zh) * 2020-12-28 2021-03-19 扬州大学 一种鸡传染性贫血病病毒绝对荧光定量pcr检测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SCHOT K.A. and others «Development of strain-specific real-time PCR and RT-PCR assays for quantitation of chicken anemia virus», S Virol. Methods, 2002 mar., abstract. *
THAM K.M. and others. «Polymerase chain reaction amplification for direct detection of chicken anemia virus DNA in tissues and sera», Avian Dis., 1992. *
TODD D., KAREN A.M., MCNULTY M.S. «Detection and Differentiation of Chicken Anemia Virus Isolates by Using the Polymerase Chain Reaction», J Clin. Microbiol. Jul 1992. *
TODD D., KAREN A.M., MCNULTY M.S. «Detection and Differentiation of Chicken Anemia Virus Isolates by Using the Polymerase Chain Reaction», J Clin. Microbiol. Jul 1992. THAM K.M. and others. «Polymerase chain reaction amplification for direct detection of chicken anemia virus DNA in tissues and sera», Avian Dis., 1992. SCHOT K.A. and others «Development of strain-specific real-time PCR and RT-PCR assays for quantitation of chicken anemia virus», S Virol. Methods, 2002 mar., abstract. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111733292A (zh) * 2020-07-21 2020-10-02 广西壮族自治区兽医研究所 鉴定禽肾炎病毒和鸡传染性贫血病毒的引物组及其应用
CN112522447A (zh) * 2020-12-28 2021-03-19 扬州大学 一种鸡传染性贫血病病毒绝对荧光定量pcr检测方法

Similar Documents

Publication Publication Date Title
CA2525122C (en) Identification of clonal cells by repeats in t-cell receptor and immunoglobulin v/d/j genes
CN101182583A (zh) 一种弓形虫的检测试剂盒及其检测方法
CN108411041B (zh) 一种检测新型鸡呼肠孤病毒的荧光定量rt-pcr试剂盒及应用
RU2481403C1 (ru) Синтетические олигонуклеотидные праймеры и способ выявления днк вируса инфекционной анемии цыплят с помощью синтетических олигонуклеотидных праймеров в полимеразной цепной реакции в режиме реального времени
RU2726555C1 (ru) Тест-система для выявления ДНК ткани домашнего осла (Equus asinus) в сухих кормах и мясных полуфабрикатах
CN110607398B (zh) 一种荧光可视化快速检测猪流行性腹泻病毒的rt-lamp试剂盒
RU2703401C1 (ru) Тест-система для выявления и генотипирования РНК вируса репродуктивно-респираторного синдрома свиней
RU2710065C1 (ru) Синтетические олигонуклеотидные праймеры и способ выявления ДНК вируса АЧС методом петлевой изотермической амплификации
RU2703394C1 (ru) Способ выявления и генотипирования РНК вируса репродуктивно-респираторного синдрома свиней
RU2700481C1 (ru) Способ выявления РНК возбудителя вируса артериита у лошадей
RU2726242C1 (ru) Тест-система для выявления ДНК вируса нодулярного дерматита (LSDV) в биологическом материале животных с помощью полимеразной цепной реакции в режиме реального времени
RU2698662C1 (ru) Тест-система для выявления РНК возбудителя вируса артериита у лошадей
RU2689718C1 (ru) Способ выявления генома возбудителя ротовирусной инфекции у сельскохозяйственных животных
RU2694501C1 (ru) Тест-система для обнаружения генома возбудителя ротовируса типа А у сельскохозяйственных животных с помощью мультиплексной полимеразной цепной реакции с флуоресцентной детекцией в режиме реального времени
RU2728660C1 (ru) Способ определения ДНК вируса нодулярного дерматита (LSDV) в биологическом материале животных методом ПЦР с электрофоретической детекцией продуктов амплификации в агарозном геле
RU2714287C1 (ru) Способ определения ДНК ткани дятла (Picidae) в сухих кормах и мясных полуфабрикатах
RU2726432C1 (ru) Тест-система для определения ДНК вируса нодулярного дерматита (LSDV) в биологическом материале животных методом ПЦР с электрофоретической детекцией продуктов амплификации в агарозном геле
RU2726248C1 (ru) Способ выявления ДНК ткани домашнего осла (Equus asinus) в сухих кормах и мясных полуфабрикатах
RU2731716C1 (ru) Набор для дифференциации пестивирусов крупного рогатого скота и способ дифференциации пестивирусов крупного рогатого скота
RU2700247C1 (ru) Тест-система для выявления ДНК сальмонелл (Salmonella spp.) в биологическом материале животных, продуктах питания и кормах животного и растительного происхождения
RU2819044C1 (ru) Тест-система для выявления ДНК возбудителя моракселлеза KPC (Moraxella bovis) в биологическом материале животных и кормах с помощью полимеразной цепной реакции в режиме реального времени
RU2719719C1 (ru) Способ выявления ДНК вируса нодулярного дерматита (LSDV) в биологическом материале животных с помощью полимеразной цепной реакции в режиме реального времени
RU2700448C1 (ru) Тест-система для выявления ДНК возбудителя орнитоза (Chlamydophila psittaci) у птиц
RU2740097C1 (ru) Способ выявления генома возбудителя коронавирусной инфекции нового типа (nCov19) у приматов
RU2785381C1 (ru) Тест-система для выявления ДНК возбудителя криптоспоридиоза (Cryptosporidiosis) в биологическом материале животных и кормах с помощью полимеразной цепной реакции в режиме реального времени

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20200608