RU2480533C1 - Способ комбинированного упрочнения поверхностей деталей - Google Patents

Способ комбинированного упрочнения поверхностей деталей Download PDF

Info

Publication number
RU2480533C1
RU2480533C1 RU2011140996/02A RU2011140996A RU2480533C1 RU 2480533 C1 RU2480533 C1 RU 2480533C1 RU 2011140996/02 A RU2011140996/02 A RU 2011140996/02A RU 2011140996 A RU2011140996 A RU 2011140996A RU 2480533 C1 RU2480533 C1 RU 2480533C1
Authority
RU
Russia
Prior art keywords
coating
thickness
layer
coatings
plasma
Prior art date
Application number
RU2011140996/02A
Other languages
English (en)
Inventor
Анвар Минирович Кадырметов
Геннадий Алексеевич Сухочев
Валерий Иванович Посметьев
Вадим Олегович Никонов
Виктор Валерьевич Посметьев
Александр Федорович Мальцев
Original Assignee
Общество с ограниченной ответственностью "Доступная робототехника"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Доступная робототехника" filed Critical Общество с ограниченной ответственностью "Доступная робототехника"
Priority to RU2011140996/02A priority Critical patent/RU2480533C1/ru
Application granted granted Critical
Publication of RU2480533C1 publication Critical patent/RU2480533C1/ru

Links

Images

Abstract

Изобретение относится к области нанесения покрытий, а именно к способам комбинированного упрочнения, и может быть использовано в различных областях машиностроения и ремонтного производства для упрочнения и восстановления поверхностей деталей. Технический результат - повышение плотности порошкового покрытия, его адгезионной и когезионной прочности для широкого диапазона толщин покрытий. Способ включает формирование на поверхности детали путем плазменного напыления покрытия и его последующую электромеханическую обработку с использованием смазочно-охлаждающей жидкости. При этом формирование покрытия осуществляют послойно до необходимой суммарной толщины с толщиной каждого слоя, выбираемой из условия: hсл<hкр, где hсл - толщина слоя покрытия, hкр - толщина слоя, при котором в процессе последующей электромеханической обработки происходит отслаивание или растрескивание покрытия. После электромеханической обработки покрытие дополнительно обрабатывают струей воды высокого давления 9-10 МПа. 2 ил., 1 табл., 1 пр.

Description

Изобретение относится к области создания покрытий деталей машин и может быть использовано в различных областях машиностроения и ремонтного производства для упрочнения и восстановления поверхностей деталей с целью повышения плотности, прочности и износостойкости покрытий, нанесенных плазменным напылением.
Современной проблемой машиностроения является увеличение износостойкости деталей и узлов трения. Перспективным направлением ее решения является нанесение покрытий плазменным напылением. Однако покрытия, созданные плазменным напылением, имеют низкую прочность по сравнению с прочностью напыляемого материала, что составляет проблему надежности данных покрытий.
Известен способ гибридного процесса напыления-наплавки покрытий (Соснин Н.А. и др. Плазменные технологии. Руководство для инженеров. СПб.: Изд-во Политехн., ун-та, 2008, с.196-197), позволяющий повысить качество покрытий по сравнению с плазменным напылением за счет проплавления покрытия при меньшем нагреве детали по сравнению с плазменной наплавкой. Недостатком способа является наличие пористости, остаточных напряжений покрытия, а также необходимость припуска покрытия и чистовой операции для его снятия.
Известен способ деформационного упрочнения изделий с наплавленными покрытиями (Влияние последующей деформационной обработки на перераспределение напряжений в наплавленных валах. / В.И.Махненко и др. Автоматическая сварка, 2001, №7, с.3-6). Недостатком способа является невозможность существенного увеличения плотности покрытий вследствие затруднения выполнения пластической деформации и невозможности повышения адгезии на границе раздела покрытия с подложкой.
Известен способ термомеханического упрочнения газотермических покрытий (Яковлев К.А. Разработка процесса термомеханического упрочнения поверхностей с газотермическими покрытиями. Автореферат к.т.н. 1998). Недостатком способа является невозможность повышения адгезии на границе раздела покрытия с поверхностью детали.
Наиболее близким по технической сущности является способ комбинированного упрочнения поверхностей деталей (патент РФ №2338005, кл. С23С 4/18, В23Н 9/00), при котором на поверхность изделия плазменным напылением наносят покрытие, а затем покрытие подвергают пластическому деформированию с одновременным пропусканием электрического тока через зону контакта инструмента с покрытием. Данный способ позволяет его использовать для ограниченных по величине толщин покрытий порядка 0,2-0,4 мм, при превышении которых покрытие вследствие наличия в нем высоких остаточных напряжений и хрупкости может растрескиваться и отслаиваться. Для покрытий толщиной более 0,2-0,4 мм данный способ является более трудоемким и требующим дополнительных затрат энергии, так как осуществляется путем кратного повторения двух последовательных операций напыления, а затем упрочнения.
Таким образом, известные способы упрочнения покрытий пластическим деформированием имеют недостатки, связанные с малым увеличением плотности плазменного покрытия и его прочности, или имеют ограничение использования по величине толщин упрочняемых покрытий и повышенными энергозатратами.
В этой связи важнейшей задачей является создание нового ресурсосберегающего способа упрочнения плазменных покрытий.
Техническим результатом является повышение плотности порошкового покрытия, его адгезионной и когезионной прочности, пригодного для широкого диапазона толщин покрытий.
Технический результат достигается тем, что в способе комбинированного упрочнения поверхностей деталей, включающем формирование на поверхности детали путем плазменного напыления покрытия и его последующую электромеханическую обработку с использованием смазочно-охлаждающей жидкости, согласно изобретению нанесение и электромеханическую обработку покрытия осуществляют послойно до необходимой суммарной толщины с толщиной каждого слоя, выбираемой из условия: hсл<hкр, где hсл - толщина слоя покрытия, hкр - значение толщины слоя, при котором в процессе его электромеханической обработки происходит отслаивание или растрескивание покрытия, а после электромеханической обработки покрытие дополнительно обрабатывают струей воды высокого давления 9-10 МПа.
На фиг.1 показана схема комбинированного процесса плазменного напыления покрытия с его одновременной электромеханической обработкой на примере цилиндрической детали. На фиг.2 представлена схема напыленных и упрочненных поверхностных слоев.
Предлагаемый способ комбинированного упрочнения поверхностей деталей реализуется плазменным напылением покрытия 1 на деталь 2 с помощью плазменной струи 3 плазмотрона 4 с одновременной электромеханической обработкой напыляемого покрытия 1 с помощью ролика 5, обкатывающего покрытие с прижимным усилием F. В результате подвода тепла к покрытию при его напылении от плазменной струи и выделения джоулева тепла в зоне контакта ролика с покрытием происходит нагрев покрытия в этой зоне и последующий быстрый теплоотвод в деталь 2, в том числе и за счет охлаждения струей 6 смазочно-охлаждающей жидкости 7. При этом за счет действия деформирующей силы происходит высокотемпературная пластическая деформация покрытия, в результате которой заполняются поры покрытия, увеличивается его плотность и прочность. Нагрев детали плазменной струей 3 позволяет уменьшить энергозатраты электромеханической обработки покрытия и снижает вероятность хрупкого разрушения покрытия за счет того, что покрытие перед тепловым ударом и деформацией от ролика 5 имеет более высокую температуру и более пластично. Процесс осуществляется послойно с толщиной каждого слоя меньше критического значения, при котором остаточные напряжения приводят к растрескиванию и отслаиванию покрытия до нанесения необходимой суммарной толщины покрытия. Для смыва остатков смазочно-охлаждающей жидкости от струи 6 после зоны электромеханического воздействия на покрытие поверхность обрабатывается струей воды высокого давления 8 от форсунки 9.
При прохождении электрического тока через первый слой покрытия образуются два источника тепла. Первый - в зоне контакта деформирующего инструмента 5 с покрытием 1, который нагревает компоненты покрытия и вследствие этого увеличивает их пластические свойства, обеспечивает пластическую деформацию до состояния заполнения пор в покрытии и тем самым ведет к увеличению плотности и когезионной прочности покрытия. Второй тепловой источник образуется на границе 10 покрытия 1 и детали 2 вследствие высокого электрического сопротивления в данной зоне и обеспечивает условия высокой адгезионной прочности покрытия.
При нанесении второго и последующих слоев добавляются границы между слоями 11, представляющие собой дополнительные электрические сопротивления и, соответственно, источники тепла, обеспечивающие более благоприятные условия разрушения окислов в границах 11 и высокой прочности соединения слоев между собой.
Величина деформирующего усилия F для первого слоя покрытия может быть определена из условия обеспечения пластической деформации на глубину, равную толщине этого слоя покрытия для достижения максимальной плотности слоя покрытия и его когезионной прочности так же, как в прототипе (формула (1) патента №2338005):
Figure 00000001
где p - контактное давление, определяемое из условия протекания пластической деформации на глубину, равную толщине нанесенного порошкового покрытия:
Figure 00000002
где Нµ покр - микротвердость порошкового покрытия, МПа; Ak - площадь контакта инструмента с обрабатываемой поверхностью порошкового покрытия:
где Δhпокр=hпокр·(1-ψ) - изменение толщины порошкового покрытия в результате пластической деформации; R, r - радиусы рабочего профиля деформирующего инструмента; ρ - радиус кривизны обрабатываемой поверхности порошкового покрытия; ψ - пористость порошкового покрытия.
Температуру нагрева на границе первого слоя покрытия 1 с поверхностью детали 2 так же, как и для прототипа, обеспечивают в интервале 900-1200°С для формирования благоприятных условий взаимной диффузии элементов покрытия и предотвращения повышенной зернистости структуры, что ведет к увеличению прочности покрытия. Температуру обеспечивают необходимой величиной силы электрического тока J, пропускаемого через зону контакта инструмента с покрытием, пропорционального плотности тока i и площади Ак контакта инструмента с обрабатываемой поверхностью покрытия. Температуру на границах между слоями покрытия также обеспечивают в интервале температур 900-1200°С. Для этого с момента времени наступления нанесения второго и последующих слоев покрытия плотность электрического тока ступенчато увеличивают пропорционально суммарному электрическому сопротивлению между роликом 5 и металлом детали 2. При этом нагрев детали плазменной струей 3 позволяет уменьшить энергозатраты электромеханической обработки покрытия и снижает вероятность хрупкого разрушения покрытия за счет того, что покрытие перед тепловым ударом и деформацией от ролика 5 имеет более высокую температуру и более пластично в сравнении со способом у прототипа.
Реализация предложенного способа осуществляется по следующим этапам.
Определяются исходные толщина h, микротвердость Нµ и пористость ψ первого слоя покрытия. Толщина слоя определяется из условия отсутствия его растрескивания и отслаивания.
Определяют величину изменения толщины Δh(h,ψ) покрытия 1 в результате пластической деформации, обеспечивающей заполнение пор.
Рассчитывают площадь контакта Ак(Δh) инструмента (ролика из токопроводящего материала) с поверхностью покрытия (например, по формуле в прототипе).
Определяют величину деформирующего усилия F произведением площади контакта Ак на контактное давление Р(Hµ), обеспечивающее протекание пластической деформации на глубину, равную толщине слоя покрытия.
Устанавливают необходимую величину плотности электрического тока i из условия достижения температуры 900-1200°С на границе 10 раздела поверхности детали с покрытием 1 и устанавливают электрический ток I=i·Aк.
Аналогично рассчитывают параметры для комбинированного нанесения-упрочнения второго и последующих слоев.
На поверхность изделия плазменным напылением послойно наносят покрытие 1 при одновременной электромеханической обработке с рассчитанными режимными параметрами, ступенчато изменяющимися при нанесении и упрочнении каждого последующего слоя. При этом осуществляется высокотемпературная пластическая деформация покрытия, обеспечивающая высокую плотность и прочность покрытия толщиной 1,0 и более миллиметров. Кроме того, нагрев детали плазменной струей 3 позволяет уменьшить энергозатраты электромеханической обработки покрытия и снизить вероятность хрупкого разрушения покрытия за счет того, что покрытие перед тепловым ударом и деформацией от ролика 5 имеет необходимую высокую температуру и достаточно пластично.
Пример: по предложенному способу осуществляли обработку партии цилиндрических образцов из стали 45 ГОСТ 1050-74, твердостью НВ 225-240, шероховатостью Rz 20, диаметром 40 мм и длиной 150 мм. Наносили плазменным напылением и электромеханически обрабатывали: порошковое покрытие ПГСР-4 (основа - Ni, Cr 25%, Si 4,2%, В 4% и др.) и порошковое покрытие ПГС-27 (основа - Fe, Cr 25%, С 4,4%, Mn 1,3%, Ni 1,7%, Si 1,7% и др.). Покрытие наносили слоями толщиной каждого слоя 0,15-0,2 мм до общей толщины 1,0-1,1 мм. Плазменное напыление осуществляли на режимах: мощность микро-плазматрона - 1,5 кВт, дистанция напыления - 20 мм, расход плазмообразующего аргона - 2,5 л/мин, расход напыляемого порошка - 25 г/ч, скорость вращения образцов - 0,03 м/с, продольная подача плазмотрона - 0,1 мм/об.
В процессе напыления покрытия осуществляли его электромеханическую обработку обкаткой роликом из твердого сплава ВК8 с радиусами рабочего профиля r=36 и R=4 мм. Усилие обкатки обеспечивали равным 1 кН. Скорость обкатки и продольную подачу обеспечивали такими же, как и для плазменного напыления (соответственно 0,03 м/с и 0,1 мм/об). Охлаждение зоны обкатки осуществляли 10% раствором эмульсола Экол-1 (моющее средство «Эковеста» ТУ 301-04-022-92) с расходом 0,5 л/мин, а смыв его остатков - струей воды высокого давления с параметрами: расход 4,5 л/мин, давление перед форсункой 9 МПа. Плотность электрического тока электромеханической обработки обеспечивали равной 350-400 А/мм2 при напряжении 3-5 В.
Результаты обработки по предложенному способу оценивали путем металлографического анализа и измерением микротвердости на поверхности и по толщине покрытия (табл.).
№ п/п Материал покрытия Микротвердость
Figure 00000003
, МПа
Отклонение Sск, МПа Коэффициент вариации k
До обработки После обработки Прирост, % До обработки После обработки До обработки После обработки
1 ПГСР-4 12192 17486 43,4 2045 2958 0,168 0,169
2 ПГС-27 11242 13226 17,7 2519 1844 0,224 0,139
Результаты исследований показали увеличение микротвердости на 18-43%, снижение пористости на 19-20% (поры практически отсутствуют в покрытии и на границе раздела с поверхностью детали), что является подтверждением повышения когезионной и адгезионной прочности покрытия.

Claims (1)

  1. Способ комбинированного упрочнения поверхности детали, включающий формирование на поверхности детали путем плазменного напыления покрытия и его последующую электромеханическую обработку с использованием смазочно-охлаждающей жидкости, отличающийся тем, что формирование покрытия осуществляют послойно до необходимой суммарной толщины с толщиной каждого слоя, выбираемой из условия: hсл<hкр, где hсл - толщина слоя покрытия, hкр - толщина слоя, при котором в процессе последующей электромеханической обработки происходит отслаивание или растрескивание покрытия, а после электромеханической обработки покрытие дополнительно обрабатывают струей воды высокого давления 9-10 МПа.
RU2011140996/02A 2011-10-11 2011-10-11 Способ комбинированного упрочнения поверхностей деталей RU2480533C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011140996/02A RU2480533C1 (ru) 2011-10-11 2011-10-11 Способ комбинированного упрочнения поверхностей деталей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011140996/02A RU2480533C1 (ru) 2011-10-11 2011-10-11 Способ комбинированного упрочнения поверхностей деталей

Publications (1)

Publication Number Publication Date
RU2480533C1 true RU2480533C1 (ru) 2013-04-27

Family

ID=49153162

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011140996/02A RU2480533C1 (ru) 2011-10-11 2011-10-11 Способ комбинированного упрочнения поверхностей деталей

Country Status (1)

Country Link
RU (1) RU2480533C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2677906C1 (ru) * 2017-11-03 2019-01-22 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ комбинированного упрочнения поверхностей деталей

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054106A (ja) * 1998-08-10 2000-02-22 Mitsubishi Heavy Ind Ltd 溶射皮膜の処理方法
RU2199604C2 (ru) * 2001-04-06 2003-02-27 Полетаев Александр Валерьянович Способ восстановления изделия и устройство для его осуществления
RU2338005C2 (ru) * 2006-12-20 2008-11-10 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Способ комбинированного упрочнения поверхностей деталей
RU2402628C1 (ru) * 2009-03-23 2010-10-27 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУВПО "КубГТУ") Установка для получения наноструктурированных покрытий деталей с цилиндрической поверхностью с эффектом памяти формы
CN101994079A (zh) * 2010-09-27 2011-03-30 江阴东大新材料研究院 在轴类零件表面制备高致密度涂层的喷涂-旋压方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054106A (ja) * 1998-08-10 2000-02-22 Mitsubishi Heavy Ind Ltd 溶射皮膜の処理方法
RU2199604C2 (ru) * 2001-04-06 2003-02-27 Полетаев Александр Валерьянович Способ восстановления изделия и устройство для его осуществления
RU2338005C2 (ru) * 2006-12-20 2008-11-10 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Способ комбинированного упрочнения поверхностей деталей
RU2402628C1 (ru) * 2009-03-23 2010-10-27 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУВПО "КубГТУ") Установка для получения наноструктурированных покрытий деталей с цилиндрической поверхностью с эффектом памяти формы
CN101994079A (zh) * 2010-09-27 2011-03-30 江阴东大新材料研究院 在轴类零件表面制备高致密度涂层的喷涂-旋压方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2677906C1 (ru) * 2017-11-03 2019-01-22 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ комбинированного упрочнения поверхностей деталей

Similar Documents

Publication Publication Date Title
CN102465294B (zh) 一种大面积激光熔覆高硬度镍基合金材料的方法
CN104911552B (zh) 一种热挤压模具渗镀复合表面强化方法
JP6084996B2 (ja) 低温セラミックスコーティングの密着力強化方法
Nair et al. A study on in-situ synthesis of TiCN metal matrix composite coating on Ti–6Al–4V by laser surface alloying process
US20150181685A1 (en) Thermal Plasma Treatment Method
RU2718793C1 (ru) Способ получения сверхтвердых износостойких покрытий с низким коэффициентом трения
EP2811211A2 (en) Valve apparatus and method of manufacturing the same
CN110052779B (zh) 轴类零件高性能表面复合强化方法
CN113151827B (zh) 具有多级岛状结构耐磨涂层及其制备方法
KR101722239B1 (ko) 열용사코팅 및 초음파 나노크리스탈 표면개질을 이용한 표면처리방법
Schubert et al. Manufacturing of surface microstructures for improved tribological efficiency of powertrain components and forming tools
Kovací et al. Effect of plasma nitriding parameters on the wear resistance of alloy Inconel 718
CN107974682B (zh) 一种压铸模具表面强化和修复再制造的方法
CN102333907A (zh) 层体系以及用于制造层体系的涂覆方法
RU2480533C1 (ru) Способ комбинированного упрочнения поверхностей деталей
Yao et al. Study on structure and process performance of laser cladding nickel-based coating
RU75350U1 (ru) Инструмент деформации для прессования профилей из титановых сплавов
CN109182983A (zh) 一种用于硬质合金旋转锉表面制备TiAlSiN涂层的方法
CN106191790A (zh) 耐磨涂层的制备方法
RU2338005C2 (ru) Способ комбинированного упрочнения поверхностей деталей
CN103725858A (zh) 一种图案化均匀氧化铬薄膜的光化学原位制备方法
Singh et al. Microstructure, micro-hardness and tensile properties of Ti6Al4V manufactured by high layer-thickness wire-feed multi-laser directed energy deposition
RU2605717C1 (ru) Способ получения многослойных композитных покрытий
RU2709550C1 (ru) Способ получения упрочненного никельхромборкремниевого покрытия на металлических деталях
RU2677906C1 (ru) Способ комбинированного упрочнения поверхностей деталей

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141012