RU2478103C1 - Способ получения сетчатого полимерного сорбента для селективного выделения антибиотика эритромицина - Google Patents

Способ получения сетчатого полимерного сорбента для селективного выделения антибиотика эритромицина Download PDF

Info

Publication number
RU2478103C1
RU2478103C1 RU2011141924/04A RU2011141924A RU2478103C1 RU 2478103 C1 RU2478103 C1 RU 2478103C1 RU 2011141924/04 A RU2011141924/04 A RU 2011141924/04A RU 2011141924 A RU2011141924 A RU 2011141924A RU 2478103 C1 RU2478103 C1 RU 2478103C1
Authority
RU
Russia
Prior art keywords
erythromycin
monomer
mol
sorbent
cross
Prior art date
Application number
RU2011141924/04A
Other languages
English (en)
Inventor
Олег Александрович Писарев
Надежда Михайловна Ежова
Ирина Сергеевна Гаркушина
Original Assignee
Учреждение Российской академии наук Институт высокомолекулярных соединений РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт высокомолекулярных соединений РАН filed Critical Учреждение Российской академии наук Институт высокомолекулярных соединений РАН
Priority to RU2011141924/04A priority Critical patent/RU2478103C1/ru
Application granted granted Critical
Publication of RU2478103C1 publication Critical patent/RU2478103C1/ru

Links

Abstract

Настоящее изобретение относится к способу получения сетчатого гидрофильного полимерного сорбента для селективной сорбции эритромицина из культуральной среды, включающий радикальную сополимеризацию неионогенного мономера, мономера-шаблона и сшивающего агента в присутствии редокс-системы (персульфат аммония - аскорбиновая кислота - 1 мас.% к весу мономеров), отличающийся тем, что в качестве неионогенного мономера используют 2-гидроксиэтилметакрилат, в качестве мономера-шаблона - метакрилат эритромицина, а в качестве сшивающего агента - диметакрилат этиленгликоля, и сополимеризацию проводят при комнатной температуре в инертной атмосфере в 50% водном изопропаноле при концентрации сомономеров в растворе 20 мас.%, содержании сшивающего агента 25 мол.% и соотношении неионогенный мономер:мономер-шаблон 72-3:60-15 мол.%. Технический результат - получение сорбента, обладающего высокой сорбционной емкостью по эритромицину. 1 табл., 5 прим.

Description

Изобретение относится к химии высокомолекулярных соединений, а конкретно к получению сетчатых полимеров, обладающих высокой селективностью сорбции к целевым молекулам-мишеням биологически активных веществ (БАВ).
Эритромицин относится к классу антибиотиков-макролидов широкого спектра действия. Эритромицин активен в отношении грамположительных и некоторых видов грамотрицательных микроорганизмов, спирохет и простейших.
Токсичность эритромицина невелика, поэтому препарат нашел широкое клиническое применение при лечении кокковых инфекций. Лучшие результаты были показаны при лечении инфекций, вызванных стрептококками, стафилококками и гонококками. Этот антибиотик включен в перечень «Жизненно необходимых и важнейших лекарственных средств РФ».
Существующая на сегодняшний день промышленная схема выделения эритромицина из культуральной жидкости предполагает экстракцию антибиотика значительными объемами органических растворителей, что приводит к пожаро- и экологической опасности такой технологии.
Известны различные сорбционные схемы выделения эритромицина с использованием различных по структуре и химической природе поликонденсационных сорбентов. Для этой цели использовались иониты КФУ и КФУХ (поликонденсационные иониты на основе формальдегида и простых эфиров фенола, содержащих карбоксильные группы), которые по отношению к антибиотикам эритромицину, неомицину, стрептомицину и др. имели высокие константы избирательности сорбции (С.Ф.Клих, Г.Э.Елькин, Г.В.Самсонов. Кинетика сорбции эритромицина ионитами. // Хим. - фарм. журн. 1976. Т.? №2. C.115-119).
Однако применение конденсационных сорбентов в настоящее время запрещено ввиду их высокой токсичности.
Известны работы по изучению сорбции эритромицина на сорбентах марки Amberlite: XAD-4 (молекулярный сорбент), XAD-16 (молекулярный сорбент), IRA-410 (анионообменник) и IR-120 (катионообменник). (M.H.L.Ribeiro, I.A.C.Ribeiro Modelling the adsorption kinetic of erythromycin onto neutral and anionic resins. // Bioprocess Biosyst Eng. 2003. Т.26. №1. Р.49-55. M.H.L.Ribeiro, I.A.C.Ribeiro Recovery of erythromycin from fermentation broth by adsorption onto neutral and ion-exchange resins. // Separation and Purification Technology. 2005 T.45. №2. Р.232-239).
Существенными и очевидными недостатками применения данных сорбентов являются незначительная сорбционная емкость, крайне низкая избирательность и невысокие кинетические характеристики по отношению к эритромицину.
Наиболее близким является способ синтеза карбоксильного катионита на основе метакриловой кислоты (МАК), диметакрилата этиленгликоля (ДМЭГ) в качестве кроссагента и вводимой в мономерную смесь специально синтезированной соли - метакрилата эритромицина (МЭ) (Писарев О.А., Ежова Н.М., Гаркушина И.С. Взаимодействие эритромицина с полимерными сорбентами, «настроенными» на молекулу антибиотика. // Ж. физ. химии. 2009. Т.83. №1. С.142-147), согласно которому радикальная сополимеризация МАК и МЭ проводилась в ампулах в токе аргона при комнатной температуре в присутствии 1% окислительно-восстановительной системы: персульфат аммония - аскорбиновая кислота в качестве инициатора и 12 мол.% ДМЭГ в качестве кросс-агента. Затем образцы заливались десятикратным избытком 1н HCl на 10-12 часов для разрушения МЭ и переведения хлорида эритромицина в раствор. Далее образцы промывались дистиллированной водой и последовательно обрабатывались десятикратным избытком 0,5н NaOH для удаления непрореагировавших мономеров, водой и 0,5н HCl, а далее отмывались водой до нейтральной реакции по метилоранжу. Для дальнейших исследований использовалась фракция с размером зерен 125-300 мкм.
Основным существенным недостатком прототипа является низкая специфичность сорбции, обусловленная наличием в матрице сорбента как молекулярных отпечатков эритромицина, так и свободных карбоксильных групп, способных к ионообменному неспецифичному взаимодействию с молекулами веществ, присутствующих в многокомпонентной культуральной среде. Кроме того, при содержании мономера-шаблона (МЭ) в полимеризационной смеси более 15 мол.% получали сорбенты с малым выходом и низкой механической прочностью.
Технической задачей и положительным результатом заявляемого изобретения является разработка способа синтеза нового сшитого полимерного сорбента на основе неионогенного мономера 2-гидрокиэтилметакрилата (ГЭМА), МЭ и ДМЭГ. Предлагаемый способ позволяет получать сорбенты с максимальной специфичностью сорбции эритромицина и не содержащих других функциональных групп.
Указанная задача и результат в изобретении достигается реализацией предлагаемого способа получения сетчатого полимерного сорбента, при котором сополимеризуют мономеры ГЭМА, МЭ и сшивающий агент ДМЭГ в 50% водном растворе изопропанола при концентрации мономеров, равной 20%. В качестве инициатора радикальной сополимеризации используют редокс-систему персульфат аммония-аскорбиновая кислота в количестве 1% к весу мономеров. Сополимеризацию осуществляли в инертной атмосфере аргона при комнатной температуре. Способ реализуют при соотношениях ГЭМА:МЭ = 72:3-60:15 мол.% при 25 мол.% ДМЭГ.
Указанные отличительные признаки предлагаемого способа являются существенными, а предлагаемый способ получения сетчатого полимерного биорецептора эритромицина имеет очевидные преимущества перед прототипом.
Анализ уровня техники не выявил технические решения, в которых была бы использована вся совокупность существенных признаков заявленного способа. Это свидетельствует о соответствии условиям патентоспособности: «новизна» и «изобретательский уровень».
Заявляемым способом можно получать сетчатые полимеры в виде сшитых полимерных частиц с выходом по сомономерам от 45 до 95%. Размер частиц задают фракционированием.
Существенность новизны признаков способа подтверждается следующим.
При использовании в качестве растворителя водного изопропанола (ИПС) менее 50% не удается ввести в мономерную смесь 25 мол.% ДМЭГ. При концентрации изопропанола более 50% компоненты полимеризационной смеси не растворяются.
При концентрации мономеров 20 мас.% достигается максимальная пористость системы при сохранении механической прочности. При количестве ДМЭГ ниже 25 мол.% наблюдается существенное снижение выхода сополимера, а увеличение до 30 мол.% приводит к образованию сополимера с низкой насыпной плотностью, непригодного к использованию в колоночном режиме.
При содержании МЭ ниже 3 мол.% наблюдается снижение специфичности сорбции антибиотика, а при содержании МЭ больше 15 мол.% - снижение механической прочности сорбента.
Полученные сополимеры не содержат определяемые известными аналитическими методами остаточные мономеры и иные низкомолекулярные примеси.
Для доказательства соответствия заявленного способа условию патентоспособности - «промышленная применимость» и для полного раскрытия сущности заявленного изобретения приводятся примеры его конкретного осуществления.
Пример 1. В стеклянный стакан емкостью 200 мл загружают 3,75 г МЭ (0,0046 моль), 14,20 г (0,1092 моль) ГЭМА и 7,51 г (0,0379 моль) ДМЭГ, что соответствует соотношению ГЭМА:МЭ = 72:3 мол.% и 25 мол.% ДМЭГ. Далее в реакционный сосуд добавляют 101,7 мл 50% водного раствора ИПС, что соответствует концентрации мономеров, равной 20%. Через капилляр в склянку подается аргон до полного растворения мономеров. После этого поочередно добавляется аскорбиновая кислота 0,2543 г, после растворения которой добавляется персульфат аммония (0,3306 г), что соответствует 1% к массе мономеров. После завершения реакции и окончанию экзотермического процесса образовавшийся блок прогревают на водяной бане (90°C) в течении 1 часа. Полученный блок полимера выгружают из сосуда, дробят и промывают от остаточных мономеров в начале пятикратным объемом 0,5н раствора едкого натра, затем водой до нейтральной реакции, после чего помещают в аппарат Сокслета для экстракции эритромицина этанолом. Полноту удаления контролируют по окрашиванию метилрота. После полного удаления эритромицина сополимер переводят в водородную форму обработкой трехкратным объемом 0,5н соляной кислоты, отмывают водой до нейтральной реакции, фракционируют. Выход конечного продукта 21,0 г или 95% по сомономерам. Полученный по заявленному способу сорбент характеризуется значительной равновесной емкостью сорбции по эритромицину (3800 мг/г).
Пример 2. В склянку емкостью 200 мл загружают 7,54 г МЭ (0,0092 моль), 13,75 г (0,1058 моль) ГЭМА и 7,59 г (0,0383 моль) ДМЭГ, что соответствует соотношению ГЭМА:МЭ = 69:6 мол.% и 25 мол.% ДМЭГ. Далее в реакционный сосуд добавляют 115,7 мл 50% водного раствора ИПС, что соответствует концентрации мономеров, равной 20%. Через капилляр в склянку подается аргон до полного растворения мономеров. После этого поочередно добавляется аскорбиновая кислота 0,2889 г, после растворения которой добавляется персульфат аммония (0,3755 г), что соответствует 1% к массе мономеров. Далее как в примере 1. Выход конечного продукта 16,5 г (70%). Полученный по заявленному способу сорбент характеризуется значительной равновесной емкостью сорбции по эритромицину (3500 мг/г).
Пример 3. В склянку емкостью 200 мл загружают 11,48 г МЭ (0,0140 моль), 13,34 г (0,1027 моль) ГЭМА и 7,70 г (0,0389 моль) ДМЭГ, что соответствует соотношению ГЭМА:МЭ = 66:9 мол.% и 25 мол.% ДМЭГ. Далее в реакционный сосуд добавляют 130,1 мл 50% водного раствора ИПС, что соответствует концентрации мономеров, равной 20%. Через капилляр в склянку подается аргон до полного растворения мономеров. После этого поочередно добавляется аскорбиновая кислота 0,3253 г, после растворения которой добавляется персульфат аммония (04228 г), что соответствует 1% к массе мономеров. Далее как в примере 1. Выход конечного продукта 11,9 (53%). Полученный по заявленному способу сорбент характеризуется значительной равновесной емкостью сорбции по эритромицину (3700 мг/г).
Пример 4. В склянку емкостью 200 мл загружают 15,32 г МЭ (0,0187 моль), 12,76 г (0,0982 моль) ГЭМА и 7,71 г (0,0390 моль) ДМЭГ, что соответствует соотношению ГЭМА:МЭ = 63:12 мол.% и 25 мол.% ДМЭГ. Далее в реакционный сосуд добавляют 143,2 мл 50% водного раствора ИПС, что соответствует концентрации мономеров, равной 20%. Через капилляр в склянку подается аргон до полного растворения мономеров. После этого поочередно добавляется аскорбиновая кислота 0,3581 г, после растворения которой добавляется персульфат аммония (0,4655 г), что соответствует 1% к массе мономеров. Далее как в примере 1. Выход конечного продукта 11,7 г (53%). Полученный по заявленному способу сорбент характеризуется значительной равновесной емкостью сорбции по эритромицину (3500 мг/г).
Пример 5. В склянку емкостью 200 мл загружают 19,43 г МЭ (0,0237 моль), 12,32 г (0,0948 моль) ГЭМА и 7,82 г (0,0395 моль) ДМЭГ, что соответствует соотношению ГЭМА:МЭ = 60:15 мол.% и 25 мол.% ДМЭГ. Далее в реакционный сосуд добавляют 158,3 мл 50% водного раствора ИПС, что соответствует концентрации мономеров, равной 20%. Через капилляр в склянку подается аргон до полного растворения мономеров. После этого поочередно добавляется аскорбиновая кислота 0,3958 г, после растворения которой добавляется персульфат аммония (0,5145 г), что соответствует 1% к массе мономеров. Далее как в примере 1. Выход конечного продукта 9,9 г (45%). Полученный по заявленному способу сорбент характеризуется значительной равновесной емкостью сорбции по эритромицину (3800 мг/г).
Данные конкретных примеров синтеза и сорбционных свойств сополимеров приведены в таблице:
Таблица
M1/M2 ПОЕ Q Kн ρ q
1 72/3 0,28 95 6,2 0,75 3800
2 69/6 0,50 75 3,0 0,77 3500
3 66/9 0,62 53 3,0 0,75 3700
4 63/12 0,78 53 2,5 0,76 3500
5 60/15 0,87 45 2,5 0,76 3800
где: M1 - ГЭМА, мол.%; M2 - МЭ, мол.%; ПОЕ - полная обменная емкость по карбоксильным группам, мг-экв/г; Q - экспериментальный выход по мономерам, мас.%; Kн - коэффициент набухания в воде; ρ - насыпная плотность сорбента, г/см3; q - равновесная сорбционная емкость сорбента по эритромицину, мг/г.

Claims (1)

  1. Способ получения сетчатого гидрофильного полимерного сорбента для селективной сорбции эритромицина из культуральной среды, включающий радикальную сополимеризацию неионогенного мономера, мономера-шаблона и сшивающего агента в присутствии редокс-системы (персульфат аммония - аскорбиновая кислота - 1 мас.% к весу мономеров), отличающийся тем, что в качестве неионогенного мономера используют 2-гидроксиэтилметакрилат, в качестве мономера-шаблона - метакрилат эритромицина, а в качестве сшивающего агента диметакрилат этиленгликоля и сополимеризацию проводят при комнатной температуре в инертной атмосфере в 50% водном изопропаноле при концентрации сомономеров в растворе 20 мас.%, содержании сшивающего агента 25 мол.% и соотношении неионогенный мономер:мономер-шаблон 72-3:60-15 мол.%.
RU2011141924/04A 2011-10-18 2011-10-18 Способ получения сетчатого полимерного сорбента для селективного выделения антибиотика эритромицина RU2478103C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011141924/04A RU2478103C1 (ru) 2011-10-18 2011-10-18 Способ получения сетчатого полимерного сорбента для селективного выделения антибиотика эритромицина

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011141924/04A RU2478103C1 (ru) 2011-10-18 2011-10-18 Способ получения сетчатого полимерного сорбента для селективного выделения антибиотика эритромицина

Publications (1)

Publication Number Publication Date
RU2478103C1 true RU2478103C1 (ru) 2013-03-27

Family

ID=49151431

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011141924/04A RU2478103C1 (ru) 2011-10-18 2011-10-18 Способ получения сетчатого полимерного сорбента для селективного выделения антибиотика эритромицина

Country Status (1)

Country Link
RU (1) RU2478103C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143910A (zh) * 2007-11-01 2008-03-19 上海交通大学 红霉素分子印迹聚合物的制备方法
CN101148464A (zh) * 2007-11-01 2008-03-26 上海交通大学 利用分子印迹聚合物净化红霉素的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143910A (zh) * 2007-11-01 2008-03-19 上海交通大学 红霉素分子印迹聚合物的制备方法
CN101148464A (zh) * 2007-11-01 2008-03-26 上海交通大学 利用分子印迹聚合物净化红霉素的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
I.S.Garkushina, N.M.Ezhova, О.А.Pisarev "Dependence of Equilibrium and Kinetic Parameters of Erythromycin A Sorption on the Structural Characteristics of the Biosorbent" APPLIED BIOCHEMISTRY AND MICROBIOLOGY, vol.42, №4, 2006, PP.360-363. Ежова Н.М., Гаркушина И.С., Писарев О.А. Молекулярно-импринтированные гидрофильные сорбенты для селективной сорбции эритромицина. - Прикладная биохимия и микробиология, 2011, т.47, №6, с.694-698. *
Писарев О.А., Ежова Н.М., Гаркушина И.С. Взаимодействие эритромицина с полимерными сорбентами, "настроенными" на молекулу антибиотика. - ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2009, том 83, №1, с.142-146. *

Similar Documents

Publication Publication Date Title
Qi et al. Fabrication of a new polysaccharide-based adsorbent for water purification
Hernandez-Martínez et al. Swelling and methylene blue adsorption of poly (N, N-dimethylacrylamide-co-2-hydroxyethyl methacrylate) hydrogel
Cai et al. Molecularly-imprinted polymers selective for tetracycline binding
Kundakci et al. Swelling and dye sorption studies of acrylamide/2-acrylamido-2-methyl-1-propanesulfonic acid/bentonite highly swollen composite hydrogels
Al-Karawi et al. Synthesis, characterization of acrylamide grafted chitosan and its use in removal of copper (II) ions from water
CA2523246C (en) Formation of strong superporous hydrogels
Dragan et al. Multi-stimuli-responsive semi-IPN cryogels with native and anionic potato starch entrapped in poly (N, N-dimethylaminoethyl methacrylate) matrix and their potential in drug delivery
Goh et al. Cross-linked poly (methacrylic acid-co-poly (ethylene oxide) methyl ether methacrylate) microspheres and microgels prepared by precipitation polymerization: a morphology study
CN1042434C (zh) 交联甲基丙烯酸酐共聚物
EP2205672B1 (en) Non-ionic porous, small solid resin with chemically bonded crown ether
US8362173B2 (en) Polymer capable of adsorbing acidic water-soluble target substance, and method for production of the polymer
JP2896571B2 (ja) 複合化分離剤及びその製造法
Han et al. β-Cyclodextrin functionalized polystyrene porous monoliths for separating phenol from wastewater
JP2018131585A (ja) 分子インプリントポリマー、その製造方法、及びその分子インプリントポリマーを用いた目的物質の分離方法
Lungan et al. Complex microparticulate systems based on glycidyl methacrylate and xanthan
Lu et al. Preparation and characterization of molecularly imprinted poly (hydroxyethyl methacrylate) microspheres for sustained release of gatifloxacin
RU2361884C2 (ru) Водорастворимые полимеры, содержащие винильную ненасыщенность, их сшивание и способ их получения
Cao et al. A cellulose-based temperature sensitivity molecular imprinted hydrogel for specific recognition and enrichment of paclitaxel
Ni et al. Preparation of Amphoteric Microgels of Poly (acrylamide/methacrylic acid/dimethylamino ethylene methacrylate) with a Novel pH− Volume Transition
Karadağ et al. Swelling characterization of acrylamide/zinc acrylate/xanthan gum/sepiolite hybrid hydrogels and Its application in sorption of janus green B from aqueous solutions
Yan et al. Synthesis of microporous cationic hydrogel of hydroxypropyl cellulose (HPC) and its application on anionic dye removal
Perçin et al. RNA purification from Escherichia coli cells using boronated nanoparticles
KR20120094548A (ko) 음이온 교환성 고분자로 코팅된 탄소전극 제조 방법
JP5443682B2 (ja) ヒドロキシ基又は第1級アミノ基を有する多孔質樹脂粒子とその製造方法
RU2478103C1 (ru) Способ получения сетчатого полимерного сорбента для селективного выделения антибиотика эритромицина