RU2477555C2 - Устройство электропитания для непосредственного электрического нагрева системы трубопровода - Google Patents

Устройство электропитания для непосредственного электрического нагрева системы трубопровода Download PDF

Info

Publication number
RU2477555C2
RU2477555C2 RU2011115102/07A RU2011115102A RU2477555C2 RU 2477555 C2 RU2477555 C2 RU 2477555C2 RU 2011115102/07 A RU2011115102/07 A RU 2011115102/07A RU 2011115102 A RU2011115102 A RU 2011115102A RU 2477555 C2 RU2477555 C2 RU 2477555C2
Authority
RU
Russia
Prior art keywords
phase
transformer
capacitor
power supply
capacitor means
Prior art date
Application number
RU2011115102/07A
Other languages
English (en)
Other versions
RU2011115102A (ru
Inventor
Дамир РАДАН
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2011115102A publication Critical patent/RU2011115102A/ru
Application granted granted Critical
Publication of RU2477555C2 publication Critical patent/RU2477555C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/14Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion between circuits of different phase number
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L53/00Heating of pipes or pipe systems; Cooling of pipes or pipe systems
    • F16L53/30Heating of pipes or pipe systems
    • F16L53/35Ohmic-resistance heating
    • F16L53/37Ohmic-resistance heating the heating current flowing directly through the pipe to be heated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • H01F29/04Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings having provision for tap-changing without interrupting the load current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/03Heating of hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • General Induction Heating (AREA)

Abstract

Изобретение относится к устройству электропитания для подачи электрической мощности к трубопроводу. Технический результат заключается в изменении значения емкости и индуктивности соответствующего емкостного и индуктивного средства под нагрузкой, и как следствие, в осуществлении оптимизации под нагрузкой в реальном времени. Для этого заявленное устройство (100) электропитания для непосредственного электрического нагрева системы трубопровода содержит, в основном, трехфазный трансформатор (2), блок (14) симметрирования, блок (22) компенсации. Трехфазный трансформатор (2) приспособлен для поддержки однофазной нагрузки, подсоединенной между первой фазой (6) и второй фазой (8) трансформатора (2). Трансформатор (2) содержит по меньшей мере один первый переключатель (10) ответвлений на стороне (12) высокого напряжения трансформатора (2). Блок (14) симметрирования содержит первое конденсаторное средство (16), подсоединенное между первой фазой (6) и третьей фазой (18) трансформатора, и индукторное средство (20), подсоединенное между второй фазой (8) и третьей фазой (18) упомянутого трансформатора (2). Блок (22) компенсации содержит второе конденсаторное средство (24), подсоединенное между первой фазой (6) и второй фазой (8) трансформатора (2). Первый переключатель (10) ответвлений, первое конденсаторное средство (16), второе конденсаторное средство (24) и/или индукторное средство (20) приспособлены для варьирования под нагрузкой. 6 з.п. ф-лы, 4 ил.

Description

Настоящее изобретение относится к электрическому нагреву систем трубопроводов. Более конкретно, изобретение относится к системе питания для подачи электрической мощности к трубопроводу.
Образование гидратов является хорошо известной проблемой в системах подводной добычи нефти и газа. Имеется ряд решений этой проблемы. Традиционно используются химикаты. В последнее время используется более эффективный способ непосредственного электрического нагрева (DEH) для нагрева трубопровода посредством пропускания высокого электрического тока через собственно трубопровод. В любой форме электрического нагрева трубопровода обычно требуется источник электрической мощности, выдающий по меньшей мере несколько сотен киловатт. Часто требуется прикладывать мощность в запрограммированной последовательности для достижения выбранных рабочих условий. Преобразование мощности из трехфазной в однофазную часто необходимо, особенно в применениях подводных трубопроводов, где мощность берется из существующей трехфазной электрической сети. Требуется эффективная универсальная система электропитания, которая может удовлетворить эти потребности.
Целью настоящего изобретения является обеспечение усовершенствованного устройства электропитания для применений непосредственного электрического нагрева.
Вышеуказанная цель достигается устройством электропитания для непосредственного электрического нагрева системы трубопровода, содержащим
трехфазный трансформатор, приспособленный для поддержки однофазной нагрузки, подсоединенной между первой и второй фазами трансформатора, причем упомянутый трансформатор содержит по меньшей мере один переключатель ответвлений на стороне высокого напряжения трансформатора;
блок симметрирования, содержащий первое конденсаторное средство, подсоединенное между первой фазой и третьей фазой трансформатора, и индукторное средство, подсоединенное между второй фазой и третьей фазой упомянутого трансформатора; и
блок компенсации, содержащий второе конденсаторное средство, подсоединенное между первой фазой и второй фазой трансформатора,
при этом первый переключатель ответвлений, первое конденсаторное средство, второе конденсаторное средство и индукторное средство приспособлены для варьирования под нагрузкой.
Однофазные кабели используются для нагрева трубопровода. Кабели соединены с трехфазным источником питания. Однофазная нагрузка преобразуется в трехфазную нагрузку для трехфазного трансформатора с помощью блока симметрирования, содержащего первое конденсаторное средство и индукторное средство. В дополнение, блок компенсации, содержащий второе конденсаторное средство, используется для компенсации низкого коэффициента мощности нагрузки. Если нагрузка не скомпенсирована и не симметризирована, разбаланс нагрузки был бы очень высоким и привел бы к высокому току обратной последовательности. Это создало бы проблемы для надежной работы трансформатора и генераторов. Нагрузка нагрева для DEH может быть выбрана в диапазоне от минимальной до максимальной нагрузки посредством изменения напряжения, прикладываемого к трехфазному трансформатору. Путем изменения уровня напряжения уровень мощности нагрева может изменяться. Это выполняется с использованием переключателя ответвлений под нагрузкой, подсоединенного на стороне высокого напряжении трансформатора, в то время как трансформатор и вся DEH система полностью находятся под напряжением. Это решение позволяет изменять значения емкости и индуктивности соответствующего емкостного и индуктивного средства под нагрузкой, в то время как на систему подано питание. Это позволяет осуществить оптимизацию под нагрузкой в реальном времени, где коэффициент мощности для трансформатора будет очень близок к единице, и ток обратной последовательности будет очень близок к нулю.
В предпочтительном варианте осуществления изобретения модули в пределах упомянутой структуры дополнительно содержат блок управления, приспособленный, чтобы автоматически управлять уровнями напряжения упомянутого первого переключателя ответвлений, емкостью упомянутого первого конденсаторного средства и упомянутого второго конденсаторного средства и индуктивностью упомянутого индукторного средства. Это позволяет автоматически управлять трансформатором, конденсаторным средством и индукторным средством, когда система трубопровода полностью находится под напряжением. Это также служит для автоматического управления системой, которая может быть временно отключена от питания. Блок управления может представлять собой программируемый логический контроллер (PLC), управляемый на месте эксплуатации или из удаленного местоположения.
В альтернативном варианте осуществления трехфазный трансформатор дополнительно содержит по меньшей мере один второй переключатель ответвлений. Второй переключатель ответвлений может действовать как переключатель ответвлений в нерабочем состоянии (не под нагрузкой), и посредством использования ответвлений операционный профиль будет расширен за пределы обычно предлагаемого диапазона, позволяя переключаться на другие позиции напряжения.
В другом альтернативном варианте осуществления индуктивность индукторного средства приспособлена для изменения под нагрузкой с использованием третьего переключателя ответвлений. Индуктивность индукторного средства необходимо изменять, чтобы уравновешивать нагрузку, то есть трансформировать однофазную нагрузку в трехфазную нагрузку. Переключатель ответвлений способствует изменению индуктивности, когда система трубопровода полностью получает питание.
В другом альтернативном варианте осуществления автоматическое управление емкостью упомянутого первого конденсаторного средства дополнительно содержит этап переключения по меньшей мере одного первого дополнительного конденсатора с помощью соответствующего вакуумного контактора. Также автоматическое управление емкостью упомянутого второго конденсаторного средства дополнительно содержит этап переключения по меньшей мере одного второго дополнительного конденсатора с помощью соответствующего вакуумного контактора. Это обеспечивает изменение под нагрузкой значения емкости в соответствии с измеренными параметрами нагрузки и требованием по мощности для DEH системы.
В другом альтернативном варианте осуществления трансформатор, первое конденсаторное средство, второе конденсаторное средство, индукторное средство, первый дополнительный конденсатор, второй дополнительный конденсатор и вакуумный контактор являются соответствующими компонентами сухого типа. Использование упомянутых компонентов понижает потенциальные риски по отношению к пожару, тем самым обеспечивая большую безопасность.
Настоящее изобретение дополнительно описывается ниже со ссылками на проиллюстрированные варианты осуществления, показанные на чертежах, на которых представлено следующее:
фиг.1 - схема устройства источника электропитания для системы трубопровода,
фиг.2 - устройство источника электропитания с блоком управления согласно варианту осуществления настоящего изобретения,
фиг.3 - трансформатор с переключателем ответвлений, установленным на стороне высокого напряжения (HV), и ответвлениями не под нагрузкой на стороне низкого напряжения (LV) согласно варианту осуществления настоящего изобретения,
фиг.4 - структура системы уравновешивания нагрузки согласно варианту осуществления настоящего изобретения.
Изобретение нацелено на обеспечение решения, которое позволяет осуществлять полностью автоматизированную работу.
Это решение предусматривает полностью автоматическую настройку конденсаторного и индукторного средств под нагрузкой. Напряжение трансформатора изменяется с использованием комбинации переключателя ответвлений под нагрузкой и ответвлений не под нагрузкой. Это обеспечивает возможность непрерывной работы под нагрузкой и требует редкой остановки DEH системы.
Фиг.1 показывает схему устройства 100 источника электропитания для системы трубопровода. Мощность может сниматься из существующей трехфазной сети 1 питания. Устройство источника электропитания содержит трехфазный трансформатор 2, приспособленный для поддержки однофазной нагрузки 4, подсоединенной межу первой фазой 6 и второй фазой 8 трансформатора 2. Трансформатор содержит сторону 12 высокого напряжения и сторону 3 низкого напряжения, причем первый переключатель 10 ответвлений соединен со стороной 12 высокого напряжения трансформатора 2. Устройство содержит блок 14 симметрирования, содержащий первое конденсаторное средство 16, подсоединенное между первой фазой 6 и третьей фазой 18 трансформатора, и индукторное средство 20, подсоединенное между второй фазой 8 и третьей фазой 18 упомянутого трансформатора 2. Однофазная нагрузка трансформируется в трехфазную нагрузку для трехфазного трансформатора с использованием этого блока. Блок 22 компенсации также введен в устройство и содержит второе конденсаторное средство 24, подсоединенное между первой фазой 6 и второй фазой 8 трансформатора 2. Этот блок компенсирует низкий коэффициент мощности для нагрузки. На основе этого требования емкостное и индуктивное значения, ассоциированные с блоками симметрирования и компенсации, могут варьироваться. Первый переключатель 10 ответвлений, первое конденсаторное средство 16, второе конденсаторное средство 4 и индукторное средство 20 приспособлены для варьирования под нагрузкой. Переключатели ответвлений под нагрузкой обеспечивают возможность изменения напряжения, в то время как DEH система остается под напряжением (под нагрузкой). Это обеспечивает возможность оптимизации под нагрузкой в реальном времени, где коэффициент мощности для трансформатора очень близок к единице, а трехфазная нагрузка на трансформаторе очень хорошо сбалансирована, то есть приводит к очень низкому току обратной последовательности.
Фиг.2 иллюстрирует устройство 200 источника электропитания с блоком 202 управления согласно варианту осуществления настоящего изобретения. Устройство источника электропитания показано как содержащее блок 202 управления, приспособленный для автоматического управления упомянутым переключателем 10 ответвлений, первым конденсаторным средством 16, вторым конденсаторным средством 24 и индукторным средством 20. Здесь блок 202 управления представляет собой программируемый логический контроллер (PLC), управляемый на месте эксплуатации или из удаленного местоположения и выполняющий автоматическое управление. Устройство источника электропитания также содержит по меньшей мере один первый блок 204 измерения для измерения параметров однофазной нагрузки и по меньшей мере один второй блок 206 измерения для измерения параметров трехфазной нагрузки. Измеряемые параметры нагрузки могут представлять собой коэффициент мощности кабеля, напряжение, ток и т.д. Устройство источника электропитания мог бы дополнительно управляться из удаленного местоположения с использованием панели 208 дистанционного управления.
На фиг.3 показано устройство 300 трансформатора с переключателем 302 ответвлений, установленным на стороне 12 высокого напряжения (HV), и множеством отводов не под нагрузкой на стороне 3 низкого напряжения (LV) согласно варианту осуществления настоящего изобретения. Переключатели ответвлений под нагрузкой и ответвления не под нагрузкой позволяют изменять напряжение и мощность для непосредственного электрического нагрева (DEH), в то время как трансформатор и вся DEH система остается под напряжением. Трансформатор, показанный здесь, содержит переключатель 302 ответвлений под нагрузкой с девятью уровнями напряжения или позициями. На чертеже также показаны два фиксированных положения ответвлений, предусмотренные при 77% и 60% от нормального напряжения, помимо нормального фиксированного положения ответвления при 100% нормального напряжения на стороне низкого напряжения. Нормальное фиксированное положение 304 ответвлений показано при 100% нормального напряжения с первым фиксированным положением 306 ответвления при 70% от нормального напряжения и с вторым фиксированным положением 308 ответвления при 60% от нормального напряжения. Соответственно, это устройство позволяет получить 3*9=27 различных положений напряжения или уровней в полном требуемом диапазоне мощности. Для трансформаторов большего размера может быть выбран переключатель ответвлений под нагрузкой с большим количеством позиций, например, до 36 ответвлений под нагрузкой, чтобы переключать без прерывания нагрузку. Аналогичным образом можно изменять число ответвлений фиксированных позиций.
Фиг.4 показывает схемное устройство 400 системы уравновешивания нагрузки согласно варианту осуществления настоящего изобретения. Как показано, емкостные значения первого конденсаторного средства 410 и второго конденсаторного средства 420 управляются посредством переключения дополнительных меньших конденсаторных блоков. Дополнительные конденсаторы подключаются к схеме с использованием вакуумных контакторов. Первые дополнительные конденсаторы 412, 414, 416 подключаются к схеме согласно требованию рядом с первым конденсаторным средством 410 с использованием соответствующего вакуумного контактора 413, 415, 417. То же самое справедливо для второго конденсаторного средства 420. Вторые дополнительные конденсаторы 422, 424, 426, 428, 430 подключаются к схеме согласно требованию рядом с вторым конденсаторным средством 420 с использованием соответствующего вакуумного контактора 423, 425, 427, 429, 431. Как показано, индуктивность индукторного средства 406 контролируется переключением ответвлений с использованием переключателя 408 ответвлений под нагрузкой. Трансформатор, первое конденсаторное средство, второе конденсаторное средство, индукторное средство, первый дополнительный конденсатор, второй дополнительный конденсатор и вакуумный контактор являются компонентами сухого типа. Использование упомянутых компонентов снижает потенциальные риски в отношении пожара, тем самым обеспечивая более высокую безопасность.
Резюмируя, настоящее изобретение относится к устройству электропитания для подачи электрической мощности на трубопровод. Устройство 100 электропитания для непосредственного электрического нагрева системы трубопровода содержит, в основном, трехфазный трансформатор 2, блок 14 симметрирования и блок 22 компенсации. Трехфазный трансформатор 2 приспособлен для поддержки однофазной нагрузки 4, подсоединенной между первой фазой 6 и второй фазой 8 трансформатора 2. Трансформатор 2 содержит по меньшей мере один первый переключатель 10 ответвлений на стороне 12 высокого напряжения трансформатора 2. Блок 14 симметрирования содержит первое конденсаторное средство 16, подсоединенное между первой фазой 6 и третьей фазой 18 трансформатора, и индукторное средство 20, подсоединенное между второй фазой 8 и третьей фазой 18 упомянутого трансформатора 2. Блок 22 компенсации содержит втрое конденсаторное средство 24, подсоединенное между первой фазой 6 и второй фазой 8 трансформатора 2. Первый переключатель 10 ответвлений, первое конденсаторное средство 16, второе конденсаторное средство 24 и индукторное средство 20 приспособлены для варьирования под нагрузкой.
Хотя изобретение описано со ссылкой на конкретные варианты осуществления, это описание не должно интерпретироваться в ограничительном смысле. Различные модификации раскрытых вариантов осуществления, а также альтернативные варианты осуществления изобретения будут очевидны специалистам в данной области техники со ссылкой на описание изобретения. Поэтому предполагается, что такие модификации могут быть реализованы без отклонения от сущности или объема настоящего изобретения.

Claims (7)

1. Устройство (100) электропитания для непосредственного электрического нагрева системы трубопровода, содержащее:
трехфазный трансформатор (2), приспособленный для поддержки одинофазной нагрузки (4), подсоединенной между первой фазой (6) и второй фазой (8) трансформатора (2), причем упомянутый трансформатор (2) содержит по меньшей мере один первый переключатель (10) ответвлений на стороне (12) высокого напряжения трансформатора (2);
блок (14) симметрирования, содержащий первое конденсаторное средство (16), подсоединенное между первой фазой (6) и третьей фазой (18) трансформатора, и индукторное средство (20), подсоединенное между второй фазой (8) и третьей фазой (18) упомянутого трансформатора (2); и блок (22) компенсации, содержащий второе конденсаторное средство (24), подсоединенное между первой фазой (6) и второй фазой (8) трансформатора (2),
при этом первый переключатель (10) ответвлений, первое конденсаторное средство (16), второе конденсаторное средство (24) и/или индукторное средство (20) приспособлены для варьирования под нагрузкой.
2. Устройство электропитания по п.1, дополнительно содержащее блок (202) управления, приспособленный, чтобы автоматически управлять уровнями напряжения упомянутого первого переключателя (10) ответвлений, емкостью упомянутого первого конденсаторного средства (16) и упомянутого второго конденсаторного средства (24) и индуктивностью упомянутого индукторного средства (20).
3. Устройство электропитания по п.1, в котором трехфазный трансформатор (2) дополнительно содержит по меньшей мере один второй переключатель (302, 304, 306) ответвлений.
4. Устройство электропитания по любому из пп.1-3, в котором индуктивность индукторного средства (20) приспособлена для изменения под нагрузкой с использованием третьего переключателя (21) ответвлений.
5. Устройство электропитания по п.1, в котором автоматическое управление емкостью упомянутого первого конденсаторного средства (16) дополнительно содержит этап переключения по меньшей мере одного первого дополнительного конденсатора (412, 414, 416) с помощью соответствующего вакуумного контактора (413, 415, 417).
6. Устройство электропитания по п.1 или 5, в котором автоматическое управление емкостью упомянутого второго конденсаторного средства (24) дополнительно содержит этап переключения по меньшей мере одного второго дополнительного конденсатора (422, 424, 426, 428, 430) с помощью соответствующего вакуумного контактора (423, 425, 427, 429, 431).
7. Устройство электропитания по п.1, в котором трансформатор (2), первое конденсаторное средство (16), второе конденсаторное средство (24), индукторное средство (20), первый дополнительный конденсатор (412, 414, 416), второй дополнительный конденсатор (422, 424, 426, 428, 430) и/или вакуумный контактор (413, 415, 417, 423, 425, 427, 429, 431) являются соответствующими компонентами сухого типа.
RU2011115102/07A 2008-09-19 2009-07-24 Устройство электропитания для непосредственного электрического нагрева системы трубопровода RU2477555C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08016537.6 2008-09-19
EP08016537A EP2166637A1 (en) 2008-09-19 2008-09-19 Power supply arrangement for direct electrical heating of a pipeline system
PCT/EP2009/059572 WO2010031626A1 (en) 2008-09-19 2009-07-24 Power supply arrangement for direct electrical heating of a pipeline system

Publications (2)

Publication Number Publication Date
RU2011115102A RU2011115102A (ru) 2012-10-27
RU2477555C2 true RU2477555C2 (ru) 2013-03-10

Family

ID=40328557

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011115102/07A RU2477555C2 (ru) 2008-09-19 2009-07-24 Устройство электропитания для непосредственного электрического нагрева системы трубопровода

Country Status (7)

Country Link
US (1) US8811806B2 (ru)
EP (2) EP2166637A1 (ru)
CN (1) CN102160251A (ru)
BR (1) BRPI0918855B1 (ru)
CA (1) CA2737647C (ru)
RU (1) RU2477555C2 (ru)
WO (1) WO2010031626A1 (ru)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2166637A1 (en) 2008-09-19 2010-03-24 Siemens Aktiengesellschaft Power supply arrangement for direct electrical heating of a pipeline system
EP2541263A1 (en) 2011-07-01 2013-01-02 Siemens Aktiengesellschaft Fault detection system and method, and power system for subsea pipeline direct electrical heating cables
NO335456B1 (no) 2011-01-28 2014-12-15 Sinvent As Fremgangsmåte og arrangement for direkteoppvarming av rørledninger
CN102810989A (zh) * 2011-06-04 2012-12-05 深圳市万禧节能科技有限公司 模拟反电动势节电器
EP2557675A1 (en) * 2011-08-08 2013-02-13 Siemens Aktiengesellschaft Direct electrical heating arrangement comprising a transformer and an indirect voltage link a.c. converter
US8694222B2 (en) 2011-10-26 2014-04-08 GM Global Technology Operations LLC Collision avoidance system and method of operating the same
EP2624403B1 (en) * 2012-01-31 2020-12-09 Siemens Aktiengesellschaft Direct electric heating system for heating a subsea pipeline
WO2013113627A1 (en) 2012-01-31 2013-08-08 Siemens Aktiengesellschaft Fault detection in subsea power cables
EP2623838A1 (en) * 2012-01-31 2013-08-07 Siemens Aktiengesellschaft Direct electric heating system for heating a subsea pipeline
NO334151B1 (no) 2012-02-17 2013-12-23 Aker Subsea As Havbunns varmesammenstilling og tilhørende fremgangsmåte
NO335863B1 (no) 2012-02-21 2015-03-09 Aker Subsea As Direkte elektrisk oppvarmingssammenstilling for lange utlegg
EP2796760A1 (en) 2013-04-23 2014-10-29 Siemens Aktiengesellschaft Direct electrical heating system
CN104810141A (zh) * 2014-01-28 2015-07-29 西门子公司 医疗设备、变压器和变压方法
CA2952694C (en) * 2014-06-26 2023-08-22 Linde Aktiengesellschaft Device and method for heating a fluid in a pipeline using three-phase current
CN104302022B (zh) * 2014-09-29 2016-01-20 中国核动力研究设计院 一种大功率电加热管式预热器
DE102015225314A1 (de) * 2015-12-15 2017-06-22 Siemens Aktiengesellschaft Regelbarer Ortsnetztransformator
EP3579659B1 (en) 2018-06-05 2020-08-05 Siemens Aktiengesellschaft Subsea direct electrical heating power supply system, direct electrical heating system and method of operating a subsea direct electrical heating power supply system
CN111009907B (zh) * 2019-12-12 2022-04-08 河北百思特电气有限公司 一种变压器补偿装置及补偿方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1438401A1 (de) * 1962-07-23 1968-10-31 Allg Elek Citaets Ges Aeg Tele Schaltungsanordnung zur symmet?chen Lastverteilung eines Drehstromnetzes bei Anschluss eines einphasigen Verbrauchers,insbesondere einer Induktionsspule einer Induktions-Erwaermungsanlage od.dgl.
SU1032486A1 (ru) * 1981-05-07 1983-07-30 Целиноградский сельскохозяйственный институт Способ прогрева обмотки силовых трехфазных трансформаторов
RU2079958C1 (ru) * 1991-03-12 1997-05-20 Государственный Макеевский Научно-Исследовательский Институт По Безопасности Работ В Горной Промышленности Система для преобразования переменного тока в постоянный для питания нагрузки
RU39738U1 (ru) * 2004-05-20 2004-08-10 Пестряева Людмила Михайловна Трехфазный трансформатор для питания двух нагрузок
RU2253931C1 (ru) * 2003-12-10 2005-06-10 Машкин Анатолий Геннадьевич Способ симметрирования нагрузки тягового трансформатора

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE568690C (de) * 1928-01-22 1933-01-30 Lorenz Akt Ges C Anordnung zur Erzielung einer symmetrischen Belastungsverteilung in den Phasen einesDrehstromnetzes, welches einen einphasigen Verbraucher speist
DE1060068B (de) * 1958-06-07 1959-06-25 Bbc Brown Boveri & Cie Einrichtung zur zwanglaeufigen Lastsymmetrierung
US4680689A (en) * 1984-01-23 1987-07-14 Donald W. Payne Three-phase ac to dc power converter with power factor correction
GB8503045D0 (en) * 1985-02-06 1985-03-06 Ass Elect Ind A c power supply system
JPS6393456A (ja) * 1986-10-08 1988-04-23 Nippon Steel Corp タンデイツシユ溶鋼加熱装置の制御装置
US4739466A (en) * 1986-12-30 1988-04-19 Sundstrand Corporation Regulated AC/DC converter
US5311419A (en) * 1992-08-17 1994-05-10 Sundstrand Corporation Polyphase AC/DC converter
JPH06310348A (ja) * 1993-04-22 1994-11-04 Daihen Corp 3相変圧器
JP3260667B2 (ja) * 1997-09-04 2002-02-25 有限会社エヌ・エー 表皮電流加熱装置
US6707012B2 (en) * 2001-07-20 2004-03-16 Shell Oil Company Power supply for electrically heated subsea pipeline
NO322636B1 (no) * 2005-01-13 2006-11-13 Statoil Asa System for stromforsyning til undervannsinstallasjon
AU2006270578A1 (en) * 2005-07-15 2007-01-25 Aker Kvaerner Engineering & Technology As System for supplying power to a flowline heating circuit
NO20053519L (no) 2005-07-18 2007-01-19 Thia Medica As Anvendelse av forbindelser som omfatter fettsyrer
EP2166637A1 (en) 2008-09-19 2010-03-24 Siemens Aktiengesellschaft Power supply arrangement for direct electrical heating of a pipeline system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1438401A1 (de) * 1962-07-23 1968-10-31 Allg Elek Citaets Ges Aeg Tele Schaltungsanordnung zur symmet?chen Lastverteilung eines Drehstromnetzes bei Anschluss eines einphasigen Verbrauchers,insbesondere einer Induktionsspule einer Induktions-Erwaermungsanlage od.dgl.
SU1032486A1 (ru) * 1981-05-07 1983-07-30 Целиноградский сельскохозяйственный институт Способ прогрева обмотки силовых трехфазных трансформаторов
RU2079958C1 (ru) * 1991-03-12 1997-05-20 Государственный Макеевский Научно-Исследовательский Институт По Безопасности Работ В Горной Промышленности Система для преобразования переменного тока в постоянный для питания нагрузки
RU2253931C1 (ru) * 2003-12-10 2005-06-10 Машкин Анатолий Геннадьевич Способ симметрирования нагрузки тягового трансформатора
RU39738U1 (ru) * 2004-05-20 2004-08-10 Пестряева Людмила Михайловна Трехфазный трансформатор для питания двух нагрузок

Also Published As

Publication number Publication date
EP2166637A1 (en) 2010-03-24
WO2010031626A1 (en) 2010-03-25
CA2737647C (en) 2017-05-02
EP2324550B1 (en) 2018-12-05
CA2737647A1 (en) 2010-03-25
RU2011115102A (ru) 2012-10-27
BRPI0918855B1 (pt) 2019-01-15
EP2324550A1 (en) 2011-05-25
BRPI0918855A2 (pt) 2016-03-08
US20110156691A1 (en) 2011-06-30
US8811806B2 (en) 2014-08-19
CN102160251A (zh) 2011-08-17

Similar Documents

Publication Publication Date Title
RU2477555C2 (ru) Устройство электропитания для непосредственного электрического нагрева системы трубопровода
US8451636B2 (en) Static converter and method for starting up the converter
US8829711B2 (en) Modular power supply arrangement
EP2700155B1 (en) Direct electrical heating arrangement comprising a power electronic converter
EP2942796B1 (en) Voltage control system
US9748857B2 (en) Method and system for a gas tube-based current source high voltage direct current transmission system
CN107134784A (zh) 用于调节低压配电系统中的电压的系统和方法
WO2019009706A1 (en) ELECTRICAL NETWORK AND FLEXIBLE CURRENT TRANSMISSION SYSTEM IN PART
AU2014252950B2 (en) Transformer provided with means for adjusting the in-load transformation ratio
JP2012080654A (ja) 配電線の電圧調整装置
Martinez et al. Thyristor based solid state tap changer for distribution transformers
US20140049110A1 (en) Matrix converter and method for generating an ac voltage in a second ac voltage grid from an ac voltage in a first ac voltage grid by means of a matrix converter
US6930578B2 (en) Field adjustable phase shifting transformer
KR101711155B1 (ko) 저고조파형 저압 인버터장치
RU2727148C1 (ru) Устройство для компенсации реактивной мощности в высоковольтных сетях
Constantin et al. Master-follower method for controlling paralell transformers implemented in a numerical protection system
RU2351049C1 (ru) Способ снижения потерь электроэнергии
PL237341B1 (pl) Układ regulacji napięcia transformatora
CN109245126B (zh) 一种三相交流自动调压装置及调控方法
KR100377870B1 (ko) 고조파 전력필터 장치
RU112530U1 (ru) Устройство централизованной компенсации реактивной мощности
RU2549377C1 (ru) Устройство для регулирования напряжения сети
CN115833146A (zh) 一种移动式单相电动机补偿装置
JP2003125536A (ja) 三相配電線の無効電力補償装置
PL237342B1 (pl) Układ regulacji napięcia transformatora

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20210329