RU2473044C1 - Устройство для измерения малых перемещений или деформаций объекта - Google Patents
Устройство для измерения малых перемещений или деформаций объекта Download PDFInfo
- Publication number
- RU2473044C1 RU2473044C1 RU2011136133/28A RU2011136133A RU2473044C1 RU 2473044 C1 RU2473044 C1 RU 2473044C1 RU 2011136133/28 A RU2011136133/28 A RU 2011136133/28A RU 2011136133 A RU2011136133 A RU 2011136133A RU 2473044 C1 RU2473044 C1 RU 2473044C1
- Authority
- RU
- Russia
- Prior art keywords
- ccd matrix
- columns
- ccd
- cells
- flat shutter
- Prior art date
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Устройство содержит источник света, состоящую из столбцов и рядов светочувствительных ячеек прямоугольную ПЗС-матрицу, соединенную с регистрирующей аппаратурой, размещенный между ними плоский затвор, частично перекрывающий световой поток от источника света на ПЗС-матрицу. Граница плоского затвора, делящая ПЗС-матрицу на освещенную и затемненную зоны, полностью охватывающие не менее одного столбца, расположена ассиметрично относительно направления столбцов светочувствительных ячеек ПЗС-матрицы. ПЗС-матрица связана с неподвижным основанием. Плоский затвор связан с объектом или его деформируемой частью. Между источником света и ПЗС-матрицей может быть размещена оптическая система, обеспечивающая повышение контрастности изображения границы затвора на поверхности ПЗС-матрицы и чувствительности устройства. Форма границы плоского затвора может быть выполнена ассиметрично относительно направления столбцов в виде прямой линии с уклоном по отношению к столбцам, ломаной линии или в виде плавной кривой для исключения возможности одновременного появления полностью освещенных ячеек во всех столбцах светочувствительных ячеек при перемещении плоского затвора. Технический результат: повышение качества измерения малых перемещений и упрощение конструкции устройства. 2 з.п. ф-лы, 7 ил.
Description
Изобретение относится к измерительной технике и имеет целью повышение качества измерения малых перемещений и упрощения конструкции устройства путем использования двухмерной светочувствительной матрицы и затвора.
Известны многочисленные способы и устройства дискретного отсчета перемещений, основанные на пересчете расположенных в ряд физических объектов: делений шкалы, электрических контактов, интерференционных линий и т.п. /Ю.В.Димов. Метрология, стандартизация, сертификация. - С-Пб.: Питер, 432 с. (с.270-277)/. Для повышения точности измерений единицу измерения, т.е. расстояние между соседними объектами, необходимо уменьшать, что связано с усложнением конструкции. Существенным недостатком подобных способов и устройств является низкое качество измерений, при этом под качеством измерений подразумевается совокупность свойств, обуславливающих получение результата с требуемыми характеристиками точности, в необходимом виде и в установленные сроки. Качество измерений характеризуется такими показателями, как точность, правильность и достоверность /Сергеев А.Г., Латышев М.В., Терегеря В.В. Метрология, стандартизация, сертификация: Учебное пособие. - М.: Логос, 2003, 536 с./.
Известны «Способ и устройство бесконтактного оптического измерения размеров объектов» /п. РФ №2262660 с приоритетом от 16.02.2004, G01B 11/02, опубликован 20.10.2005/, в котором объект размещают между источником лазерного излучения и фотоприемником, измеряют мощность лазерного излучения P, сравнивают ее с заданным уровнем P0, осуществляют оптическую развертку лазерного излучения в пучок параллельных лучей в зоне нахождения объекта и определяют размер объекта по величине тени от объекта на фотоприемнике, корректируя время экспозиции фотоприемника по величине разности (P0-P). Устройство для осуществления способа включает лазер, светоделительную пластину, короткофокусную цилиндрическую линзу, выходную цилиндрическую линзу, коллимирующую линзу, прибор с зарядовой связью (ПЗС-матрица), блок обработки информации, фотоприемное пороговое устройство. Недостатком известного способа является зависимость качества результатов от точности определения границ контура исследуемого объекта. При флуктуациях мощности лазерного излучения точность определения размера объекта снижается. Авторы решения преодолевают проблему с помощью регулировки времени заряда пикселей, которая в условиях флуктуации мощности лазерного излучения обеспечивает повышение точности измерений за счет корректировки времени экспозиции.
Указанный способ не пригоден для измерения малых перемещений, т.к. предназначен для измерения размеров неподвижных объектов.
Известны оптические устройства, основанные на применении интерференционных методов, в которых используются оптически связанные и последовательно размещенные источник когерентного оптического излучения, оптическая система, светоделитель, отражатель, закрепленный на поверхности объекта контроля и расположенный под углом к светоделителю, экран с установленным на нем фотоприемным устройством в виде прямоугольной матрицы фотоприемников /п. РФ №2373492 с приоритетом от 28.11.2007, G01B 11/00. «Оптическое устройство для измерения перемещений», опубликован 20.11.2009/. Недостатком данного способа является низкое качество результатов измерений, обусловленное тем, что вид интерференционной картины, проецируемой на экран, зависит от точности настройки взаимного расположения матрицы фотоприемников и исследуемого изменения интерференционной картины. Наличие большого числа конструктивных элементов: источника когерентного оптического излучения, оптической системы, светоделителя, отражателя и экрана также является недостатком, т.к. увеличивает габариты, повышает сложность применяемого устройства и проведения измерений.
Задачей, стоящей перед авторами предлагаемого изобретения, является разработка способа измерения малых перемещений (например, в механических испытаниях для измерения деформаций) с целью повышения качества измерения малых перемещений и упрощения конструкции устройства.
Техническим результатом изобретения является повышение качества измерения малых перемещений и упрощение конструкции устройства для его реализации.
Технический результат достигается тем, что в устройстве для измерения малых перемещений или деформаций объекта содержатся источник света, состоящую из столбцов и рядов светочувствительных ячеек прямоугольная ПЗС-матрица, соединенная с регистрирующей аппаратурой, размещенный между ними плоский затвор, частично перекрывающий световой поток от источника света на ПЗС-матрицу, при этом граница плоского затвора, делящая ПЗС-матрицу на освещенную и затемненную зоны, полностью охватывающие не менее одного столбца, расположена ассиметрично относительно направления столбцов светочувствительных ячеек ПЗС-матрицы, ПЗС-матрица связана с неподвижным основанием, а плоский затвор связан с объектом или его деформируемой частью.
Между источником света и ПЗС-матрицей может быть размещена оптическая светопреобразующая система, обеспечивающая повышение контрастности изображения границы затвора на поверхности матрицы и чувствительности устройства.
Форма границы плоского затвора может быть выполнена ассиметрично относительно направления столбцов светочувствительных ячеек ПЗС-матрицы в виде прямой линии с уклоном по отношению к столбцам ПЗС-матрицы, ломаной линии, или в виде плавной кривой для исключения возможности закономерно обусловленного одновременного появления полностью освещенных ячеек во всех столбцах светочувствительных ячеек при перемещении плоского затвора относительно ПЗС-матрицы.
На фиг.1 показана схема устройства измерения малых перемещений объекта, при этом плоский затвор закреплен на объекте, ПЗС-матрица - на основании; на фиг.2 показана схема устройства измерения малых перемещений различных частей деформируемого объекта, при этом плоский затвор и ПЗС-матрица закреплены на соответствующих частях объекта; на фиг.3 показана схема взаимного расположения ПЗС-матрицы и плоского затвора с правильно подобранным уклоном границы плоского затвора; на фиг.4 показана схема взаимного расположения ПЗС-матрицы и плоского затвора с неправильно подобранным уклоном границы плоского затвора; на фиг.5 показана схема взаимного расположения ПЗС-матрицы и плоского затвора, где граница затвора симметрична относительно направления его перемещения, но асимметрична относительно столбцов ПЗС-матрицы за счет наклона последней; на фиг.6 показана схема взаимного расположения ПЗС-матрицы и плоского затвора с границей плоского затвора в виде ломаной линии; на фиг.7 показана схема взаимного расположения ПЗС-матрицы и плоского затвора с границей плоского затвора в виде плавной кривой, где:
1 - ПЗС-матрица;
2 - плоский затвор;
3 - источник света;
4 - оптическая система;
5 - основание;
6 - объект;
7 - светочувствительная ячейка;
8 - шаг ячеек;
9 - столбцы светочувствительных ячеек;
10 - ряды светочувствительных ячеек.
На фиг.1 показан вариант, когда ПЗС-матрица 1 закреплена на основании 5, а плоский затвор 2 закреплен на объекте 6, имеющем возможность перемещения. При перемещении объекта 6 относительно основания 5, что соответствует перемещению плоского затвора 2 относительно ПЗС-матрицы 1, изменяется однозначно связанное с величиной перемещения число освещенных светочувствительных ячеек 7, что фиксируется в виде изменения электрического сигнала регистрирующей аппаратурой (на фиг.1 не показана).
На фиг.2 показан вариант, когда ПЗС-матрица 1 закреплена на одной части деформируемого объекта 6, а плоский затвор 2 закреплен на другой части деформируемого объекта 6. При деформации объекта 6 (растяжении или сжатии) плоский затвор 2 перемещается относительно ПЗС-матрицы 1 на величину, равную изменению расстояния между элементами объекта 6 в сечениях А и В. Соответственно изменяется число освещенных светочувствительных ячеек 7, что фиксируется в виде изменения электрического сигнала регистрирующей аппаратурой (на фиг.2 не показана).
ПЗС-матрица 1 (фиг.1, 2, 3, 4, 5, 6, 7) состоит из светочувствительных ячеек 7 (фиг.3, 4, 5, 6, 7), образующих параллельные друг другу ряды светочувствительных ячеек 10 и перпендикулярные им столбцы светочувствительных ячеек 9. В том случае, когда число столбцов светочувствительных ячеек 9 равно m, а число рядов светочувствительных ячеек 10 равно n (фиг.3, 4, 5, 6), ПЗС-матрица 1 имеет вид прямоугольника с размерами (m×Δ)×(n×Δ), где - Δ (фиг.2, 3) шаг 8 светочувствительных ячеек 7, взятый для упрощения одинаковым в направлениях столбцов светочувствительных ячеек 9 и рядов светочувствительных ячеек 10 ПЗС-матрицы 1.
В том случае, если граница плоского затвора 2 расположена перпендикулярно (на фиг.3, 4 не показано) рядам светочувствительных ячеек 10 ПЗС-матрицы 1, измерение перемещения производится с дискретностью Δ шага 8 светочувствительных ячеек 7 (фиг.3, 4), что лимитирует точность измерения перемещений величиной этого шага.
Для уменьшения погрешности измерения предлагается использовать уклон (как вариант) на плоском затворе 2 (фиг.3). В этом случае, как видно из фиг.3, при перемещении плоского затвора 2 относительно направления рядов светочувствительных ячеек 10 ПЗС-матрицы 1 каждый ряд содержит полностью затемненные светочувствительные ячейки 7, полностью освещенные светочувствительные ячейки 7, а также светочувствительные ячейки 7, освещенные частично. Если за единицу отсчета взять светочувствительные ячейки 7 с определенным уровнем поступающего с них сигнала (например, полностью освещенные) и обозначить число таких светочувствительных ячеек 7 в каждом ряду светочувствительных ячеек 10 - mi то, при общем числе рядов светочувствительных ячеек 10 - n, в каждом положении плоского затвора 2 возникает некое среднее число таких светочувствительных ячеек 7, приходящихся на один ряд ПЗС-матрицы 1
В общем случае mср будет иметь дробное значение. При перемещении плоского затвора 2 на величину шага ячеек 8 - Δ светочувствительных ячеек 7 (фиг.3, 4), число полностью освещенных светочувствительных ячеек 7 изменится на 1 в каждом ряду. Однако, как следует из фиг.3, новые освещенные светочувствительные ячейки 7 при этом появятся поочередно, в определенной последовательности. В частном случае, при величине уклона 1:n, что показано из фиг.3, появление (или исчезновение) полностью освещенных светочувствительных ячеек 7 в соседних столбцах светочувствительных ячеек 9 ПЗС-матрицы 1 при монотонном перемещении плоского затвора 2 будет происходить с дискретностью Δ/n, т.е. дискретность измерения будет в n раз меньше шага ячеек 8 - Δ. Эта же задача может быть решена при использовании границы плоского затвора 2, симметричной относительно направления его перемещения, но с асимметричностью расположения границы плоского затвора 2 относительно столбцов светочувствительных ячеек 9 ПЗС-матрицы 1 за счет ее наклона относительно плоского затвора 2, что показано на фиг.5.
Задача осложняется тем, что в современных ПЗС-матрицах число столбцов светочувствительных ячеек 9 составляет до нескольких тысяч, что делает рассмотренные требования к точности величины уклона плоского затвора 2 практически недостижимыми. Вследствие погрешностей изготовления и сборки уклон возникает даже в тех случаях, если конструкцией не предусмотрен, и в конкретных исполнениях устройства появление (или исчезновение) полностью освещенных светочувствительных ячеек 7 в соседних столбцах светочувствительных ячеек 9 ПЗС-матрицы 1 при монотонном перемещении плоского затвора 2 может случайно привести к одновременному появлению нескольких полностью освещенных светочувствительных ячеек 7 в соседних столбцах светочувствительных ячеек 9 (см. фиг.4). Например, в показанном на фиг.4 случае уклон имеет значение, кратное 1:3. В результате, полностью от света к тени синхронно переходят светочувствительные ячейки 7 в каждом третьем ряду светочувствительных ячеек 10, соответственно дискретность измерения будет составлять Δ/3, что значительно выше минимально возможного значения Δ/n.
Решением данной проблемы является применение в конструкции устройства возможности регулировки уклона плоского затвора 2 (на фиг.3 не показано) относительно столбцов светочувствительных ячеек 9 ПЗС-матрицы 1 (фиг.3), что обеспечивает коррекцию уклона плоского затвора 2 при отладке устройства, либо применение границы плоского затвора 2, отличающейся от прямой линии с постоянным уклоном: например, в виде ломаной линии или плавной кривой (фиг.6, 7), что, если и не исключает закономерность одновременного появления полностью освещенных светочувствительных ячеек 7 в отдельных соседних столбцах светочувствительных ячеек 9 при перемещении плоского затвора 2 относительно ПЗС-матрицы 1, но полностью исключает такую возможность одновременно в пределах всей ширины ПЗС-матрицы 1.
Способ и устройство позволяют определять как величину циклических перемещений, так и фиксировать зависимость величины перемещения от времени, в последнем случае минимальное время процесса ограничено типом и характеристиками ПЗС-матрицы.
Claims (3)
1. Устройство измерения малых перемещений или деформаций объекта, содержащее источник света, состоящую из столбцов и рядов светочувствительных ячеек прямоугольную ПЗС-матрицу, соединенную с регистрирующей аппаратурой, размещенный между ними плоский затвор, частично перекрывающий световой поток от источника света на ПЗС-матрицу, при этом граница плоского затвора, делящая ПЗС-матрицу на освещенную и затемненную зоны, полностью охватывающие не менее одного столбца, расположена асимметрично относительно направления столбцов светочувствительных ячеек ПЗС-матрицы, ПЗС-матрица связана с неподвижным основанием, а плоский затвор связан с объектом или его деформируемой частью.
2. Устройство по п.1, отличающееся тем, что между источником света и ПЗС-матрицей размещена оптическая светопреобразующая система, обеспечивающая повышение контрастности изображения границы затвора на поверхности ПЗС-матрицы и чувствительности устройства.
3. Устройство по п.1, отличающееся тем, что форма границы плоского затвора выполнена асимметрично относительно направления столбцов светочувствительных ячеек ПЗС-матрицы в виде прямой линии с уклоном по отношению к столбцам ПЗС-матрицы, ломаной линии или в виде плавной кривой для исключения возможности закономерно обусловленного одновременного появления полностью освещенных ячеек во всех столбцах светочувствительных ячеек при перемещении плоского затвора относительно ПЗС-матрицы.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011136133/28A RU2473044C1 (ru) | 2011-08-30 | 2011-08-30 | Устройство для измерения малых перемещений или деформаций объекта |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011136133/28A RU2473044C1 (ru) | 2011-08-30 | 2011-08-30 | Устройство для измерения малых перемещений или деформаций объекта |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2473044C1 true RU2473044C1 (ru) | 2013-01-20 |
Family
ID=48806621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011136133/28A RU2473044C1 (ru) | 2011-08-30 | 2011-08-30 | Устройство для измерения малых перемещений или деформаций объекта |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2473044C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2055310C1 (ru) * | 1992-04-10 | 1996-02-27 | Производственное объединение "Новосибирский приборостроительный завод" | Устройство для измерения перемещений |
RU2156434C2 (ru) * | 1998-12-18 | 2000-09-20 | Научно-производственный центр "Полюс" | Оптико-электронный преобразователь для бесконтактного измерения линейного перемещения и (или) диаметра |
US6619134B1 (en) * | 1998-12-31 | 2003-09-16 | Kibron Inc. Oy | Measuring device for measuring small forces and displacements |
RU2373492C2 (ru) * | 2007-11-28 | 2009-11-20 | Федеральное Государственное Образовательное Учреждение Высшего Профессионального Образования "Южный Федеральный Университет" | Оптическое устройство для измерения перемещений |
CN101788269A (zh) * | 2010-03-22 | 2010-07-28 | 西安交通大学 | 一种自带基准的位移测量装置及测量方法 |
-
2011
- 2011-08-30 RU RU2011136133/28A patent/RU2473044C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2055310C1 (ru) * | 1992-04-10 | 1996-02-27 | Производственное объединение "Новосибирский приборостроительный завод" | Устройство для измерения перемещений |
RU2156434C2 (ru) * | 1998-12-18 | 2000-09-20 | Научно-производственный центр "Полюс" | Оптико-электронный преобразователь для бесконтактного измерения линейного перемещения и (или) диаметра |
US6619134B1 (en) * | 1998-12-31 | 2003-09-16 | Kibron Inc. Oy | Measuring device for measuring small forces and displacements |
RU2373492C2 (ru) * | 2007-11-28 | 2009-11-20 | Федеральное Государственное Образовательное Учреждение Высшего Профессионального Образования "Южный Федеральный Университет" | Оптическое устройство для измерения перемещений |
CN101788269A (zh) * | 2010-03-22 | 2010-07-28 | 西安交通大学 | 一种自带基准的位移测量装置及测量方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10488180B2 (en) | Mask inspection apparatus and mask inspection method | |
CN104904194B (zh) | 用于使用脉冲照明的移动图像的高速获取的方法及设备 | |
CN102494873B (zh) | 一种微透镜阵列焦距的测量方法 | |
US9574967B2 (en) | Wavefront measurement method, shape measurement method, optical element manufacturing method, optical apparatus manufacturing method, program, and wavefront measurement apparatus | |
US9575010B2 (en) | Inspection apparatus and inspection method | |
CN102147234B (zh) | 激光三角测距传感器 | |
CN101069067A (zh) | 采用串联多比特内插子编码器的绝对编码器 | |
CN102538686A (zh) | 厚度量测方法 | |
US20160247267A1 (en) | Line width error obtaining method, line width error obtaining apparatus, and inspection system | |
US6649925B2 (en) | Methods of calibrating a position measurement device | |
CN103676487A (zh) | 一种工件高度测量装置及其校正方法 | |
CN102573308A (zh) | 印刷电路板图形拼接误差的修正方法 | |
KR101195963B1 (ko) | 광학식 적설량 계측방법 및 장치 | |
RU2473044C1 (ru) | Устройство для измерения малых перемещений или деформаций объекта | |
KR101566129B1 (ko) | 라인 스캔 방식의 모아레 3차원 형상 측정 장치 및 방법 | |
JP2007078483A (ja) | 液面測定方法及び液量測定方法 | |
CN101329515B (zh) | 用于步进光刻机对准系统的测校装置及其测校方法 | |
US8817247B2 (en) | Precision approach path indicator measurement systems and methods | |
CN108731808B (zh) | Ims型快照式成像光谱仪子孔径中心位置定标方法及装置 | |
CN111750909B (zh) | 光编码器和光编码器的计算方法 | |
US11779296B2 (en) | Photon counting detector based edge reference detector design and calibration method for small pixelated photon counting CT apparatus | |
US11215526B2 (en) | Inspection apparatus and inspection method | |
KR20230036072A (ko) | 모아레 효과를 디스플레이하는 디바이스 유사 오버레이 계측 타겟 | |
US20110051130A1 (en) | Foreign substance inspection apparatus, exposure apparatus, and method of manufacturing device | |
CN109631765B (zh) | 影像位移传感器及其测量方法 |