RU2469306C1 - Устройство для определения концентрации кислорода в водных и газовых средах - Google Patents

Устройство для определения концентрации кислорода в водных и газовых средах Download PDF

Info

Publication number
RU2469306C1
RU2469306C1 RU2011133537/28A RU2011133537A RU2469306C1 RU 2469306 C1 RU2469306 C1 RU 2469306C1 RU 2011133537/28 A RU2011133537/28 A RU 2011133537/28A RU 2011133537 A RU2011133537 A RU 2011133537A RU 2469306 C1 RU2469306 C1 RU 2469306C1
Authority
RU
Russia
Prior art keywords
cathode
membrane
oxygen
housing
surface area
Prior art date
Application number
RU2011133537/28A
Other languages
English (en)
Inventor
Сергей Сергеевич Ермаков
Александра Владимировна Гурская
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный университет filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный университет
Priority to RU2011133537/28A priority Critical patent/RU2469306C1/ru
Application granted granted Critical
Publication of RU2469306C1 publication Critical patent/RU2469306C1/ru

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано для электрохимического анализа растворов, в том числе при определении содержания растворенных газов, в частности концентрации кислорода. Устройство для определения концентрации кислорода в водных и газовых средах содержит электрически непроводящий корпус, в котором расположены фиксированно по отношению друг к другу анод и катод с токоотводами, проницаемая для кислорода мембрана, отделяющая анод и катод от исследуемой среды, и фиксатор, удерживающий мембрану, одна сторона которой расположена в непосредственной близости от катода, а другая ее сторона расположена от исследуемой среды, источник тока и средство для измерения электрического тока между анодом и катодом. Согласно изобретению корпус выполнен разъемным и состоящим из трех частей, одна из которых центральная, которая имеет цилиндрическую полость, с одной стороны центральной части корпуса расположена крышка с отверстием для ввода электролита, соединенная со стержнем, расположенным внутри центральной части корпуса с отступом от стенок полости и имеющим систему электродов, содержащую катод, который выполнен в виде металлического покрытия в форме сплошного круга на торце цилиндрического стержня, боковая поверхность стержня имеет электрод сравнения, выполненный в виде металлического покрытия, площадь поверхности которого не менее чем в 10 раз больше площади поверхности катода, от которого электрод сравнения отделен пористой прокладкой, а фиксатор, удерживающий мембрану, выполнен с углублением для заполнения его исследуемой средой, расположенным со стороны мембраны и по центру фиксатора с глубиной, величина которой не менее расстояния между мембраной и катодом и составляет не более 3 мм, фиксатор имеет два отверстия для ввода и вывода исследуемой среды, а площадь поверхности мембраны больше площади поверхности катода не более чем в два раза. Техническим результатом устройства согласно изобретению является сокращение времени анализа и уменьшение трудоемкости, повышение точности и чувствительности определения концентрации кислорода, а также удешевление устройства по сравнению с известными. 3 з.п. ф-лы, 1 табл., 4 ил., 4 пр.

Description

Заявляемое изобретение относится к измерительной технике, а именно к электрохимическому анализу, и может быть использовано как для анализа растворов при определении содержания растворенных газов, так и для анализа газовых смесей.
Известно электрохимическое устройство для определения восстанавливающихся и окисляющихся частиц в растворах на потоке [1]. Устройство включает в себя отдельную ячейку электрода сравнения, измерительную ячейку с рабочим электродом и градуировочную ячейку, содержащую градуировочный и вспомогательный электроды. Устройство позволяет проводить измерения растворенных газов в потоке, а также позволяет проводить градуировку в процессе работы сенсора. Однако конструкция известного устройства предъявляет высокие требования к гидродинамике, в частности требует большой скорости потока, что приводит к удорожанию реализуемого на этом устройстве способа. Кроме того, известное устройство имеет недостаточную чувствительность анализа и требует значительного времени измерения растворенного кислорода.
Известны способ и устройство для вольтамперометрического определения кислорода [2]. Известный способ основан на поляризации прямоугольными импульсами напряжения, причем каждый импульс прикладывается к устройству после восстановления концентрации кислорода в пространстве между мембраной и рабочей поверхностью электрода устройства для реализации этого способа, которое содержит мембрану и рабочий электрод с ограниченным между ними пространством, имеющим, преимущественно, цилиндрическую форму. Однако известное устройство требует достаточно большое (не менее чем в 10 раз по сравнению с традиционными) время анализа исследуемой среды.
Известно устройство для анализа растворенного кислорода [3], которое содержит катод и анод, отделенные от исследуемой среды кислородпроницаемой мембраной и погруженные в электролит. Известное устройство обеспечивает низкий фоновый ток при прикладывании потенциала к катоду за счет выбора задаваемого соотношения площади и длины диффузионного канала для остаточного кислорода в электролите на катоде. Однако известное устройство является достаточно трудоемким и недолговечным, поскольку требует периодического контроля аналитических характеристик устройства и периодической замены мембраны.
Известно устройство для электрохимического анализа [4], которое является наиболее близким по достижению технического результата и принято в качестве прототипа. Устройство представляет собой трехэлектродную полярографическую ячейку, отделенную от анализируемой среды газопроницаемой мембраной, и предназначено для определения концентраций кислорода в водных и газовых средах. Разделительная мембрана отсекает действие сил электростатического притяжения, оказываемого двойным электрическим слоем на заряженные частицы окружающей среды, и одновременно благодаря своей гидрофобности отталкивает полярные частицы, например молекулы воды. Одним из условий корректности измерений с помощью этого устройства является условие превышения объема с анализируемой средой по сравнению с внутренним его объемом. Стабильность устройства зависит от качества применяемых мембран, их толщины и проницаемости, которые периодически, в связи со старением мембраны, меняются и требуют постоянной корректировки.
Недостатками известного устройства являются большое время анализа и высокая трудоемкость за счет необходимости проведения периодической градуировки, большая стоимость в эксплуатации устройства за счет того, что для его градуировки требуется дополнительное оборудование и дорогостоящие реактивы, а также невысокая точность и чувствительность анализа из-за высокой зависимости выходного сигнала устройства от состояния мембраны и скорости потока.
Заявляемое изобретение свободно от этих недостатков.
Техническим результатом заявляемого устройства является сокращение времени анализа и уменьшение трудоемкости, повышение точности и чувствительности определения концентрации кислорода, а также удешевление устройства по сравнению с известными.
Указанный технический результат достигается тем, что устройство для определения концентрации кислорода в водных и газовых средах содержит электрически непроводящий корпус, в котором расположены фиксированно по отношению друг к другу анод и катод с токоотводами, проницаемая для кислорода мембрана, отделяющая анод и катод от исследуемой среды, и фиксатор, удерживающий мембрану, одна сторона которой расположена в непосредственной близости от катода, а другая ее сторона расположена от исследуемой среды, источник тока и средство для измерения электрического тока между анодом и катодом, в соответствии с предлагаемым изобретением корпус выполнен разъемным и состоящим из трех частей, одна из которых центральная, которая имеет цилиндрическую полость, с одной стороны центральной части корпуса расположена крышка с отверстием для ввода электролита, соединенная со стержнем, расположенным внутри центральной части корпуса с отступом от стенок полости и имеющим систему электродов, содержащую катод, который выполнен в виде металлического покрытия в форме сплошного круга на торце цилиндрического стержня, боковая поверхность стержня имеет электрод сравнения, выполненный в виде металлического покрытия, площадь поверхности которого не менее чем в 10 раз больше площади поверхности катода, от которого электрод сравнения отделен пористой прокладкой, а фиксатор, удерживающий мембрану, выполнен с углублением для заполнения его исследуемой средой, расположенным со стороны мембраны и по центру фиксатора с глубиной, величина которой не менее расстояния между мембраной и катодом и составляет не более 3 мм, фиксатор имеет два отверстия для ввода и вывода исследуемой среды, а площадь поверхности мембраны больше площади поверхности катода не более чем в два раза.
Кроме того, указанный технический результат достигается тем, что стержень имеет цилиндрическую, конусообразную или иную форму, обеспечивающую наличие пространства между цилиндрической полостью центральной части корпуса и стержнем для его заполнения электролитом.
Помимо этого указанный технический результат достигается тем, что корпус выполнен из термостойкого материала и устойчивого к высоким давлениям.
Вместе с тем указанный технический результат достигается тем, что фиксатор имеет отверстие для ввода исследуемой среды, расположенное по его центру.
Реализация предлагаемого устройства проиллюстрирована на Фиг.1-4.
На Фиг.1 представлена схема заявляемого устройства.
На Фиг.2 представлены экспериментальные зависимости тока от времени, используемые для нахождения полного количества электричества, полученного по двум разным известным способам, рассмотренным ниже. По оси абсцисс - время в секундах, по оси ординат - ток в микроамперах.
На Фиг.3 представлены экспериментальные зависимости логарифма отношения тока к начальному току от времени, необходимые для расчета кулонометрической константы и нахождения полного количества электричества. По оси абсцисс - время в секундах, по оси ординат - логарифм отношения тока к начальному току.
На Фиг.4 представлены экспериментальная зависимость начального тока от концентрации: по оси абсцисс - концентрация кислорода в миллиграммах на литр, а по оси ординат - начальный ток в микроамперах.
Представленная на Фиг.1 схема заявленного устройства для определения концентрации кислорода включает электрически непроводящий корпус (1), в котором расположены фиксированно по отношению друг к другу анод (2) и катод (3) с токоотводами (4) и проницаемая для кислорода мембрана (5), отделяющая анод (2) и катод (3) от исследуемой среды (6), и фиксатор (7), удерживающий мембрану (5) одной стороной в непосредственной близости от катода (3), а другой стороной от исследуемой среды (6), источник тока и средство для измерения электрического тока между анодом и катодом (8). Корпус (1) выполнен разъемным и состоящим из трех частей, одна из которых (9) центральная и имеет цилиндрическую полость, с одной стороны которой расположена крышка (10) с отверстием для ввода электролита (11), соединенная со стержнем (12), расположенным внутри центральной части корпуса с отступом от стенок полости и имеющим систему электродов, содержащую катод (3), который выполнен в виде металлического покрытия в форме сплошного круга на торце стержня (12), боковая поверхность стержня (12) имеет электрод сравнения (13), выполненный в виде металлического покрытия, площадь поверхности которого не менее чем в 10 раз больше площади поверхности катода (3), от которого электрод сравнения (13) отделен пористой прокладкой (14), а фиксатор (7), удерживающий мембрану (5), выполнен с углублением для заполнения его исследуемой средой (6), расположенным со стороны мембраны (5) и по центру фиксатора (7) с глубиной, величина которой не менее расстояния между мембраной (5) и катодом (3) и составляет не более 3 мм, фиксатор (7) имеет два отверстия (15 и 16) для ввода и вывода исследуемой среды, а площадь поверхности мембраны (5) больше площади поверхности катода (3).
Работа заявляемого устройства осуществляется следующим образом: в отверстие (11) заливается электролит, через отверстие (13) в полость в фиксаторе (7) подается исследуемая среда (6). Через токоотводы (4) к электродной системе устройства подключается источник тока и средство для измерения электрического тока между анодом и катодом (8). С источника тока на катод (3) подается напряжение, кислород из исследуемого раствора (6) начинает диффундировать через мембрану (5) к катоду (3). С помощью средства для измерения электрического тока между анодом и катодом снимают показания тока от времени, с использованием которого затем определяют концентрацию кислорода в исследуемой среде.
Апробация заявляемого устройства осуществлялась на лабораторной базе Санкт-Петербургского государственного университета в режиме реального времени с использованием модели устройства, схема которого представлена на Фиг.1.
Ниже приведены примеры конкретной реализации с оптимально подобранными условиями эксперимента, по результатам которых подобрано оптимальное расстояние между катодом и мембраной (не более 3 мм) и оптимальное соотношение размеров мембраны и площади поверхности катода (площадь поверхности мембраны больше площади поверхности катода не более чем в два раза) для выполнения соотношения площади катода и объема исследуемого раствора, которое позволило бы уменьшить время отклика устройства.
Конкретные примеры реализации представлены по результатам апробации заявленного устройства на исследуемых средах с разной концентрацией кислорода.
Пример 1.
В качестве исследуемого раствора была взята деионизованная вода, насыщенная кислородом. В качестве электролита использовался 1М раствор хлорида калия (КСl). Измерения проводились на стенде, включающем модель заявленного устройства, а также любое пробоотборное средство (в конкретном примере испытаний заявленного устройства использовался насос) и кислородомер (АКПМ-02) для сравнения получаемых результатов с заданными значениями. С помощью насоса исследуемая среда подавалась через отградуированный кислородомер АКПМ-02, замеряющий реальную концентрацию кислорода в растворе, на устройство (Фиг.1). В течение 30 мин через устройство прокачивалась анализируемый раствор без подачи напряжения, после чего останавливался поток; на катод с помощью потенциостата подавалось напряжение -0,7 В, и с помощью потенциостата и регистрирующего устройства снимались зависимости тока от времени (10 мин) и замерялся начальный ток для расчетов полного количества электричества. Повторные измерения (требовалось от 3 до 5 измерений) проводились после 10 минут прокачивания этого же раствора через устройство до тех пор, пока не была достигнута воспроизводимость полученных данных, соответствующая зависимость которых изображена на Фиг.2 и Фиг.3.
Пример 2.
В качестве исследуемого раствора был взят раствор сульфита натрия (Nа2SO3) с концентрацией 2,5 г/л. В качестве электролита использовался 1М раствор хлорида калия (КСl). Измерения проводились на стенде, включающем модель заявленного устройства, а также любое пробоотборное средство (в конкретном примере испытаний заявленного устройства использовался насос) и кислородомер (АКПМ-02) для сравнения получаемых результатов с заданными значениями. С помощью насоса исследуемая среда подавалась через отградуированный кислородомер АКПМ-02, замеряющий реальную концентрацию кислорода в растворе, на устройство (Фиг.1). В течение 30 мин через устройство прокачивалась анализируемый раствор без подачи напряжения, после чего останавливался поток; на катод с помощью потенциостата подавалось напряжение -0,7 В, и с помощью потенциостата и регистрирующего устройства снимались зависимости тока от времени (10 мин) и замерялся начальный ток для расчетов полного количества электричества. Повторные измерения (требовалось от 3 до 5 измерений) проводились после 10 минут прокачивания этого же раствора через устройство до тех пор, пока не была достигнута воспроизводимость полученных данных, соответствующая зависимость которых изображена на Фиг.2 и Фиг.3.
Пример 3.
В качестве исследуемого раствора был взят раствор сульфита натрия (Na2SO3) с концентрацией 5 г/л. В качестве электролита использовался 1М раствор хлорида калия (КСl). Измерения проводились на стенде, включающем модель заявленного устройства, а также любое пробоотборное средство (в конкретном примере испытания заявленного устройства использовался насос) и кислородомер (АКПМ-02) для сравнения получаемых результатов с заданными значениями. С помощью насоса исследуемая среда подавалась через отградуированный кислородомер АКПМ-02, замеряющий реальную концентрацию кислорода в растворе, на устройство (Фиг.1). В течение 30 мин через устройство прокачивалась анализируемый раствор без подачи напряжения, после чего останавливался поток; на катод с помощью потенциостата подавалось напряжение -0,7 В, и с помощью потенциостата и регистрирующего устройства снимались зависимости тока от времени (10 мин) и замерялся начальный ток для расчетов полного количества электричества. Повторные измерения (требовалось от 3 до 5 измерений) проводились после 10 минут прокачивания этого же раствора через устройство до тех пор, пока не была достигнута воспроизводимость полученных данных, соответствующая зависимость которых изображена на Фиг.2 и Фиг.3.
Пример 4.
В качестве исследуемого раствора был взят раствор сульфита натрия (Na2SO3) с концентрацией 7,5 г/л. В качестве электролита использовался 1М раствор хлорида калия (KCl). Измерения проводились на стенде, включающем модель заявленного устройства, а также любое пробоотборное средство (в конкретном примере испытания заявленного устройства использовался насос) и кислородомер (АКПМ-02) для сравнения получаемых результатов с заданными значениями. С помощью насоса исследуемая среда подавалась через отградуированный кислородомер АКПМ-02, замеряющий реальную концентрацию кислорода в растворе, на устройство (Фиг.1). В течение 30 мин через устройство прокачивалась анализируемый раствор без подачи напряжения, после чего останавливался поток; на катод с помощью потенциостата подавалось напряжение -0,7 В, и с помощью потенциостата и регистрирующего устройства снимались зависимости тока от времени (10 мин) и замерялся начальный ток для расчетов полного количества электричества. Повторные измерения (требовалось от 3 до 5 измерений) проводились после 10 минут прокачивания этого же раствора через устройство до тех пор, пока не была достигнута воспроизводимость полученных данных, соответствующая зависимость которых изображена на Фиг.2 и Фиг.3.
Результаты, полученные в примерах 1-4, представлены в виде зависимостей тока от времени на Фиг.2 и Фиг.3 и в виде зависимости начальных токов от концентрации кислорода, представленной на Фиг.4.
Для доказательства точности и достоверности определения концентрации кислорода заявленным устройством были проведены дополнительные исследования известными (традиционными) способами определения концентрации кислорода на основе определения полного количества электричества, по сравнению с полученными в результате апробации заявляемого устройства (примеры 1-4).
Полное количество электричества, связанное с концентрацией кислорода в исследуемой среде, может быть найдено известными традиционными двумя способами. Ниже приведено краткое пояснение каждого из них для того, чтобы сравнить полученные с использованием заявленного устройства результаты конкретной апробации в реальном времени измерений и показать его преимущество.
Один из этих способов основан на нахождении полного количества электричества интегрирования тока по времени. Такой вариант измерений наиболее точен, но длителен во времени, поскольку требует 99%-ного превращения вещества. Точность измерений при этом составляет 1%.
Второй способ основан на нахождении полного количества электричества по формуле Мейтса:
Figure 00000001
где Q1, Q2, Q3 - количество электричества, затраченное к моменту времени t1, t2, t3 соответственно при условии t2-t1=t3-t2. Q1, Q2 и Q3 находят частичным интегрированием кривых на заданных отрезках времени. Такой способ более экспрессный, чем первый, поскольку не требует полного и окончательного прохождения реакции. Однако он достаточно длительный, поскольку требует не менее трех измерений для расчета полного количества электричества по формуле (1).
Для определения концентрации кислорода в исследуемой среде требуется измеренное заявленным устройством полное количество электричества по формуле:
Figure 00000002
Заявленное устройство не требует временных затрат, для его реализации необходимо только предварительное нахождение кулонометрической константы, которая может быть найдена графическим путем из зависимости логарифма отношения тока к начальному току от времени, изображенной на Фиг.3.
Результаты дополнительных испытаний, представленных в приведенной таблице, подтверждают повышение точности определения концентрации кислорода заявляемым устройством в сравнении с концентрациями кислорода, полученными на известных устройствах традиционными известными двумя способами, кратко изложенными выше.
В таблице представлены результаты апробации заявленного изобретения, а именно: в первом столбце приведены номера конкретных примеров, во втором столбце приведены концентрации растворенного кислорода, полученные экспериментально с помощью АКПМ-02; в третьем и четвертом и столбцах приведены концентрации кислорода, рассчитанные описанными традиционными известными двумя способами 1 и 2; в пятом и шестом столбцах приведены начальные токи для разных концентраций кислорода и кулонометрические константы для экспериментальной модели заявляемого устройства, полученные при апробации; в седьмом столбце приведены концентрации кислорода, рассчитанные на основе экспериментальных данных, полученных на заявляемом устройстве при его апробации. В последнем столбце приведены средние отклонения значений концентраций кислорода, полученных на заявляемом устройстве, от заданных значений.
Figure 00000003
Технико-экономическая эффективность заявленного устройства состоит в сокращении времени анализа и уменьшении трудоемкости, удешевлении устройства по сравнению с известными аналогами, а также в появившейся возможности с высокой точностью и чувствительностью определять концентрацию растворенного кислорода в растворах в автоматическом режиме, что делает заявленное устройство особенно ценным при решении аналитических задач в широкой области науки при анализе различных объектов, в промышленности при контроле технологических растворов, природных и сточных вод, технических вод пищевой промышленности (в частности, при производстве пива и безалкогольных напитков), в медицине при исследовании уровня кислорода в тканях.
Список использованной литературы
1. Патент DE 2514997, G01N 27/58 (14.10.1976).
2. Патент GB 2127977A, G01N 27/49 (18.04.1984).
3. Патент US 7208071, G01N 27/404 (24.04.2007).
4. Патент US 2913386, G01N 27/49 (17.11.1959) - прототип.

Claims (4)

1. Устройство для определения концентрации кислорода в водных и газовых средах, содержащее электрически непроводящий корпус, в котором расположены фиксировано по отношению друг к другу анод и катод с токоотводами, проницаемая для кислорода мембрана, отделяющая анод и катод от исследуемой среды, и фиксатор, удерживающий мембрану, одна сторона которой расположена в непосредственной близости от катода, а другая ее сторона расположена от исследуемой среды, источник тока и средство для измерения электрического тока между анодом и катодом, отличающееся тем, что корпус выполнен разъемным и состоящим из трех частей, одна из которых центральная, которая имеет цилиндрическую полость, с одной стороны центральной части корпуса расположена крышка с отверстием для ввода электролита, соединенная со стержнем, расположенным внутри центральной части корпуса с отступом от стенок полости и имеющим систему электродов, содержащую катод, который выполнен в виде металлического покрытия в форме сплошного круга на торце цилиндрического стержня, боковая поверхность стержня имеет электрод сравнения, выполненный в виде металлического покрытия, площадь поверхности которого не менее чем в 10 раз больше площади поверхности катода, от которого электрод сравнения отделен пористой прокладкой, а фиксатор, удерживающий мембрану, выполнен с углублением для заполнения его исследуемой средой, расположенным со стороны мембраны и по центру фиксатора с глубиной, величина которой не менее расстояния между мембраной и катодом и составляет не более 3 мм, фиксатор имеет два отверстия для ввода и вывода исследуемой среды, а площадь поверхности мембраны больше площади поверхности катода не более чем в два раза.
2. Устройство по п.1, отличающееся тем, что стержень имеет цилиндрическую, конусообразную или иную форму, обеспечивающую наличие пространства между цилиндрической полостью центральной части корпуса и стержнем для его заполнения электролитом.
3. Устройство по п.1, отличающееся тем, что корпус выполнен из термостойкого материала и устойчивого к высоким давлениям.
4. Устройство по п.1, отличающееся тем, что фиксатор имеет отверстие для ввода исследуемой среды, расположенное по его центру.
RU2011133537/28A 2011-08-11 2011-08-11 Устройство для определения концентрации кислорода в водных и газовых средах RU2469306C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011133537/28A RU2469306C1 (ru) 2011-08-11 2011-08-11 Устройство для определения концентрации кислорода в водных и газовых средах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011133537/28A RU2469306C1 (ru) 2011-08-11 2011-08-11 Устройство для определения концентрации кислорода в водных и газовых средах

Publications (1)

Publication Number Publication Date
RU2469306C1 true RU2469306C1 (ru) 2012-12-10

Family

ID=49255831

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011133537/28A RU2469306C1 (ru) 2011-08-11 2011-08-11 Устройство для определения концентрации кислорода в водных и газовых средах

Country Status (1)

Country Link
RU (1) RU2469306C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2614348C1 (ru) * 2015-11-10 2017-03-24 Акционерное Общество Научно-Производственное Объединение "Нэмп" Полярографический датчик кислорода

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU309291A1 (ru) * Специальное конструкторско технологическое бюро Медфизприбор Датчик для измерения парциального давления кислорода в биологических жидкостях
US2913386A (en) * 1956-03-21 1959-11-17 Jr Leland C Clark Electrochemical device for chemical analysis
US4486291A (en) * 1979-07-25 1984-12-04 Fresenius Ag Measuring apparatus for the determination of oxygen partial pressure in fluids and gases
RU248U1 (ru) * 1993-06-25 1995-01-16 Геннадий Алексеевич Серебряков Датчик для определения кислорода в жидкости
DE10047708C1 (de) * 2000-09-25 2002-01-24 Kempe Gmbh Sensor zur Messung von O¶2¶ Konzentrationen in Flüssigkeiten
EP1179731A2 (en) * 2000-08-01 2002-02-13 Riken Keiki Co., Ltd. Galvanic gas sensor with an oxygen reduction counter electrode
EP1468641A2 (en) * 2003-04-16 2004-10-20 Alfred E. Mann Foundation for Scientific Research Blood oxygen monitoring system and a lead therefor
US7208071B2 (en) * 2000-11-01 2007-04-24 Rosemount Analytical Inc. Amperometric sensor for low level dissolved oxygen with self-depleting sensor design

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU309291A1 (ru) * Специальное конструкторско технологическое бюро Медфизприбор Датчик для измерения парциального давления кислорода в биологических жидкостях
US2913386A (en) * 1956-03-21 1959-11-17 Jr Leland C Clark Electrochemical device for chemical analysis
US4486291A (en) * 1979-07-25 1984-12-04 Fresenius Ag Measuring apparatus for the determination of oxygen partial pressure in fluids and gases
RU248U1 (ru) * 1993-06-25 1995-01-16 Геннадий Алексеевич Серебряков Датчик для определения кислорода в жидкости
EP1179731A2 (en) * 2000-08-01 2002-02-13 Riken Keiki Co., Ltd. Galvanic gas sensor with an oxygen reduction counter electrode
DE10047708C1 (de) * 2000-09-25 2002-01-24 Kempe Gmbh Sensor zur Messung von O¶2¶ Konzentrationen in Flüssigkeiten
US7208071B2 (en) * 2000-11-01 2007-04-24 Rosemount Analytical Inc. Amperometric sensor for low level dissolved oxygen with self-depleting sensor design
EP1468641A2 (en) * 2003-04-16 2004-10-20 Alfred E. Mann Foundation for Scientific Research Blood oxygen monitoring system and a lead therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2614348C1 (ru) * 2015-11-10 2017-03-24 Акционерное Общество Научно-Производственное Объединение "Нэмп" Полярографический датчик кислорода

Similar Documents

Publication Publication Date Title
US10451455B2 (en) Wireless sensor for detection and measurement of properties in liquids over an internet-based network
US3505195A (en) Electrode system for electro-chemical measurements in solutions
Lindner et al. Switched wall jet for dynamic response measurements
RU2469306C1 (ru) Устройство для определения концентрации кислорода в водных и газовых средах
CN107314999B (zh) 基于多元线性回归法的液体阴极辉光放电光谱分析方法
KR20200002856A (ko) 수소 확산성의 비-파괴적 측정용 장치 및 방법
RU111671U1 (ru) Кислородный сенсор
RU188416U1 (ru) Сенсор для измерения концентрации кислорода, водорода и влажности газовых смесей
RU2532139C1 (ru) Способ измерения кислорода в газовых средах
KR20200002857A (ko) 수소 확산성의 비-파괴적 측정용 장치 및 방법
WO2009123496A1 (ru) Способ и устройство для определения примесей в нефти и нефтепродуктах
RU190893U1 (ru) Ячейка для спектрофотометрии электролитов в процессе электрохимических исследований
Laitinen et al. Amperometric Titration Cell for Use with Dropping Mercury Electrode
RU2391654C1 (ru) Проточная ионометрическая ячейка
WO2020227775A1 (en) Systems and methods for analyte determination
US7807041B2 (en) Method for detecting the presence or absence of a gas bubble in an aqueous liquid
SU871806A1 (ru) Способ определени концентрации гели в природных водах
JP6179727B2 (ja) カールフィッシャー試薬を使用した水分測定方法
US3432404A (en) Method and apparatus for continuously determining the oxygen content of gases
KR20030052749A (ko) 강판 수소투과 시험장치
RU191013U9 (ru) Амперометрический датчик для измерения концентрации горючих газов и их влажности
US20240125727A1 (en) Electrochemical measurement with additional reference measurement
SU1149155A1 (ru) Способ определени состава газа
RU1805370C (ru) Способ определени содержани воды в нефтепродуктах
Ciepiela et al. Novel method for standard addition signal analysis in voltammetry