RU2468344C1 - Способ дисперсионной фурье-спектрометрии в непрерывном широкополосном излучении - Google Patents

Способ дисперсионной фурье-спектрометрии в непрерывном широкополосном излучении Download PDF

Info

Publication number
RU2468344C1
RU2468344C1 RU2011126683/28A RU2011126683A RU2468344C1 RU 2468344 C1 RU2468344 C1 RU 2468344C1 RU 2011126683/28 A RU2011126683/28 A RU 2011126683/28A RU 2011126683 A RU2011126683 A RU 2011126683A RU 2468344 C1 RU2468344 C1 RU 2468344C1
Authority
RU
Russia
Prior art keywords
radiation
sample
arm
substance
measuring
Prior art date
Application number
RU2011126683/28A
Other languages
English (en)
Inventor
Анатолий Павлович Кирьянов
Алексей Константинович Никитин
Герман Николаевич Жижин
Николай Иванович Головцов
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) filed Critical Государственное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН)
Priority to RU2011126683/28A priority Critical patent/RU2468344C1/ru
Application granted granted Critical
Publication of RU2468344C1 publication Critical patent/RU2468344C1/ru

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к оптическим методам исследования материалов, а именно к определению спектров комплексной диэлектрической проницаемости или оптических постоянных. Способ заключается в размещении в каждом плече двухлучевого интерферометра по одному идентичному герметичному контейнеру с прозрачными окнами, в одном из которых в измерительном плече размещают прозрачный образец исследуемого вещества. В контейнере опорного плеча размещают эталонное тело, толщиной, равной толщине образца, и изготовленное из вещества, с показателем преломления n0, монотонно зависящим от частоты излучения и отличающимся от показателя преломления исследуемого вещества n в пределах полосы излучения не более чем на величину (n-n0)=λmin/a, где а - расстояние, проходимое излучением в образце, λmin - минимальная длина волны излучения. Пропускают через оба контейнера излучение и дискретно регистрируют интерферограмму, формируемую на выходе интерферометра при изменении разности оптических путей излучения в опорном и измерительном плечах по заданному закону. Обрабатывают полученную интерферограмму с помощью полного Фурье-преобразования. Изобретение позволяет повысить точность измерений и расширить класс исследуемых веществ. 1 ил.

Description

Изобретение относится к оптическим методам исследования материалов, а именно - к определению спектров комплексной диэлектрической проницаемости или оптических постоянных (показателя преломления n и показателя поглощения k) вещества в результате одновременных амплитудно-фазовых измерений в рабочем диапазоне частот зондирующего излучения и может найти применение в оптических исследованиях физико-химических процессов, в дисперсионной спектроскопии, в оптической контрольно-измерительной аппаратуре и рефрактометрии материалов.
Дисперсионная Фурье-спектроскопия (ДФС) позволяет определять в результате амплитудно-фазовых измерений частотные зависимости n и k (связанные известными соотношениями с комплексной диэлектрической проницаемостью) образца в оптическом диапазоне при использовании широкополосных источников излучения [1, 2].
Амплитудно-фазовая Фурье-спектроскопия, являющаяся разновидностью ДФС, основана на анализе интерференционной картины, образованной в параллельных пучках широкополосного излучения, один из которых взаимодействует с образцом. Для получения информации о спектрах амплитуд и фаз излучения выполняют полное (косинусное и синусное) Фурье-преобразование интерферограммы, полученной при изменении разности хода опорного и измерительного пучков.
Известен способ асимметричной дисперсионной Фурье-спектрометрии, включающий размещение образца в одном плече (измерительном) двухлучевого статического интерферометра, воздействие на образец перестраиваемым по частоте монохроматическим излучением, дискретную регистрацию интерферограммы, формируемой на выходе интерферометра при изменении разности оптических путей излучения в опорном и измерительном плечах по заданному закону, математическую обработку полученной интерферограммы с помощью полного Фурье-преобразования [3]. Основным недостатком известного способа является большая продолжительность и низкая точность измерений, что обусловлено необходимостью дискретной перестройки источника по частоте и многократного повторения процедуры измерений на каждой частоте излучения.
Наиболее близким по технической сущности к заявляемому является способ дисперсионной Фурье-спектрометрии в широкополосном излучении, включающий размещение в каждом из плеч двухлучевого интерферометра по одному идентичному герметичному контейнеру с прозрачными окнами, размещение в контейнере измерительного плеча образца исследуемого вещества, пропускание через оба контейнера непрерывного широкополосного излучения, дискретную регистрацию интерферограммы, формируемой на выходе интерферометра при изменении разности оптических путей излучения в опорном и измерительном плечах по заданному закону, математическую обработку полученной интерферограммы с помощью полного Фурье-преобразования [4]. Основным недостатком известного способа является низкая точность измерений, что обусловлено неоднозначностью по целому числу 2π при определении фазового набега Δφ излучения в образце исследуемого вещества и малостью длины взаимодействия излучения с веществом при ограничении Δφ величиной 2π.
Техническим результатом, на достижение которого направлено настоящее изобретение, является повышение точности измерений и расширение класса исследуемых веществ и образцов.
Технический результат достигается тем, что в известном способе дисперсионной Фурье-спектрометрии в широкополосном излучении, включающем размещение в каждом плече двухлучевого интерферометра по одному идентичному герметичному контейнеру с прозрачными окнами, размещение в контейнере измерительного плеча прозрачного образца исследуемого вещества, пропускание через оба контейнера излучения, дискретную регистрацию интерферограммы, формируемой на выходе интерферометра при изменении разности оптических путей излучения в опорном и измерительном плечах по заданному закону, математическую обработку полученной интерферограммы с помощью полного Фурье-преобразования, в контейнере опорного плеча размещают эталонное тело, толщиной, равной толщине образца, и изготовленное из вещества, с показателем преломления n0, монотонно зависящим от частоты излучения и отличающимся от показателя преломления исследуемого вещества n в пределах полосы излучения не более чем на величину (n-n0)=λmin/a, где a - расстояние, проходимое излучением в образце, λmin - минимальная длина волны излучения.
Повышение точности измерений заявляемым способом достигается в результате устранения неоднозначности по целому числу 2π и увеличения пути излучения в исследуемом веществе. Повышение точности становится возможным благодаря наличию в контейнерах веществ с близкими показателями преломления в пределах полосы частот излучения (это различие Δn не должно превышать λmin/a, где а - расстояние, проходимое излучением в образце, λmin - минимальная длина волны излучения) и равенству расстояний, проходимых излучением в контейнерах. Действительно, в этом случае изменение разности фаз Δφ для составляющей излучения с данной длиной волны λ в интерферирующих пучках оказывается равным не Δφ=k0·(n-1)·a как в способе-прототипе (где k0=2π/λ; n - показатель преломления исследуемого вещества на данной λ), а-Δφ=k0·Δn·a. Но, поскольку в заявляемом способе Δn мало, то равенство Δφ=2π будет достигаться при а, значительно большем, по сравнению с прототипом. Таким образом, заявляемый способ позволяет увеличить длину взаимодействия излучения с исследуемым веществом, что обуславливает повышение точности измерения коэффициента его поглощения.
Расширение класса исследуемых веществ и образцов обеспечивается также благодаря размещению в контейнере опорного плеча интерферометра вещества с показателем преломления, близким к показателю преломления исследуемого вещества в полосе частот излучения, поскольку в этом случае расстояние а, проходимое излучением в исследуемом веществе при выполнении условия Δφ≤2π, становится в (n-1)/Δn раз больше, по сравнению с прототипом. Поэтому заявляемым способом можно исследовать не только тонкие, но и протяженные образцы (расширение класса исследуемых образцов), а также - и оптически более плотные материалы (расширение класса исследуемых веществ).
На фиг.1 приведена схема спектрометра, позволяющего реализовать заявляемый способ, где цифрами обозначены: 1 герметичный контейнер с прозрачными окнами, заполняемый исследуемым веществом; 2 герметичный контейнер с прозрачными окнами, заполняемый веществом с известной зависимостью его показателя преломления от частоты излучения; 3 источник широкополосного немонохроматического излучения; 4 светоделитель; 5 линия задержки, состоящая из неподвижного 5а и подвижного 5б уголковых отражателей, обеспечивает сканирование разности оптических путей интерферирующих пучков; 6 плоское зеркало, 7 плоское зеркало, размещенное в контейнере 1; 8 светоделитель, размещенный в контейнере 2 и сопряженный с зеркалом 7; 9 линия задержки, состоящая из неподвижного 9а и подвижного 9б уголковых отражателей, обеспечивает сохранность когерентности соответственных монохроматических компонент в интерферирующих пучках; 10 фотоприемное устройство (ФПУ); 11 блок обработки информации, способный выполнять полное Фурье-преобразование регистрируемой в ходе сканирования интерферограммы.
Способ осуществляется следующим образом. В контейнере 1 размещают прозрачный образец исследуемого вещества, а в контейнере 2 - эталонное тело, толщиной, равной толщине образца, и изготовленное из вещества, с нормальной дисперсией и известной зависимостью показателя преломления n0 от частоты, который мало отличается от показателя преломления исследуемого вещества n в пределах полосы излучения. Коллимированное излучение источника 3 поступает на светоделитель 4 и разделяется им на два пучка - опорный и измерительный. Линия задержки 5, сканированием по заданному закону отражателя 5б, осуществляет заданное изменение оптической разности хода интерферирующих пучков. Прошедший через линию 5 пучок измерительного плеча интерферометра отражается зеркалом 6 и направляется на входное окно контейнера 1, в котором он взаимодействует с исследуемым веществом, отражается зеркалом 7 и, выйдя из контейнера 1 через его другое окно, падает на светоделитель 8. На противоположную сторону делителя 8 через окно контейнера 2 поступает прошедшее через линию 9 излучение из опорного плеча. Совмещенные делителем 8 пучки из обоих плеч выходят из контейнера 2 через его третье окно и направляются на вход ФПУ 10, регистрирующего интерференционную интенсивность излучения. Генерируемый устройством 10 электрический сигнал поступает в блок обработки информации 11.
До начала измерений отражатель 5б устанавливают в среднее (в пределах его хода) положение. Число N положений отражателя 5б, пропорциональное частотному разрешению спектрометра, выбирают исходя из требований к точности измерений. Кроме того, изменяя с помощью линии 9 разность оптических путей пучков, добиваются максимальной видности интерференционной картины.
Зарегистрировав в блоке 11 интерферограмму, представляющую собой совокупность значений интерференционного сигнала при N положениях отражателя 5б, выполняют полное Фурье-преобразование интерферограммы и получают фазовый и амплитудный спектры исследуемого вещества в диапазоне частот излучения источника 1. Для повышения соотношения "полезный сигнал/шум" такие измерения выполняют многократно, находят средние значения сигналов в точках отсчета, совокупность которых представляет собой усредненную интерферограмму, которая и подвергается полному Фурье-преобразованию. Кроме того, для дополнительного повышения отношения "полезный сигнал/шум" в процессе измерений может быть применена также известная методика фазовой модуляции интерференционного сигнала путем колебаний отражателя 5б, что позволяет реализовать селективную регистрацию электрического сигнала с выхода ФПУ 10 на частоте фазовой модуляции.
В качестве примера применения заявляемого способа рассмотрим возможность получения с помощью описанного выше прибора спектров n и k воды, находящейся при температуре 18°C, в диапазоне λ, от 0,4 мкм до 0,8 мкм. В качестве источника излучения со сплошным спектром выберем нить лампы накаливания при температуре 2000°C, снабженную соответствующим полосовым фильтром. Учитывая, что показатель преломления воды n при λ=0,4 мкм равен приблизительно 1,4 [5], в качестве эталонного тела, помещаемого в контейнер опорного плеча, выберем такую же воду, но находящуюся при температуре 60°C, и показатель преломления которой n0 меньше n на величину Δn≈1,5·10-4 [6]. Тогда расстояние а, проходимое излучением в образце, не должно превышать 2,7 мм, чтобы выполнить условие Δφ=k0·Δn·a≤2π (где k0 соответствует λ=0,4 мкм). В случае же применения способа-прототипа, когда контейнер в опорном плече заполнен воздухом, условие Δφ≤2π будет выполнено при a≤1 мкм, поскольку Δn в этом случае равно 0,4. Следовательно, расстояние, проходимое излучением в воде, при применении заявляемого способа, будет в 2700 раз больше, чем в прототипе. В соответствующее число раз уменьшится ошибка определения как n, так и k для воды в рабочем диапазоне длин волн излучения.
Таким образом, в результате увеличения расстояния, проходимого излучением в исследуемом веществе, и ликвидации неоднозначности по целому числу 2π, применение заявляемого способа позволяет как повысить точность измерений, так и расширить класс исследуемых веществ и образцов.
Источники информации
1. Золотарев В.М. Методы исследования материалов фотоники: элементы теории и техники. СПб: СПбГУ ИТМО, 2008. - 275 с.
2. Креницкий А.П. Проблемы измерения диэлектрических характеристик нано- и микроразмерных сред в терагерцевом диапазоне частот // Успехи современной радиоэлектроники, 2008, №9, с.30-35.
3. Егорова Л.В., Ермаков Д.С., Кувалкин Д.Г., Таганов O.K. Фурье-спектрометры статического типа // Оптико-механическая промышленность, 1992, №2, с.3-14.
4. Birch J.R., Parker T.J. Dispersive Fourier Transform Spectroscopy, Ch.3 in "Infrared and Millimeter Waves", v.2. Ed. by K.J.Button, Academic Press, N.Y. 1979, p.137-271 (прототип).
5. Золотарев В.М., Морозов В.Н., Смирнова Е.В. Оптические постоянные природных и технических сред. Справочник // Л.: Химия, 1984. - с.15.
6. Abbate G., Bernini U., Ragozzino E. and Somma F. The temperature dependence of the refractive index of water // J. Phys. D, 1978, v.11, p.1167-1172.

Claims (1)

  1. Способ дисперсионной Фурье-спектрометрии в непрерывном широкополосном излучении, включающий размещение в измерительном и опорном плечах двухлучевого интерферометра по одному идентичному герметичному контейнеру с прозрачными окнами, размещение в контейнере измерительного плеча прозрачного образца исследуемого вещества, пропускание через оба контейнера излучения, дискретную регистрацию интерферограммы, формируемой на выходе интерферометра при изменении разности оптических путей излучения в опорном и измерительном плечах по заданному закону, математическую обработку полученной интерферограммы с помощью полного Фурье-преобразования, отличающийся тем, что в контейнере опорного плеча размещают эталонное тело, толщиной, равной толщине образца, и изготовленное из вещества, с показателем преломления n0, монотонно зависящим от частоты излучения и отличающимся от показателя преломления исследуемого вещества n в пределах полосы излучения не более чем на величину (n-n0)=λmin/a, где а - расстояние, проходимое излучением в образце, λmin - минимальная длина волны излучения.
RU2011126683/28A 2011-06-30 2011-06-30 Способ дисперсионной фурье-спектрометрии в непрерывном широкополосном излучении RU2468344C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011126683/28A RU2468344C1 (ru) 2011-06-30 2011-06-30 Способ дисперсионной фурье-спектрометрии в непрерывном широкополосном излучении

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011126683/28A RU2468344C1 (ru) 2011-06-30 2011-06-30 Способ дисперсионной фурье-спектрометрии в непрерывном широкополосном излучении

Publications (1)

Publication Number Publication Date
RU2468344C1 true RU2468344C1 (ru) 2012-11-27

Family

ID=49254968

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011126683/28A RU2468344C1 (ru) 2011-06-30 2011-06-30 Способ дисперсионной фурье-спектрометрии в непрерывном широкополосном излучении

Country Status (1)

Country Link
RU (1) RU2468344C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1622775A1 (ru) * 1988-10-21 1991-01-23 Ленинградский электротехнический институт им.В.И.Ульянова (Ленина) Фурье-спектрометр
RU2265827C2 (ru) * 2000-06-01 2005-12-10 Лайфскен, Инк. Способы двухлучевой ик-фурье спектроскопии и устройства для обнаружения исследуемого вещества в пробах с низкой проницаемостью
US7206073B2 (en) * 2002-12-23 2007-04-17 The United States Of America As Represented By The Secretary Of The Navy Dispersed fourier transform spectrometer
AT504654A4 (de) * 2007-07-12 2008-07-15 Adolf Friedrich Dr Fercher Räumlich lokalisierte konzentrationsmessung von lösungskomponenten in mischungen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1622775A1 (ru) * 1988-10-21 1991-01-23 Ленинградский электротехнический институт им.В.И.Ульянова (Ленина) Фурье-спектрометр
RU2265827C2 (ru) * 2000-06-01 2005-12-10 Лайфскен, Инк. Способы двухлучевой ик-фурье спектроскопии и устройства для обнаружения исследуемого вещества в пробах с низкой проницаемостью
US7206073B2 (en) * 2002-12-23 2007-04-17 The United States Of America As Represented By The Secretary Of The Navy Dispersed fourier transform spectrometer
AT504654A4 (de) * 2007-07-12 2008-07-15 Adolf Friedrich Dr Fercher Räumlich lokalisierte konzentrationsmessung von lösungskomponenten in mischungen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIRCH J.R., PARKER T.J. Infrared and Millimeter Waves, v.2, ch.3, Dispersive Fourier Transform Spectrometry, Academic Press, N.Y., 1979, p.180-208. *
BIRCH J.R., PARKER T.J. Infrared and Millimeter Waves, v.2, ch.3, Dispersive Fourier Transform Spectrometry, Academic Press, N.Y., 1979, p.180-208. Егорова Л.В. и др. Фурье-спектрометры статического типа. - Оптико-механическая промышленность, 1992, №2, с.3-14. *
Егорова Л.В. и др. Фурье-спектрометры статического типа. - Оптико-механическая промышленность, 1992, No.2, с.3-14. *

Similar Documents

Publication Publication Date Title
US8693004B2 (en) Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source
Jaggi et al. Fourier transform infrared spectroscopy
KR20110036945A (ko) 주파수 빗 광원을 갖는 푸리에 변환 분광기
CN110553993B (zh) 一种光谱测量系统及多外差拍频信号探测及数据处理方法
CN106442424B (zh) 利用石墨烯太赫兹表面等离子效应的酒精浓度测量装置及其方法
CN108918458B (zh) 一种确定材料太赫兹吸收峰的方法
JPH05264355A (ja) 赤外線エリプソメータ
Gast et al. An amplitude Fourier spectrometer for infrared solid state spectroscopy
Palmer et al. Step-scan FT-IR photothermal spectral depth profiling of polymer films
Möllmann et al. Fourier transform infrared spectroscopy in physics laboratory courses
RU2468344C1 (ru) Способ дисперсионной фурье-спектрометрии в непрерывном широкополосном излучении
Shaikh et al. Qualitative and quantitative characterization of textile material by Fourier transform infra-red
US8953168B2 (en) Optical sensing devices and methods for detecting samples using the same
Andrushchak et al. A new method for refractive index measurement of isotropic and anisotropic materials in millimeter and submillimeter wave range
RU2345351C1 (ru) Устройство для получения спектров поглощения тонких слоев в терагерцовой области спектра
Yin et al. Trace gas detect based on spectral analysis and harmonic ratio
Zhizhin et al. Dispersive Fourier-transform spectroscopy of surface plasmons in the infrared frequency range
CN112229814B (zh) 太赫兹光谱测量装置、测量方法及其用途
Ali IR spectroscopy
RU2477842C1 (ru) Плазмонный фурье-спектрометр терагерцового диапазона
RU2703772C1 (ru) Устройство для измерения длины распространения инфракрасной поверхностной электромагнитной волны
CN114993941B (zh) 一种免标定抗振动的吸收光谱测量方法与系统
Chao et al. Dielectric permittivity measurements of thin films at microwave and terahertz frequencies
Naftaly Broadband terahertz measurements of optical properties of materials
Richter et al. Dielectric loss of liquid hydrocarbons in the millimetre and submillimetre wavelength regions

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160701