RU2477842C1 - Плазмонный фурье-спектрометр терагерцового диапазона - Google Patents

Плазмонный фурье-спектрометр терагерцового диапазона Download PDF

Info

Publication number
RU2477842C1
RU2477842C1 RU2011145612/28A RU2011145612A RU2477842C1 RU 2477842 C1 RU2477842 C1 RU 2477842C1 RU 2011145612/28 A RU2011145612/28 A RU 2011145612/28A RU 2011145612 A RU2011145612 A RU 2011145612A RU 2477842 C1 RU2477842 C1 RU 2477842C1
Authority
RU
Russia
Prior art keywords
radiation
beam splitter
mirror
beams
measuring
Prior art date
Application number
RU2011145612/28A
Other languages
English (en)
Inventor
Герман Николаевич Жижин
Анатолий Павлович Кирьянов
Алексей Константинович Никитин
Олег Владимирович Хитров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН)
Priority to RU2011145612/28A priority Critical patent/RU2477842C1/ru
Application granted granted Critical
Publication of RU2477842C1 publication Critical patent/RU2477842C1/ru

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

Изобретение относится к оптическим методам исследования поверхности металлов и полупроводников. Спектрометр содержит источник объемного излучения, светоделитель, расщепляющий излучение на измерительный и реперный пучки, зеркало, твердотельный проводящий образец с двумя сопряженными скругленным ребром плоскими гранями, размещенный на одной из этих граней элемент преобразования излучения измерительного пучка в поверхностный плазмон (ПП), размещенный на второй грани образца элемент преобразования ПП в объемное излучение, выполненный в виде примыкающего к грани и перемещаемого вдоль трека ПП плоского зеркала, ориентированного перпендикулярно треку и наклонно к грани, второй светоделитель, совмещающий пучки и сопряженный с наклонным зеркалом, перемещаемым вместе со вторым светоделителем вдоль поверхности образца, фокусирующий объектив, фотоприемное устройство, второй объектив, размещенный на пути совмещенных пучков, устройство обработки информации, линию задержки, состоящую из четырех уголковых зеркал, попарно расположенных на пути пучков. Уголковые зеркала, отражающие измерительный пучок, сопряжены с наклонным зеркалом и вторым светоделителем, а источник излучения имеет сплошной спектр. Изобретение направлено на сокращение времени измерений спектра комплексного показателя преломления поверхностных плазмонов. 4 ил.

Description

Изобретение относится к оптическим методам исследования поверхности металлов и полупроводников, а именно к определению спектров комплексной диэлектрической проницаемости или оптических постоянных (показателя преломления n и показателя поглощения k) как самой поверхности, так и ее переходного слоя путем измерения комплексного показателя преломления κ=κ'+i·κ'' (где i - мнимая единица) поверхностных плазмонов (ПП) терагерцового (ТГц) диапазона, и может найти применение в оптике поверхности твердого тела, в инфракрасной (ИК) спектроскопии окисных и адсорбированных слоев, в контрольно-измерительной аппаратуре источников ТГц-излучения.
Оптическая спектроскопия поверхности твердого тела - одна из основных областей применения ПП (Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред. / Под ред. В.М.Аграновича и Д.Л.Миллса. - М.: Наука, 1985. - 525 с.). В первых ПП-спектрометрах ИК-диапазона использовали разнесенные вдоль трека ПП-элементы прямого и обратного преобразования объемной волны в поверхностную. С помощью таких устройств непосредственно измеряли длину распространения ПП L в определенном диапазоне длин волн дискретно перестраиваемого лазерного источника излучения (Zhizhin G.N., Yakovlev V.A. Broad-band spectroscopy of surface electromagnetic waves // Physics Reports. - 1990. - v.194. - No. 5/6. - p.281-289). Основной недостаток таких ПП-спектрометров - большая продолжительность измерений и недостаточность объема информации, получаемой в результате измерений L, что позволяет определять только мнимую часть κ'' показателя преломления ПП.
Использование в ПП-спектроскопии плавно перестраиваемых по частоте лазеров на свободных электронах позволило повысить соотношение сигнал/шум (Zhizhin G.N., Alieva E.V., Kuzik L.A., Yakovlev V.A., Shkrabo D.M. Van der Meer A.F.G., Van der Wiel M.J. Free-electron laser for infrared SEW characterization surfaces of conducting and dielectric solids and nm films on them // Applied Physics (A), 1998, v.67, p.667-673). Применение интерференционной методики определения κ' наряду с определением κ'' по измеренной величине L повысило информативность метода ПП-спектроскопии, поскольку появилась возможность путем решения дисперсионного уравнения ПП рассчитать два параметра переходного слоя (например, его толщину и показатель преломления) или комплексную диэлектрическую проницаемость материала образца.
Известен плазменный спектрометр ТГц-диапазона для определения диэлектрической проницаемости проводящих материалов, содержащий перестраиваемый по частоте источник монохроматического излучения, светоделитель, расщепляющий падающее излучение на измерительный и реперный пучки, зеркало, элемент преобразования излучения измерительного пучка в ПП, твердотельный образец с плоской поверхностью, элемент преобразования ПП в объемное излучение, непрозрачную заслонку, перекрывающую реперный пучок при регистрации интенсивности излучения измерительного пучка, светоделитель, совмещающий измерительный и реперный пучки, регулируемый компенсатор, фокусирующий объектив и фотоприемное устройство (Жижин Г.Н., Никитин А.К., Рыжова Т.Н. Способ определения диэлектрической проницаемости металлов в инфракрасном диапазоне спектра. // Патент РФ на изобретение №2263923, Бюл. №31 от 10.XI.2005 г.). Основным недостатком известного устройства является низкая точность определения комплексного показателя преломления ПП (из-за неоднозначности фазы объемной волны, излучаемой с различных участков элемента преобразования ПП в объемное излучение) и большая продолжительность измерений.
Наиболее близким по технической сущности к заявляемому устройству является плазменный спектрометр ТГц-диапазона, предназначенный для исследования проводящей поверхности и содержащий перестраиваемый по частоте источник монохроматического излучения, светоделитель, расщепляющий падающее излучение на измерительный и реперный пучки, регулируемый поглотитель излучения реперного пучка, зеркало, элемент преобразования излучения измерительного пучка в ПП, твердотельный проводящий образец с двухгранной поверхностью, элемент преобразования ПП в объемное излучение, непрозрачную заслонку, снабженную осью вращения, светоделитель, совмещающий измерительный и реперный пучки, фокусирующий объектив и фотоприемное устройство (ФПУ), причем элементы преобразования излучения в ПП и обратно размещены на разных гранях образца, сопряженных скругленным ребром, а элементом преобразования ПП в объемное излучение служит плоское зеркало, примыкающее к поверхности образца, ориентированное наклонно к ней, сопряженное со вторым светоделителем и перемещаемое вместе с последним вдоль поверхности образца (Жижин Г.Н., Никитин А.К., Балашов А.А., Рыжова Т.А. Плазменный спектрометр ТГц-диапазона для исследования проводящей поверхности. // Патент РФ на изобретение №2318192, Бюл. №6 от 27.02.2008 г.). Основным недостатком известного устройства является большая продолжительность измерений, обусловленная раздельностью процедур определения κ' и κ'' на дискретных частотах излучения источника.
Технический результат изобретения направлен на сокращение времени измерений спектра комплексного показателя преломления поверхностных плазмонов (κ=κ'+i·κ''), направляемых исследуемой поверхностью образца.
Технический результат достигается тем, что плазменный Фурье-спектрометр терагерцового диапазона, содержащий источник объемного излучения, светоделитель, расщепляющий излучение на измерительный и реперный пучки, зеркало, твердотельный проводящий образец с двумя сопряженными скругленным ребром плоскими гранями, размещенный на одной из этих граней элемент преобразования излучения измерительного пучка в поверхностный плазмон (ПП), размещенный на второй грани образца элемент преобразования ПП в объемное излучение, выполненный в виде примыкающего к грани и перемещаемого вдоль трека ПП плоского зеркала, ориентированного перпендикулярно треку и наклонно к грани, второй светоделитель, совмещающий пучки и сопряженный с наклонным зеркалом, перемещаемым вместе со вторым светоделителем вдоль поверхности образца, фокусирующий объектив и фотоприемное устройство (ФПУ), дополнительно содержит второй объектив, размещенный на пути совмещенных пучков, устройство обработки информации, линию задержки, состоящую из четырех уголковых зеркал, попарно расположенных на пути пучков, причем уголковые зеркала, отражающие измерительный пучок, сопряжены с наклонным зеркалом и вторым светоделителем, а источник излучения имеет сплошной спектр.
Сокращение времени измерений достигается в результате совмещения процедур определения κ' и κ'' при их одновременном выполнении для всех частот рабочего диапазона за счет использования широкополосного источника излучения и введения в состав спектрометра линии задержки и устройства обработки информации, способного выполнять полное Фурье-преобразование регистрируемой интерферограммы.
Изобретение поясняется чертежами: на фиг.1 приведена схема заявляемого устройства, на фиг.2 представлена центральная часть интерферограммы, регистрируемой в рассматриваемом примере применения заявляемого устройства, на фиг.3 изображен спектр κ'(σ) и на фиг.4 - спектр κ''(σ), рассчитанные с использованием интерферограмм, зарегистрированных в рассматриваемом примере применения заявляемого устройства при расстояниях пробега ПП, равных a1=1,0 см и a2=1,5 см; здесь σ=1/λ - волновое число (см-1).
Спектрометр содержит: 1 - источник p-поляризованного широкополосного излучения; 2 - светоделитель, расщепляющий пучок падающего излучения на измерительный и реперный пучки; 3 - фокусирующий объектив; 4 - элемент преобразования объемного излучения измерительного пучка в ПП; 5 - твердотельный проводящий образец, имеющий две плоские смежные грани, сопряженные скругленным ребром, на одной из которых размещен элемент 4, а на другой - элемент для преобразования ПП в объемное излучение, выполненный в виде примыкающего к грани подвижного плоского зеркала 6, ориентированного перпендикулярно измерительному пучку и наклонно к грани; 7, 8 - уголковые отражатели, расположенные на пути измерительного пучка и обеспечивающие когерентность монохроматических компонент в пучках; 9 - светоделитель, совмещающий измерительный и реперный пучки, 10 - платформа, перемещаемая вдоль трека ПП и содержащая элементы 6, 7, 8 и 9; 11, 12 - уголковые отражатели, расположенные на пути реперного пучка и обеспечивающие возможность регулировки разности оптических путей пучков; 13 - объектив, фокусирующий излучение совмещенных пучков на ФПУ 14, электрические сигналы с которого поступают на устройство обработки информации 15, способное выполнять полное Фурье-преобразование интерферограммы, регистрируемой ФПУ 14 при перемещении уголкового отражателя 8 (или 12).
Спектрометр работает следующим образом. Широкополосное излучение источника 1 направляют на светоделитель 2, расщепляющий падающее излучение на измерительный и реперный пучки. Излучение измерительного пучка фокусируется объективом 3 на элемент 4, преобразующий излучение в набор ПП с различными частотами. ПП пробегают до скругленного ребра (радиус закругления R>10λ), образованного двумя смежными плоскими гранями образца 5, преодолевают это ребро (с некоторыми радиационными потерями) и продолжают распространяться по второй грани до элемента 6, осуществляющего обратное преобразование набора ПП в объемные волны и направляющего их на пару зеркал 7 и 8. Пройдя эти зеркала, излучение измерительного пучка поступает на светоделитель 9, размещенный вместе с зеркалами 6, 7 и 8 на платформе 10. На другую сторону светоделителя 9 поступает излучение реперного пучка, прошедшего через вторую пару зеркал 11 и 12 линии задержки. Светоделитель 9 совмещает пучки и направляет их через объектив 13 на ФПУ 14, которое регистрирует интерференционный сигнал, являющийся функцией расстояния между парой зеркал 7 и 8 или 11 и 12, изменяемого по определенному закону во времени. Совокупность этих сигналов, называемых интерферограммой, подвергается устройством 15 полному Фурье-преобразованию. При этом расстояние между парой зеркал следует изменять таким образом, чтобы экстремальные значения оптической разности хода ±Δℓmax интерферирующих пучков удовлетворяло критерию требуемого спектрального разрешения: δσ≈1/(2·|Δℓmax|). Тогда число разрешаемых спектральных точек N=σmax/δσ, где σmax - максимальное волновое число излучения источника.
Функция автокорреляции Iинт(Δℓ) (интерферограмма) пучков, зависящая от расстояния а, описывается выражением:
Figure 00000001
где Iconst - постоянное слагаемое интерферограммы, независящее от Δℓ;
ΔIинт(Δℓ) - интерференционный член, подвергаемый полному Фурье-преобразованию и вычисляемый по формуле:
Figure 00000002
α, α - модули коэффициентов преобразования объемной волны в ПП и обратно;
Figure 00000003
- спектральная плотность излучения на входе интерферометра;
k- волновое число компоненты излучения с частотой ν в вакууме;
Figure 00000004
- показатель преломления ПП на частоте ν;
а - длина пробега ПП;
φ0Аν - начальная разность фаз пучков спектральной компоненты с частотой ν при минимальной разности оптических путей пучков, включающая в себя фазы коэффициентов преобразования.
В силу ограниченности реального спектра излучения максимальной частотой νmax интеграл в формуле для расчета ΔIинт заменяется согласно теореме отсчетов Котельникова (Лебедько Е.Г. Математические основы передачи информации. / С.-Петербург: ГУИТМО, 2010. - с.63) суммой интенсивностей дискретных монохроматических компонент с частотами νj по точкам отсчетов j=0, 1, 2, …, N на оси частот:
Figure 00000005
где Δℓm - m-ное значение Δℓ (m=0, 1, 2, …, N); N - оптимальное число точек отсчетов, равное разрешающей способности Фурье-спектрометра:
Figure 00000006
где |Δℓmax| - максимальное смещение отражателя 8 (или 12); с - скорость света в вакууме.
Применение обратного полного Фурье-преобразования
Figure 00000007
к интерферограмме ΔIинт(Δℓm) позволяет найти комплексный спектр излучения на ФПУ 14, описываемый суммой косинусного Сνj, и синусного Sνj, Фурье-преобразований интерферограммы (2):
Figure 00000008
Из комплексного спектра (4) можно выделить составляющие его амплитудный Аνj
Figure 00000009
и фазовый φνj спектры:
Figure 00000010
Figure 00000011
где
Figure 00000012
; Arctg(x) - главное значение арктангенса в диапазоне -π/2≤х≤π2; φ0Aνj - значение фазы комплексной аппаратной функции устройства на частоте νj.
Спектры Аνj и φνj содержат наряду с информацией о характеристиках ПП также и информацию о комплексной аппаратной функции прибора, модуль которой определяется амплитудными множителями I0νj, α1νj, α2νj, а аргумент - фазовыми слагаемыми φ0Aνj. Вклад всех этих аппаратных параметров можно исключить, выполнив измерения при двух различных расстояниях (a1 и а2) пробега ПП. Располагая двумя наборами спектров Аνj и φνj, можно определить спектры
Figure 00000013
и
Figure 00000014
, используя следующие соотношения:
Figure 00000015
Figure 00000016
где Δa=a2-a1, a индексы а1 и a2 означают значения индексируемых величин при соответствующих длинах пробега ПП.
В качестве примера применения заявляемого устройства рассмотрим возможность определения с его помощью спектра комплексного показателя преломления ПП, возбуждаемых в планарной структуре "золото - слой ZnS (1,0 мкм) - воздух" излучением в диапазоне 100-200 см-1.
На фиг.2 представлена наблюдаемая в этом случае интерферограмма, полученная с абсолютным разрешением σmax/N=0,05 см-1 для a=1,0 см; где Imax соответствует динамическому диапазону устройства. Для иных значений а вид интерферограммы качественно не отличается от приведенной на фиг.2.
На фиг.3 изображен спектр к'(σ) и на фиг.4 - спектр к''(σ), рассчитанные по формулам (7) и (8) с использованием интерферограмм, зарегистрированных при a1=l,0 см и а2=1,5 см. Выбор значений а1 и а2 сделан с учетом условия a1, a2≤Lmin (Lmin=1,8 см - длина распространения ПП на максимальной частоте излучения, равной 200 см-1), обеспечивающего возможность регистрации сигнала.
Размытие спектров у границ рабочего диапазона обусловлено эффектом Гиббса при математической обработке интерферограмм.
Таким образом, применение в заявляемом устройстве широкополосного источника, линии задержки, дополнительного фокусирующего объектива и устройства обработки информации, способного выполнять полное Фурье-преобразование, позволяет сократить время измерений при прочих равных условиях в N раз (где N - число точек отсчетов на измеренных спектрах).

Claims (1)

  1. Плазмонный фурье-спектрометр терагерцового диапазона, содержащий источник объемного излучения, светоделитель, расщепляющий излучение на измерительный и реперный пучки, зеркало, твердотельный проводящий образец с двумя сопряженными скругленным ребром плоскими гранями, размещенный на одной из этих граней элемент преобразования излучения измерительного пучка в поверхностный плазмон (ПП), размещенный на второй грани образца элемент преобразования ПП в объемное излучение, выполненный в виде примыкающего к грани и перемещаемого вдоль трека ПП плоского зеркала, ориентированного перпендикулярно треку и наклонно к грани, второй светоделитель, совмещающий пучки и сопряженный с наклонным зеркалом, перемещаемым вместе со вторым светоделителем вдоль поверхности образца, фокусирующий объектив и фотоприемное устройство (ФПУ), отличающийся тем, что спектрометр дополнительно содержит второй объектив, размещенный на пути совмещенных пучков, устройство обработки информации, линию задержки, состоящую из четырех уголковых зеркал, попарно расположенных на пути пучков, причем уголковые зеркала, отражающие измерительный пучок, сопряжены с наклонным зеркалом и вторым светоделителем, а источник излучения имеет сплошной спектр.
RU2011145612/28A 2011-11-10 2011-11-10 Плазмонный фурье-спектрометр терагерцового диапазона RU2477842C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011145612/28A RU2477842C1 (ru) 2011-11-10 2011-11-10 Плазмонный фурье-спектрометр терагерцового диапазона

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011145612/28A RU2477842C1 (ru) 2011-11-10 2011-11-10 Плазмонный фурье-спектрометр терагерцового диапазона

Publications (1)

Publication Number Publication Date
RU2477842C1 true RU2477842C1 (ru) 2013-03-20

Family

ID=49124428

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011145612/28A RU2477842C1 (ru) 2011-11-10 2011-11-10 Плазмонный фурье-спектрометр терагерцового диапазона

Country Status (1)

Country Link
RU (1) RU2477842C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2573617C1 (ru) * 2014-11-25 2016-01-20 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Инфракрасный амплитудно-фазовый плазмонный спектрометр

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2091733C1 (ru) * 1995-04-24 1997-09-27 Российский Университет Дружбы Народов Спектрометр поверхностных электромагнитных волн
RU2173837C2 (ru) * 1999-11-17 2001-09-20 Российский Университет Дружбы Народов Широкополосный спектрометр поверхностных электромагнитных волн
US6330062B1 (en) * 1999-04-30 2001-12-11 Wisconsin Alumni Research Foundation Fourier transform surface plasmon resonance adsorption sensor instrument
RU2263923C1 (ru) * 2004-03-22 2005-11-10 Государственное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) Способ определения диэлектрической проницаемости твердых тел в инфракрасном диапазоне спектра
RU2318192C1 (ru) * 2006-06-09 2008-02-27 Государственное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) Плазмонный спектрометр терагерцового диапазона для исследования проводящей поверхности
US7407817B2 (en) * 2006-01-19 2008-08-05 The Chinese University Of Hong Kong Surface plasmon resonance sensors and method for detecting samples using the same
US7817278B2 (en) * 2007-08-08 2010-10-19 Agilent Technologies, Inc. Surface plasmon resonance sensor apparatus having multiple dielectric layers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2091733C1 (ru) * 1995-04-24 1997-09-27 Российский Университет Дружбы Народов Спектрометр поверхностных электромагнитных волн
US6330062B1 (en) * 1999-04-30 2001-12-11 Wisconsin Alumni Research Foundation Fourier transform surface plasmon resonance adsorption sensor instrument
RU2173837C2 (ru) * 1999-11-17 2001-09-20 Российский Университет Дружбы Народов Широкополосный спектрометр поверхностных электромагнитных волн
RU2263923C1 (ru) * 2004-03-22 2005-11-10 Государственное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) Способ определения диэлектрической проницаемости твердых тел в инфракрасном диапазоне спектра
US7407817B2 (en) * 2006-01-19 2008-08-05 The Chinese University Of Hong Kong Surface plasmon resonance sensors and method for detecting samples using the same
RU2318192C1 (ru) * 2006-06-09 2008-02-27 Государственное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) Плазмонный спектрометр терагерцового диапазона для исследования проводящей поверхности
US7817278B2 (en) * 2007-08-08 2010-10-19 Agilent Technologies, Inc. Surface plasmon resonance sensor apparatus having multiple dielectric layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2573617C1 (ru) * 2014-11-25 2016-01-20 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Инфракрасный амплитудно-фазовый плазмонный спектрометр

Similar Documents

Publication Publication Date Title
RU2318192C1 (ru) Плазмонный спектрометр терагерцового диапазона для исследования проводящей поверхности
WO2019218807A1 (zh) 光谱仪
US20140125983A1 (en) Interferometery on a planar substrate
JP2009300108A (ja) テラヘルツ分光装置
KR20170142240A (ko) 영상분광광학계를 이용한 다층막 구조물의 두께와 형상 측정장치 및 측정방법
US9459090B2 (en) Optical delay apparatus and optical coherence tomography apparatus
CN105158165B (zh) 一种超快椭偏仪装置和测量方法
Krishnamurthy et al. Characterization of thin polymer films using terahertz time-domain interferometry
WO2016147253A1 (ja) テラヘルツ波測定装置
RU2477842C1 (ru) Плазмонный фурье-спектрометр терагерцового диапазона
RU2645008C1 (ru) Устройство для измерения длины распространения инфракрасной поверхностной электромагнитной волны
RU2573617C1 (ru) Инфракрасный амплитудно-фазовый плазмонный спектрометр
Taudt Development and Characterization of a dispersion-encoded method for low-coherence interferometry
RU2477841C2 (ru) Инфракрасный амплитудно-фазовый плазмонный спектрометр
JP6708197B2 (ja) 分光分析装置
RU2709600C1 (ru) Интерферометр Майкельсона для определения показателя преломления поверхностных плазмон-поляритонов терагерцевого диапазона
RU2400714C1 (ru) Способ определения коэффициента затухания поверхностной электромагнитной волны инфракрасного диапазона за время одного импульса излучения
CN115290571A (zh) 测量设备和测量方法
RU2653590C1 (ru) Интерферометр для определения показателя преломления инфракрасной поверхностной электромагнитной волны
Gerasimov et al. Experimental Demonstration of Surface Plasmon Michelson Interferometer at the Novosibirsk Terahertz Free-Electron Laser
RU2681427C1 (ru) Устройство для измерения длины распространения инфракрасной поверхностной электромагнитной волны
RU2491522C1 (ru) Способ определения набега фазы монохроматической поверхностной электромагнитной волны инфракрасного диапазона
RU2804598C1 (ru) Интерферометр для поверхностных плазмон-поляритонов терагерцевого диапазона
RU2419779C2 (ru) Способ определения показателя преломления поверхностной электромагнитной волны инфракрасного диапазона
RU2372591C1 (ru) Способ определения показателя преломления поверхностной электромагнитной волны инфракрасной области спектра

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161111