RU2091733C1 - Спектрометр поверхностных электромагнитных волн - Google Patents

Спектрометр поверхностных электромагнитных волн Download PDF

Info

Publication number
RU2091733C1
RU2091733C1 RU95106315A RU95106315A RU2091733C1 RU 2091733 C1 RU2091733 C1 RU 2091733C1 RU 95106315 A RU95106315 A RU 95106315A RU 95106315 A RU95106315 A RU 95106315A RU 2091733 C1 RU2091733 C1 RU 2091733C1
Authority
RU
Russia
Prior art keywords
sew
reflection
prism
refractive index
liquid
Prior art date
Application number
RU95106315A
Other languages
English (en)
Other versions
RU95106315A (ru
Inventor
А.К. Никитин
Original Assignee
Российский Университет Дружбы Народов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российский Университет Дружбы Народов filed Critical Российский Университет Дружбы Народов
Priority to RU95106315A priority Critical patent/RU2091733C1/ru
Publication of RU95106315A publication Critical patent/RU95106315A/ru
Application granted granted Critical
Publication of RU2091733C1 publication Critical patent/RU2091733C1/ru

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Использование: исследование быстропротекающих процессов на поверхности металлов и полупроводников оптическими методами. Сущность изобретения: в рефлектометрическом ПЭВ-спектрометре, содержащем источник белого света, коллиматор, поляризатор, призму НПВО, диспергирующий элемент и ФПУ, снабженное линейкой фотоприемников, устройство обработки и выдачи результатов измерений и расчетов, призма выполнена в виде прозрачного сосуда, наполненного жидкостью с показателем преломления nпр большим показателя преломления окружающей среды. Дном сосуда является съемная прозрачная жесткая пластинка с показателем преломления nпл = nпр, на внешнюю поверхность которой нанесена полупрозрачная металлическая пленка. По ходу падающего отраженного луча в жидкости размещены два ломаных зеркала с одним и тем же числом одинаковых граней, равным числу размещенных на пути отраженного от второго зеркала излучения диспергирующих элементов и ФПУ, каждое из которых снабжено линейкой фотоприемников. 2 ил.

Description

Изобретение относится к исследованиям быстропротекающих процессов на поверхности металлов и полупроводников оптическими методами, а именно к мгновенному определению спектров поглощения тонких слоев, свойства которых изменяются с течением времени, путем рефлексометрической регистрации условий возбуждения поверхностных электромагнитных волн (ПЭВ) на поверхности образца с исследуемым тонким слоем в определенном спектральном диапазоне и может найти применение в спектрометрии адсорбционных слоев, например для исследования хода каталитических реакций, в устройствах, контролирующих внешние воздействия импульсного характера.
Спектрометрия одна из основных областей применения ПЭВ [1 и 2] В ИК ПЭВ-спектрометрах для снятия спектров поглощения адслоев используются двух призменные устройства. В таких устройствах непосредственно измеряется длина распространения ПЭВ в определенном дискретном диапазоне длин волн излучения перестраиваемого по частоте лазера [3]
Основной недостаток таких ПЭВ-спектрометров продолжительное (несколько часов) время измерения спектров.
Время снятия спектров поглощения адслоев с использованием ПЭВ значительно сокращается в случае рефлектометрической регистрации возбуждения ПЭВ, для чего используется одна из схем метода нарушенного внутреннего отражения (НПВО): схема Отто для непрозрачных образцов, схема Кречманна для полупрозрачных образцов [1 и 2]
Известен ПЭВ-спектрометр, содержащий источник монохроматического излучения, поляризатор, выделяющий p-составляющую излучения, сканируемый по углу отражатель, треугольную призму НПВО с показателем преломления nпр, отделенную от исследуемой плоской поверхности образца однородным по толщине слоем связи толщиной h меньше глубины проникновения поля ПЭВ в материал этого слоя с показателем преломления nсл < nпр, фотоприемное устройство [4 и 5] Спектр углов падения излучения включает углы падения равные и близкие к углу возбуждения ПЭВ θo.
Таким образом, в отраженном излучении регистрируют резонансный провал интенсивности, обусловленный возбуждением ПЭВ. Угловая ширина Δθ и угловое положение минимума резонансного провала qo связаны с комплексным волновым числом ПЭВ k k'+j•k'' (где j мнимая единица) соотношениями [1 и 2]
Figure 00000002

где ko = 2π/λ, λ длина волны излучения в вакууме.
Зная k, решают дисперсионное уравнение ПЭВ для данной волноведущей структуры и однозначно определяют параметры адслоя (его толщину или оптические постоянные).
Основными недостатками данного устройства являются:
необходимость углового сканирования падающего излучения;
смещение светового пятна на основании призмы при угловом сканировании падающего излучения;
сложность обеспечения однородности толщины слоя связи (особенно в видимом диапазоне, где h ≈ λ).
Двух последних недостатков не имеет устройство [6] в котором треугольная (плоскогранная) призма заменена полой полуцилиндрической призмой арочной формы. Полуцилиндрическая полость заполнена прозрачной жидкостью (маслом) и со стороны своего основания герметично закрыта плоским образцом с нанесенным на него твердотельным слоем связи.
Кроме того, для получения внутри призмы сколлимированного светового пучка на нее направляют сфокусированное монохроматическое излучение.
Наиболее близким к изобретению по технической сущности является ПЭВ-спектрометр, содержащий источник белого цвета, поляризатор, фокусирующую линзу, для получения внутри призмы НПВО сколлимированного луча света, полуцилиндрическую стеклянную призму с нанесением на ее основание полупрозрачной металлической пленкой и последовательно расположенные по ходу отраженного излучения дифракционной монохроматор и фотоприемное устройство (ФПУ), снабженное линейкой фотоприемников, причем источник света, фокусирующая линза и поляризатор размещены на одном плече, а монохроматор и ФПУ 0 на другом плече поворотного механизма, обеспечивающего равенство и синхронное изменение угла падения и угла отражения излучения [7 и 8]
Угол падения (отражения) q-излучения плавно регулируется в заданном интервале углов. При определенных q на выходе монохроматора мгновенно измеряется, с определенным шагом, зависимость коэффициента отражения Rр от длины волны излучения l.
Таким образом, основным недостатком известного ПЭВ спектрометра является необходимость выполнения углового сканирования источника и приемника излучения, что не позволяет мгновенно измерять спектры поглощения адслоев и снижает надежность функционирования устройства.
Сущность изобретения заключается в том, что в рефлектометрическом ПЭВ-спектрометре, содержащем источник белого света, коллиматор, поляризатор, призму НПВО, диспергирующий элемент и ФПУ, снабженное линейкой фотоприемников, устройство обработки и выдачи результатов измерений и расчетов, призма выполнена в виде прозрачного сосуда, наполненного жидкостью с показателем преломления nпр большим показателя преломления окружающей среды, дном сосуда является съемная прозрачная жесткая пластинка с показателем преломления nпл nпр, на внешнюю поверхность которой нанесена полупрозрачная металлическая пленка (образец), по ходу падающего и отраженного луча в жидкости размещены два ломаных зеркала с одним и тем же числом одинаковых граней, равным числу размещенных на пути отраженного от второго зеркала излучения диспергирующих элементов и ФПУ, каждое из которых снабжено линейкой фотоприемников.
В случае исследования адслоев на поверхности непрозрачного металлического или полупроводникового образца прозрачная пластинка без металлической пленки размещается параллельно поверхности образца на расстоянии, не превышающем глубину проникновения поля ПЭВ в окружающую среду.
В результате сокращается время, необходимое для измерения спектра поглощения ПЭВ, с нескольких минут (у прототипа) до нескольких микросекунд (необходимых для срабатывания ФПУ и устройства обработки результатов измерений).
Кроме того, в результате отсутствия перемещающихся элементов повышается надежность функционирования рефлектометрического ПЭВ-спектрометра.
На фиг. 1 приведена функциональная схема рефлектометрического ПЭВ-спектрометра, предназначенного для исследования адслоев на полупрозрачных металлических или полупроводниковых образцах.
На пути белого света источника 1 последовательно размещены коллиматор 2, поляризатор 3, прозрачный сосуд 4, заполненный жидкостью 5 с показателем преломления nпр большим показателя преломления окружающей среды 6, дном которого служит съемная жесткая прозрачная пластинка 8 с показателем преломления nпл nпр, на которую нанесена полупрозрачная металлическая или полупроводниковая пленка (образец) 9; на пути луча света, входящего в сосуд 4 и отраженного от пластинки 8 с образцом 9, последовательно расположены два ломаных зеркала с одинаковым числом граней, по ходу светового пучка состоящего из N лучей, выходящего из сосуда 4, установлены N-диспергирующих элементов 10, каждый из которых оптически связан с соответствующим ФПУ 11, снабженным линейкой фотоприемников, число фотоэлементов в которой определяет количество экспериментально снятых точек дифракционного спектра сколлимированного отраженного от образца 9, под углом определяемым ориентацией соответствующей грани первого ломаного зеркала 7, луча белого света, при этом все ФПУ 11 электрически соединены с устройством обработки и выдачи результатов измерений и расчетов 12.
Спектрометр работает следующим образом.
Сколлимированный белый свет источника 1 из коллиматора 2 поступает на поляризатор 3, выделяющий p-компоненту излучения. Далее сколлимированный p-поляризационный белый свет проходит через прозрачную стенку сосуда 4 и освещает первое ломаное зеркало 7. Излучение, отраженное от освещенных граней первого зеркала 7, направляется под различными углами падения (определяемыми ориентацией граней зеркала), диапазон которых включает углы возбуждения ПЭВ для всех монохроматических волн Фурье-спектра белого света, на один участок прозрачной пластинки с нанесенной не ее внешнюю сторону полупрозрачной пленкой-образцом 9. Поскольку показатель преломления жидкости 5 больше показателя преломления окружающей среды 6 во всем диапазоне частот спектра белого света, то при данном угле падения qi на каждой частоте возможно возбуждение ПЭВ с определенной эффективностью. Для i-го луча сколлимированного белого света, характеризуемого углом падения θi, возбуждение ПЭВ будет происходить наиболее эффективно на частоте λj, удовлетворяющей условию синхронизма (1) фазовых скоростей ПЭВ и тангенциальной компоненты плоской монохроматической волны с частотой λj.
Таким образом, интенсивность монохроматических волн, входящих в спектр луча белого света, отраженного под углом θi, будет изменена в соответствии с эффективностью возбуждения ПЭВ этой волной.
После отражения от второго ломаного зеркала 7, грани которого могут быть расположены относительно друг друга под большими углами по сравнению с гранями первого ломаного зеркала с целью большего углового разнесения анализируемых пусков белого света, все лучи белого света проходят сквозь прозрачную стенку сосуда 4 и падают на соответствующий диспергирующий элемент 10.
Диспергирующие элементы 10 разлагают отраженные лучи белого света на составляющие из монохроматические волны, направляемые на ФПУ 11. Совокупность сигналов со всех ФПУ 11 в данный момент времени представляет собой спектр поглощения ПЭВ волноведущей структурой, образованной прозрачной пластинкой 8, образцом 9 и окружающей средой 6. Время снятия спектра поглощения ПЭВ ограничено лишь временем срабатывания ФПУ. Формирование или модификация адслоя на внешней поверхности образца 9 приводит к изменению спектра поглощения ПЭВ.
Устройство обработки результатов 12 сравнивает спектры поглощения ПЭВ и после формирования или модификации адслоя, получают усиленные ПЭВ поглощения адслоя. Причем мгновенные спектры поглощения ПЭВ позволяют определять оптические постоянные адслоя по данной длине волны в любой момент времени. Для этого, используя зависимости Rp(λ), полученные при различных θi, строят зависимости Rp(θ) и определяют величины θo и Δθ для различных l Затем, используя соотношения (1) и (2), рассчитывают k k'+j k'' и, подставляя k в дисперсионном уравнение ПЭВ для соответствующей волноведущей структуры, находят оптические постоянные адслоя (при условии, что другие параметры структуры известны).
Работа ПЭВ-спектрометра на примере волноведущей структуры "кварцевое стекло -полупрозрачная серебряная пленка адслой монооксида углерода толщиной d воздух (окружающая среда)" в видимом диапазоне l 400 700 нм).
Толщина кварцевой пластинки, выполняющей роль дна сосуда 5, должна быть достаточной для обеспечения механической прочности и по сравнению с глубиной проникновения поля ПЭВ является бесконечно большой. Показатель преломления кварцевого стекла на средней частоте выбранного диапазона, соответствующей l 550 нм, равен 1,46 и изменяется лишь в третьем знаке после запятой [9] В качестве жидкости, заполняющей сосуд 5, выберем раствор сахарозы, показатель преломления которой пропорционален концентрации раствора и может быть сделан равным 1,46 [10] Толщину серебряной пленки выберем равной 580 нм при которой на l 550 нм эффективность возбуждения ПЭВ в описанной структуре максимальна (≈100). Оптические постоянные серебра взяты из [9] адслоя CO из [11]
Результаты мгновенных измерений, выполненных с помощью предлагаемого ПЭВ-спектрометра, можно представить в виде набора кривых Rp(λ), полученных при различных углах падения θ, число которых N равно числу освещенных граней каждого из зеркал. Число экспериментально подтверждений точек на этих кривых равно числу фотоприемников в линейке каждого из ФПУ.
На фиг. 2, а приведены рассчетные зависимости Rp(λ) для угла падения θ = θo(λ = 600 нм) 45o20'; на фиг. 2, б для θ = θo(λ = 500 нм) 47o00'.
Зависимости Rp(λ) позволяют построить кривые Rp(θ) для дискретного набора λ т.е. получить спектр поглощения ПЭВ адслоем, и затем по выше изложенной методике рассчитать оптические постоянные адслоя для рабочих длин волн. Выполнение такого объема измерений на спектрометре-прототипе, потребовало бы проведения N измерений, сопровождаемых дискретным перемещением источника излучения и ФПУ.
Таким образом, предлагаемый спектрометр по сравнению с прототипом позволяет сократить время одинакового объема измерений и повысить надежность функционирования.
Источники информации, принятые во внимание при составлении заявки
1. Никитин А. К. Тищенко А. А. Поверхностные электромагнитные волны и их применения. Зарубежная радиоэлектроника. 1983, N 3, с. 38 56.
2. Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред / Под ред. В. М. Аграновича и Д. Л. Миллса. М.Наука, 1985, 525 с.
3. Chabal Y. J. Surface infrared spectroscopy. Surface Science Reports. 1988, v. 8, p. 211 351.
4. Otto A. Excitation of nonradiative surface plasma waves in suver by the method of frastrated total reflection. Z. Physik. 1968, v. 216, p. 398 - 410.
5. Lenfernik A. T. M. Kooymann R. P. H. and Greve J. An improved optical method for surface plasmon resonance experiments. Sensors and Actuators (B). 1991, V. 3, N 4, p. 261 265.
6. Otto A. Spectroscopy of surface polaritons by attenuated total reflection. In "Optical properties of solids, new developments". Amsterdam, 1976, p. 677 729.
7. Hatta A. Suzuki S. and Suetaka W. Polarization-modulation electronic absorption study of copper phtalocyanine films on silver by surface plasmon resonance spectroscopy. Applied Surface Science. 1989, v. 40, N 1/2, p. 9-18.
8. Hatta A. and Inoue T. Electronic absorption enhancement for TCNQ films on silver by excitation of surface plasmon polaritons. Applied Surface Scieace. 1991, v. 51, N 3/4, p. 193 200 (прототип).
9. Золотарев В. М. Морозов В. Н. Смирнова Е. В. Оптические постоянные природных и технических сред. Л.Химия, 1984, 215 с.
10. Mahmood M.Y. and Azizan A.R. Refractive index of solutions at high concentrations. Applied Optics. 1988, v. 27, N 16, p. 3341 3343.
11. Pockrand I. Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surface Science. 1978, v. 76, N 3, p. 577 588.

Claims (1)

  1. Спектрометр поверхностных электромагнитных волн (ПЭВ), содержащий источник белого света, коллиматор, поляризатор, призму НПВО, диспергирующий элемент, ФПУ, снабженное линейкой фотоприемников, устройство обработки и выдачи результатов измерений и расчетов, отличающийся тем, что в спектрометр введены дополнительные диспергирующие элементы и дополнительные ФПУ, призма выполнена в виде прозрачного сосуда, наполненного жидкостью с показателем преломления nпр, большим показателя преломления окружающей среды, дном сосуда служит съемная прозрачная жесткая пластинка с показателем преломления nпл nпр, на внешнюю поверхность которой нанесена полупрозрачная металлическая пленка, по ходу падающего и отраженного луча в жидкости размещены два ломаных зеркала с одним и тем же числом одинаковых граней, равным числу размещенных на пути отраженного от второго зеркала излучения диспергирующих элементов и ФПУ, каждое из которых снабжено линейкой фотоприемников.
RU95106315A 1995-04-24 1995-04-24 Спектрометр поверхностных электромагнитных волн RU2091733C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95106315A RU2091733C1 (ru) 1995-04-24 1995-04-24 Спектрометр поверхностных электромагнитных волн

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95106315A RU2091733C1 (ru) 1995-04-24 1995-04-24 Спектрометр поверхностных электромагнитных волн

Publications (2)

Publication Number Publication Date
RU95106315A RU95106315A (ru) 1997-02-20
RU2091733C1 true RU2091733C1 (ru) 1997-09-27

Family

ID=20167039

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95106315A RU2091733C1 (ru) 1995-04-24 1995-04-24 Спектрометр поверхностных электромагнитных волн

Country Status (1)

Country Link
RU (1) RU2091733C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477842C1 (ru) * 2011-11-10 2013-03-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) Плазмонный фурье-спектрометр терагерцового диапазона

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hatta A. and Inoue T. Electronic absorption enhancement for TCNQ films on silver by excitation of surface plasmon polaritons. Applied Surface Science, 1991, v. 51, N 3/4, p. 193 - 200. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477842C1 (ru) * 2011-11-10 2013-03-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) Плазмонный фурье-спектрометр терагерцового диапазона

Also Published As

Publication number Publication date
RU95106315A (ru) 1997-02-20

Similar Documents

Publication Publication Date Title
US6330062B1 (en) Fourier transform surface plasmon resonance adsorption sensor instrument
US5598267A (en) Optical sensor for orthogonal radiation modes
EP1060383A2 (en) Waveguide structures
JPH0627703B2 (ja) 物質の選択的検出および測定物質内の屈折率変化検知を行なう光学センサ
US9110021B2 (en) Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control
US6992770B2 (en) Sensor utilizing attenuated total reflection
US20190219505A1 (en) Device for analysing a specimen using the goos-hänchen surface plasmon resonance effect
US7027159B2 (en) Sensor utilizing evanescent wave
US5416579A (en) Method for determining concentration in a solution using attenuated total reflectance spectrometry
US7057731B2 (en) Measuring method and apparatus using attenuated total reflection
US6747742B1 (en) Microspectrometer based on a tunable fabry-perot interferometer and microsphere cavities
JP2003344273A (ja) 表面プラズモン共鳴及び蛍光偏光測定用装置
JP2004527741A (ja) 全反射分光法のための装置および方法
JP2004527741A5 (ru)
EP0620916A1 (en) Analytical device with light scattering
RU2645008C1 (ru) Устройство для измерения длины распространения инфракрасной поверхностной электромагнитной волны
RU2091733C1 (ru) Спектрометр поверхностных электромагнитных волн
US7012693B2 (en) Sensor utilizing attenuated total reflection
US6831747B2 (en) Spectrometry and filtering with high rejection of stray light
US20020154312A1 (en) Measuring apparatus utilizing attenuated total reflection
US7075657B2 (en) Surface plasmon resonance measuring apparatus
Homola et al. Fiber optic sensor for adsorption studies using surface plasmon resonance
RU2681427C1 (ru) Устройство для измерения длины распространения инфракрасной поверхностной электромагнитной волны
US20070216901A1 (en) Ellipsometry Device Provided With A Resonance Platform
US4990781A (en) Spectroscopically operating infrared hygrometer