RU2467014C2 - Полиэпитопный белок, нуклеотидная последовательность, кодирующая полиэпитопный белок, плазмида с последовательностью, кодирующей полиэпитопный белок, и препарат полиэпитопного белка для индукции иммунного ответа против вируса ящура - Google Patents

Полиэпитопный белок, нуклеотидная последовательность, кодирующая полиэпитопный белок, плазмида с последовательностью, кодирующей полиэпитопный белок, и препарат полиэпитопного белка для индукции иммунного ответа против вируса ящура Download PDF

Info

Publication number
RU2467014C2
RU2467014C2 RU2010149502/10A RU2010149502A RU2467014C2 RU 2467014 C2 RU2467014 C2 RU 2467014C2 RU 2010149502/10 A RU2010149502/10 A RU 2010149502/10A RU 2010149502 A RU2010149502 A RU 2010149502A RU 2467014 C2 RU2467014 C2 RU 2467014C2
Authority
RU
Russia
Prior art keywords
protein
amino acid
virus
acid sequence
cell epitope
Prior art date
Application number
RU2010149502/10A
Other languages
English (en)
Other versions
RU2010149502A (ru
Inventor
Екатерина Павловна Андрианова (RU)
Екатерина Павловна Андрианова
Светлана Ревдитовна Кременчугская (RU)
Светлана Ревдитовна Кременчугская
Владимир Владимирович Борисов (RU)
Владимир Владимирович Борисов
Михаил Анатольевич Эльдаров (RU)
Михаил Анатольевич Эльдаров
Николай Викторович Равин (RU)
Николай Викторович Равин
Алексей Сергеевич Фолимонов (RU)
Алексей Сергеевич Фолимонов
Константин Георгиевич Скрябин (RU)
Константин Георгиевич Скрябин
Original Assignee
Учреждение Российской академии наук Центр "Боинженерия" РАН
Российская Федерация, от имени которой выступает Министерство образования и науки
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Центр "Боинженерия" РАН, Российская Федерация, от имени которой выступает Министерство образования и науки filed Critical Учреждение Российской академии наук Центр "Боинженерия" РАН
Priority to RU2010149502/10A priority Critical patent/RU2467014C2/ru
Publication of RU2010149502A publication Critical patent/RU2010149502A/ru
Application granted granted Critical
Publication of RU2467014C2 publication Critical patent/RU2467014C2/ru

Links

Images

Abstract

Изобретение относится к области биотехнологии, а именно к полиэпитопному вакцинному белку, предназначенному для иммунизации против вируса ящура, нуклеиновой кислоте, кодирующей данный белок, рекомбинантной плазмиде pA7248-AMV-H-PE для продукции в растениях данного белка и к вакцинному препарату для профилактики и защиты от инфекции, вызываемой вирусом ящура. Полиэпитопный вакцинный белок имеет аминокислотную последовательность SEQ ID NO: 1, которая включает аминокислотную последовательность В-клеточного эпитопа белка VP4 с 21-й по 40-ю аминокислоту, начиная с N-конца, аминокислотную последовательность В-клеточного эпитопа белка VP1 с 135-й по 160-ю аминокислоту, начиная с N-конца, аминокислотную последовательность В-клеточного эпитопа белка VP1 с 200-й по 213-ю аминокислоту, начиная с N-конца, аминокислотную последовательность Т-клеточного эпитопа белка 2С с 68-й по 76-ю аминокислоту, начиная с N-конца, аминокислотную последовательность Т-клеточного эпитопа белка 3D с 1-й по 115-ю аминокислоту, начиная с N-конца, и аминокислотную последовательность Т-клеточного эпитопа белка 3D с 421-й по 460-ю аминокислоту вируса ящура серотипа О/Тайвань/99. Нуклеиновая кислота, кодирующая данный белок, имеет последовательность нуклеотидов SEQ ID NO: 2. Рекомбинантная плазмида pA7248-AMV-H-PE имеет физическую карту, представленную на фиг.5. Предложенное изобретение позволяет создать полиэпитопный вакцинный белок, который предназначен для иммунизации против вируса ящура. 4 н. и 1 з.п. ф-лы, 7 ил., 2 табл., 6 пр.

Description

Область техники, к которой относится изобретение
Данное изобретение относится к области иммунологии, белковой инженерии и биотехнологии. Оно может быть использовано для создания полиэпитопных вакцинных белков для иммунизации животных против ящура.
Актуальность
1) Заболевание.
Вспышки заболевания происходят во всех странах мира, где в сельском хозяйстве используется парнокопытный скот. Основной причиной распространения ящура считается международная торговля домашними животными. Наиболее восприимчивы к заболеванию ящуром крупный рогатый скот, менее восприимчивы свиньи, овцы, козы, более 70 видов диких животных и человек. Вирус передается от заболевших животных к здоровым воздушно-капельным путем. Первые признаки заболевания могут появляться через 2-3 дня после заражения. У зараженных животных появляется жар, нарушение походки, хромота, афтозное поражение слизистой оболочки ротовой полости, кожи, вымени и межкопытной щели конечностей. Несмотря на то что заболевание ящуром не приводит к высокому уровню смертности среди взрослых животных, оно проявляется в потере веса, резком понижении молочной продуктивности. Смертельный исход чаще происходит у молодых животных с ослабленным иммунитетом. У них наблюдаются нарушения функций сердечно-сосудистой системы и скелетной мускулатуры. Крупный рогатый скот, а также овцы и козы могут быть бессимптомными носителями вируса, приобретая при этом способность заражать других животных в течение 2-3 лет.
2) Экономический ущерб.
При эпизоотии вируса серотипа О на Тайване в 1997 г. возникло более 6 тыс. очагов, пало или было забито свыше 4 миллионов свиней, общий экономический ущерб составил около 10 миллиардов долларов США. Последняя вспышка ящура в Великобритании в 2001 году привела к потерям в размере около 6 миллиардов фунтов стерлингов. При возникновении очагов ящура А-22 в балканских странах в 1996 году экономический ущерб превысил 300 миллионов долларов. Ликвидация очага этого заболевания в Московской области в 1995 году обошлась примерно в 14,6 миллионов рублей в ценах того периода, а в Приморском крае в 2000 году - в 8,7 миллионов рублей.
Уровень техники
1) Разработанные методы контроля заболевания.
В конце 19-го и начале 20-го веков единственным способом контроля ящура был забой заболевших животных. В 30-х годах прошлого столетия в Германии была создана первая вакцина против вируса ящура. Такую вакцину получали путем инактивации «живого» вируса формалином в присутствии гидроксида алюминия. Вирус для нее получали собирая ткани эпителия и жидкость из афт зараженных животных. Этот метод получения вакцины не мог предоставить достаточное количество материала для иммунизации, необходимое для контроля заболевания. Такое положение сохранялось до того момента, когда в середине прошлого века во Франции был разработан первый метод размножения вируса в клетках эпителия языка здоровых коров и был налажен первый коммерческий выпуск вакцины против вируса ящура. Современную вакцину производят из вируса, полученного в клеточной культуре, обработкой бинарным этиленимином. В конце 90-х годов мировое производство такой вакцины составляло около 1 миллиарда доз в год [1]. В Российской Федерации упреждающее вакцинирование препаратами инактивированного вируса является основой контроля ящура в поголовье восприимчивых сельскохозяйственных животных. Для упреждающего вакцинирования необходимо осуществлять постоянный мониторинг эпидемиологической ситуации внутри страны и прилегающих к границам странах. В случае возникновения очага заболевания вакцинированию подвергаются восприимчивые сельскохозяйственные животные в соседствующих областях.
В изобретении RU 233233 (2008.08.27) описан способ изготовления вакцины против ящура, включающий культивирование вируса в суспензионной культуре клеток ВНК-21 при температуре 36-37°С, очистку вирусной суспензии от балластных примесей, инактивацию, концентрирование полученного антигена вируса и соединение концентрата антигена с адъювантом. Вакцина против ящура, полученная данным способом, может содержать антигенный материал вируса типа А, О или Азия-1 в эффективном количестве 146S компонента, гель гидроокиси алюминия, сапонин и поддерживающую среду.
Несмотря на то что вакцинирование подобными препаратами инактивированного вируса ящура довольно эффективно, такая вакцина не производится во многих странах мира с развитым животноводством по следующим причинам:
1) обеспокоенность возможностью заражения животных или людей вирусом в результате утечки инфекционного материала в процессе его производства или его неполной инактивации;
2) сложность быстрой наработки вакцины в чрезвычайных ситуациях возникновения очага заболевания;
3) для производства вакцины необходимы дорогостоящие специально-оборудованные лаборатории, обеспечивающие высокую биобезопасность производства;
4) вирусные препараты, используемые для производства вакцины, - это надосадочная жидкость клеточной суспензии, инфицированной вирусом ящура. Такие препараты, в зависимости от качества производства, могут содержать различное количество вирусных неструктурных белков, загрязняющих вакцину. У привитых такой вакциной животных, наряду с антителами против структурных белков вируса ящура, вырабатываются антитела против загрязняющих неструктурных белков. Присутствие антител против неструктурных белков делает сложным достоверное различие вакцинированных животных от зараженных с помощью иммунологических методов диагностики заболевания;
5) вакцина нестабильна при высоких температурах, что осложняет ее транспортировку и хранение.
Таким образом, для разрешения вышеописанных проблем необходимо создание новых вакцин, которые не требуют наработки патогена, просты в получении и относительно недороги.
2) Разрабатываемые методы контроля заболевания.
В качестве вакцин могут быть использованы ослабленные варианты вируса, утратившие патогенность в результате мутаций исходных штаммов и не требующие инактивации. Главным преимуществом «живых» вакцин является то, что они активируют гуморальный и клеточный компоненты иммунной системы, вызывая сбалансированный иммунный ответ. Кроме того, такие вакцины относительно дешевы, так как для иммунизации требуется небольшая доза вируса, поскольку он способен размножаться в зараженном организме.
Ослабленный вирус ящура, обладающий некоторой степенью иммуногенности, классическим методом получают его пассажами в нечувствительных к ящуру животных (мыши, кролики) [2, 3]. Однако получение вируса, ослабленного в невосприимчивом виде животных, одновременно обладающего иммуногенностью, низкой патогенностью и инфекционного для вакцинируемого вида животных, является сложной технической задачей. Существенным недостатком вакцин на основе ослабленного вируса также является его генетическая нестабильность, способная приводить к приобретению вирулентности. Для усовершенствования вакцин на основе «живого» вируса исследователи пытались изменить геном вируса. В этом случае принцип ослабления был основан на делегировании или модификации участков геномной РНК, влияющих на инфекционные характеристики вируса [4-6]. Однако существенных положительных результатов в этих работах получено не было.
Одним из подходов к созданию противоящурных вакцин является получение «пустых капсидов» или вирусподобных частиц (ВПЧ). Неинфекционные ВПЦ ящура, лишенные геномной РНК, образуются в некотором количестве в культурах клеток животных, инфицированных вирусом. Такие ВПЧ содержат полный набор антигенных участков вирусного капсида и иммунологически идентичны интактным вирионам. Для разработки технологии получения ВПЧ необходима совместная экспрессия генов предшественников капсидных белков и вирусной процессирующей протеазы 3С. ВПЧ ящура удается получить с помощью рекомбинантного бакуловируса, экспрессирующего необходимые белковые компоненты в клетках шелкопряда [7]. Препараты таких ВПЧ способны индуцировать протективный иммунитет у свиней, однако стоимость таких препаратов довольно высока.
Заявка WО 2006063445 (2006.06.22) описывает создание рекомбинантной противоящурной вакцины, основанной на экспрессии в клетках животных модифицированного гена предшественника структурных белков вируса ящура, кодирующие последовательности которых разделены искусственно путем введения сайтов протеолиза для клеточной протеазы невирусного происхождения, обеспечивающей процессинг предшественника капсидных белков для сборки ВПЧ. Недостатками такого подхода являются относительно низкий выход иммуногенных ВПЧ и высокая стоимость препарата.
В изобретении RU 2202613 (1996.09.18) описаны иммуногенные пептиды вируса ящура с последовательностями, включающими не менее восьми аминокислот, соответствующих фрагментам неструктурных белков, которые были отобраны благодаря иммунореактивности со специфичными к вирусу ящура антителами или благодаря иммунореактивности со специфичными к вирусу Т-лимфоцитами. Основными недостатками этого подхода являются относительно высокая стоимость вакцинного препарата и ограниченность набора эпитопов, предоставляемых иммунизируемому животному, размером аминокислотной цепи иммуногенного пептида.
В заявке CN 1270839 (2000.10.25) предлагается вакцина против ящура, основанная на плазмидной конструкции химерного антитела, несущего эпитоп белка VP1, встроенного в вариабельную область тяжелой и легкой цепи иммуноглобулинов свиньи. Такой плазмидой трансфецируют клетки млекопитающих и получают линии, продуцирующие химерные антитела с высоким выходом. Недостатком этого подхода является относительно высокая стоимость конечного продукта и присутствие в вакцинном белке потенциальных не вирусспецифических эпитопов антитела.
Сущность изобретения
Первым аспектом настоящего изобретения является полиэпитопный вакцинный белок (Фиг.3) против вируса ящура, который включает аминокислотную последовательность В-клеточного эпитопа белка VP4 с 21 по 40, начиная с N-конца, аминокислотную последовательность В-клеточного эпитопа белка VP1 с 135 по 160, начиная с N-конца, аминокислотную последовательность В-клеточного эпитопа белка VP1 с 200 по 213, начиная с N-конца, аминокислотную последовательность Т-клеточного эпитопа белка 2С с 68 по 76, начиная с N-конца, аминокислотную последовательность Т-клеточного эпитопа белка 3D с 1 по 115 начиная с N-конца, и аминокислотную последовательность Т-клеточного эпитопа белка 3D с 421 по 460 вируса ящура серотипа О/Тайвань/99.
Вторым аспектом настоящего изобретения является нуклеотидная последовательность (Фиг.3), которая кодирует рекомбинантный полиэпитопный вакцинный белок для вируса ящура серотипа О/Тайвань/99.
Третьим аспектом настоящего изобретения является рекомбинантная плазмида pA7248-AMV-H-PE, обеспечивающая синтез гибридного полиэпитопного вакцинного белка для вируса ящура серотипа О/Тайвань/99 в растениях Nicotiana benthamiana, состоящая из модифицированной в области полилинкера плазмиды pA7248-AMV [8] вставкой рекомбинантной ДНК с последовательностью гена Н-РЕ (Фиг.5).
Четвертым аспектом настоящего изобретения является вакцинный препарат полиэпитопного белка, вызывающий иммунный ответ в лабораторных животных против вируса ящура серотипа О/Тайвань/99.
Пятым аспектом настоящего изобретения является вакцинный препарат полиэпитопного белка, вызывающий иммунный ответ в лабораторных животных против вируса ящура серотипа О/Тайвань/99, который дополнительно включает адъювант.
Краткое описание фигур
Фиг.1 - Формула рекомбинантного полиэпитопного белка для индукции иммунного ответа против вируса ящура. GRL обозначает глицин-богатый линкер, состоящий из последовательности четырех аминокислотных остатков глицина и двух серина или последовательности четырех аминокислотных остатков глицина, двух серина, глутаминовой кислоты и фенилаланина, следующих один за другим, a Xn-Xm - целые числа, отражающие номера аминокислотных остатков соответствующего белка вируса ящура (VP4, VP1, 2С, 3D) начиная со стартового метионина в последовательности белка-предшественника, закодированного в геноме вируса ящура данного серотипа.
Фиг.2 - Множественные выравнивания аминокислотных последовательностей белков-предшественников вируса ящура серотипов А, О, С, Asial, SAT1, SAT2, SAT3 (FMDV_A, FMDV_О, FMDV_C, FMDV_Asial, FMDV_SAT1, FMDV_SAT2 и FMDV_SAT3 соответственно) и эпитопов вируса ящура О/Тайвань/99 (HPE_VP4, HPE_VP1_1, HPE_VP1_2, НРЕ_2С, HPE_3D_1 и HPE_3D_2), составляющих рекомбинантный вакцинный белок по формуле VP4(X1-X2)-GRL-VP1(X3-X4)-GRL-VP1(X5-X6)-GRL-2C(X7-X8)-GRL-3D(X9-X10)-GRL-3D(X11-X12) и принципу, описанному в данном изобретении. Для дизайна полиэпитопного вакцинного белка против вируса ящура О/Тайвань/99 числа Х1-Х2, Х3-Х4, Х5-Х6, Х7-Х8, Х9-Х10 и Х11-Х12 равны 222-241 (А), 859-883 (Б), 924-937 (В), 1175-1183 (Г), 1863-1977 (Д) и 2283-2322 (Е) соответственно. Для иллюстрации множественного выравнивания последовательностей белков-предшественников вируса ящура О/Тайвань/99 и серотипов А, О, С, Asial, SAT1, SAT2, SAT3 были использованы аминокислотные последовательности генбанка CAD62369 и Р03306, ААТ01748, Р03305, АСР44144, ААТ01786, ААТ01791 и ААТ01796 соответственно.
Фиг.3 - Аминокислотная последовательности рекомбинантного белка Н-РЕ, последовательности эпитопов белков вируса ящура подчеркнуты.
Фиг.4 - Структура рекомбинантного вектора экспрессии рЕТ-23а(+)-Н-РЕ.
Фиг.5 - Структура рекомбинантной плазмиды pA7248-AMV-H-PE.
Фиг.6 - Экспрессия, выделение и очистка Н-РЕ белка, полученного в Е.coli. 1 - Маркер молекулярного веса; 2 - Суммарный белок клеток культуры, не трансформированной экспрессионной плазмидой; 3 - Суммарный белок клеток культуры, трансформированной плазмидой рЕТ-23а(+)-Н-РЕ.
Фиг.7 - Экспрессия белка Н-РЕ в растениях N.benthamiana. 1 - Маркер молекулярного веса; 2 - суммарный белок клеток культуры Е.coli, трансформированной плазмидой рЕТ-23а(+)-Н-РЕ, на геле примерно 0,5 мкг белка Н-РЕ; 3 - образец ткани листа из зоны, агроинокулированной смесью культур клеток, трансформированных pA7248-AMV-GUS и НСРrо; 4 - образец ткани листа из зоны, агроинокулированной смесью культур клеток, трансформированных pA7248-AMV-H-PE и НСРrо; 5 - препарат очищенного белка Н-РЕ, выделенный из растений.
Осуществление изобретения
Пример 1. Рекомбинантная белковая молекула Н-РЕ и кодирующая ее рекомбинантная нуклеиновая кислота.
Для создания нуклеотидной последовательности ДНК рекомбинатного гена, кодирующего белок, состоящий из эпитопов вируса ящура, были использованы аминокислотные последовательности известных В-клеточных эпитопов структурных белков и Т-клеточных эпитопов неструктурных белков вируса ящура серотипа О/Тайвань/99, перечисленные далее. В-клеточные эпитопы: VP4 (222-241) [9], VP1 (859-883) [10] и (924-937) [11]; и Т-клеточные эпитопы: 2С (1175-1183) [12], 3D (1863-1977) и (2283-2322) [12]. Во избежание потенциальных проблем сворачивания белка эпитопы были разделены «гибкими» глицин-богатыми линкерами G4S2. Для того чтобы повысить эффективность экспрессии рекомбинантного белка кодоновый состав кодирующей последовательности ДНК был оптимизирован для экспрессии в растениях рода Nicotiana. Для клонирования гена в экспрессионные векторы на 5'-конец этой ДНК были добавлены последовательности сайтов рестрикции AscI и NdeI, а на 3'-конец - последовательности сайтов XhoI и XmaI. Между последовательностями, кодирующими В-клеточные и Т-клеточные эпитопы, была добавлена последовательность сайта EcoRI. ДНК гена была синтезирована компанией Евроген (Россия).
При помощи метода ПЦР и праймеров m13f(CGC CAG GGT ТТТ ССС AGT САС GAC), M13R (CAG GAA АСА GCT ATG AC), pHisPE (ACC TTG GGC GCG ССС АТА TGC АТС АТС ACC АТС ACC АТА ТАА ТСА АТА ACT ATT АТА TG) на N-конец такой химерной последовательности была добавлена аминокислотная последовательность шести аминокислотных остатков гистидина для возможности выделения белка. ПЦР проводили при следующих условиях: (1) 98°С - 10 с, (2) 56°С - 30 с, (3) 72°С - 30 с, шаги 1-3 повторяли 30 раз.
Полученный ПЦР продукт использовали для получения фрагмента, содержащего рекомбинантную нуклеиновую кислоту, кодирующую белок Н-РЕ. Для этого его обрабатывали рестриктазами NdeI и XhoI, выделяли фрагмент размером 0,77 т.п.н., представляющий собой искомую рекомбинантную нуклеиновую кислоту.
Пример 2. Создание рекомбинантного вектора экспрессии и штамма Е.coli - продуцента рекомбинантного белка Н-РЕ.
Для создания рекомбинантного вектора экспрессии рекомбинантную нуклеиновую кислоту, представляющую собой фрагмент ДНК размером 0,77 т.п.н., вырезанный из ПЦР продукта с помощью рестриктаз NdeI и XhoI, клонировали в экспрессионном векторе рЕТ-23а(+) по сайтам рестрикции NdeI и XhoI. Полученный рекомбинантный вектор экспрессии был обозначен как рЕТ-23а(+)-Н-РЕ. В этом векторе рекомбинантная нуклеиновая кислота, кодирующая Н-РЕ, находиться под контролем Т7 промотора, что обеспечивает ее экспрессию в клетке бактерии Escherichia coli методом самоиндукции. В результате рестрикционного анализа полученных клонов была обнаружена искомая плазмида, содержащая вставку нужного размера. В этом векторе рекомбинантная нуклеиновая кислота, кодирующая Н-РЕ, находится единичная копия гена Т7 полимеразы под контролем Lac оперона. Правильность нуклеотидной последовательности вставки плазмиды была подтверждена секвенированием.
Полученная плазмида (рЕТ-23а(+)-Н-РЕ) была использована для трансформации штамма E.coli Rosetta2 с плазмидой pRARE2, позволяющую эффективную трансляцию редких кодонов. Экспрессия белка Н-РЕ была произведена методом самоиндукции [13]. Трансформировали клетки Rosetta2 и сеяли на LB агар с 1% глюкозой и инкубировали в течение 12 часов при 37°С. Одиночные колонии переносили в среду ZYP-0.8G, культуры растили 7 часов при температуре 37°С при постоянном перемешивании. Культуру клеток пересевали в среду ZYP-5052 и растили при температуре 37°С в течение 12-48 часов. Определение уровня экспрессии рекомбинантного белка Н-РЕ проводили путем анализа суммарных белковых препаратов, выделенных из бактериальных культур с помощью SDS-PAGE. Максимальный уровень продукции рекомбинантного белка Н-РЕ составлял около 80% общего клеточного белка (Фиг.6).
Пример 3. Выделение и очистка рекомбинантного белка Н-РЕ
Бактериальный белок с шестью аминокислотными остатками выделяли в денатурирующих условиях с помощью аффинной хроматографии на Ni-NTA сефарозе (Promega) в колонке (QIAGEN, Германия) по модифицированным методикам 10 и 17 из руководства The QIAexpressionist™ компании QIAGEN (Германия). Для этого экспрессирующую клеточную культуру центрифугировали при 13000 об/мин 5 минут и осадок ресуспендировали в буфере А рН 8.0, содержащем 100 мМ NaH2PO4, 10 мМ Tris·Cl, 6 М GuHCl из расчета 1 мл буфера на 80 мг осадка, перемешивали на вращающейся мешалке в течение 30 мин. Клеточный лизат центрифугировали при 14000 об/мин 15 мин и отбирали супернатант. Супернатант инкубировали с уравновешенной в буфере А суспензией Ni-NTA сефарозы в течение 30 мин при постоянном перемешивании. Переносили смесь лизата и сорбента в колонку. Промывали сорбент буфером А, двукратно буфером В рН 8.0, содержащим 100 мМ NaH24, 10 мМ Tris·Cl, 8 М мочевина, двукратно буфером С рН 6.3, содержащим 100 мМ NaH24, 10 мМ Tris·Cl, 8 М мочевина, буфером D рН 5.9, содержащим 100 мМ NaH24, 10 мМ Tris·Cl, 8 М мочевина, буфером Е рН 4.5, содержащим 100 мМ NaH24, 10 мМ Tris·Cl, 8 М мочевина. Элюировали белок буфером F содержащим 6 М GuHCl, 0.2 М уксусной кислоты. Фракции элюата, содержащие максимальное количество белка, диализовали против раствора 4 М мочевины, 10 мМ Tris-НСl рН 8.0. Из 65 мг клеточного осадка выделяли примерно 1 мг Н-РЕ белка, с достаточно высоким уровнем очистки - не менее 95%.
Пример 4. Иммуногенность кандидатной вакцины на основе Н-РЕ, полученного в Е.соli.
Для характеристики иммуногенности и протективного действия бактериального Н-РЕ белка масляную эмульсию вводили 3 группам морских свинок (каждая группа по 8 животных) внутримышечно в задние конечности с белками в разных дозах: первой группе по 350 мкг белка; второй - по 120 мкг; третьей - по 40 мкг. Препарат для иммунизации готовили из 30 частей водной фазы, содержащей Н-РЕ белок в 4 М мочевине, 10 мМ Tris рН 8.0 и 70 частей масляного адъюванта Montanide ISA 70 фирмы SEPPIC (Франция). Четвертая группа была контрольной - 8 морских свинок, которым белок не вводили.
Через 17 сут после иммунизации у животных были отобраны сыворотки крови, которые тестировали с помощью реакции микронейтрализации (РМН) (табл.1)
Таблица 1
Результаты исследования иммуногенной и протективной активности бактериального Н-РЕ белка на морских свинках
Номер группы Количество вводимого белка Результаты активности белка
РМН Контрольное заражение: количество защищенных животных/количество животных в опыте
1 350 мкг <1:45 8/8
2 120 мкг <1:32 8/8
3 40 мкг <1:16 4/8
4 Не вводили >1:16 0/8
РМН проводили на культуральных 96-луночных планшетах фирмы "Costar" в перевиваемой культуре клеток почки свиньи IB-RS-2 против 100 ТЦД50 культурального вируса ящура типа О/Тайвань/99. Перед постановкой реакции сыворотки крови морских свинок разводили 1:4 поддерживающей средой Игла и инактивировали при температуре 56°С 30 мин для удаления неспецифических ингибиторов. Сыворотки титровали двукратным шагом, начиная с разведения 1:16, добавляли равный объем рабочей дозы вируса ящура и выдерживали 1 ч при 37°С. Затем в лунки планшета вносили суспензию культуры клеток с концентрацией 0,8×106 клеток/см3. Планшеты выдерживали 48 ч в СO2-инкубаторе при 5% СO2 и температуре 37°С. Реакцию учитывали под инвертированным микроскопом, титр сыворотки рассчитывали по методу Кербера. Вируснейтрализующим титром антител исследуемой сыворотки считали предельное разведение сыворотки, при котором происходила нейтрализация инфекционного действия 100 ТЦД50 вируса в 50% зараженной культуры клеток IB-RS-2. Положительными считали сыворотки с активностью антител в разведении 1:45 и выше.
Через 21 сут после иммунизации группы морских свинок были подвергнуты контрольному заражению адаптированным к этим животным вирусом ящура О/Тайвань/99 гомологичным вакцинному штамму интрадермально в плантарную поверхность задних конечностей в дозе 104,0 ГД50/0,2 см3. Учет результатов заражения проводили через 7 суток и оценивали по генерализации ящурного процесса. Генерализацией считали образование вторичных афт на передних конечностях, в которые не вводили вирус. Контроль вакцины считали действительным, если из 8 не вакцинированных свинок генерализованной формой заболевали не менее 7 животных.
Однократная иммунизация морских свинок эмульсионной вакциной, содержащей в прививном объеме бактериальный Н-РЕ белок в количествах 350 мкг и 120 мкг, индуцировала у животных формирование вируснейтрализующих антител к вирусу ящура типа О/Тайвань/99, выявляемых в РМН. Данные по протективности животных согласуются с данными РМН их сывороток. У всех иммунизированных такими дозами белка животных не происходило появления вторичных афт на передних лапах через 7 сут после заражения. У группы свинок, иммунизированных бактериальным Н-РЕ в количестве 40 мкг, вторичные афты регистрировали у 4 из 8 свинок. Симптомы ящура появлялись у 8 неиммунизированных (контрольных) морских свинок.
Пример 5. Создание рекомбинантного вектора экспрессии рекомбинантного белка Н-РЕ в растениях Nicotiana benthamiana.
Для создания рекомбинантного вектора для экспрессии Н-РЕ белка в клетках Nicotiana benthamiana рекомбинантную нуклеиновую кислоту, представляющую собой фрагмент ДНК размером 0,77 т.п.н., вырезанный из ПЦР продукта с помощью рестриктаз AscI и XmaI, клонировали в бинарном векторе pA7248-AMV по сайтам рестрикции AscI и XmaI. Полученный рекомбинантный вектор экспрессии был обозначен как pA7248-AMV-H-PE. Правильность нуклеотидной последовательности вставки плазмиды была подтверждена секвенированием. Полученная плазмида pA7248-AMV-H-PE была использована для трансформации Agrobacterium tumefaciens штамма ЕНА105. Трансформацию осуществляли по стандартным методикам [31]. На ледяной бане к компетентным клеткам добавляли 0,5 мкг плазмидной ДНК. Клетки выдерживали 5 мин при 37°С, затем добавляли 500 мкл среды LB и растили 4 часа при 28°С при постоянном перемешивании. Клетки высевали на LB-агар и инкубировали при 28°С в течение 3-4 дней. Колония агробактерий, трансформированных конструкцией pA7248-AMV-H-PE, была отобрана с помощью ПЦР скрининга с парой специфичных праймеров PVXseq456 (GAG AGA AAT TGG CAA GGG СТ) и PVXdAvr (CAG TCA GGC GCA TAA TTG AT). ПЦР проводили при следующих условиях: (1) 94°С - 30 с, (2) 42°С - 30 с, (3) 72°С - 2 мин, шаги 1-3 повторяли 25 раз.
Для повышения эффективности транзиентной экспрессии целевого белка растения агроинокулировали смесью культур, трансформированных вектором с целевым геном и вектором-продуцентом супрессора РНК сайленсинга - белка р24 вируса, ассоциированного со скручиванием листьев винограда 2 (GLRaV-2) или НСРro вируса мозаики турнепса, клонированные в модифицированную плазмиду pCambia2301. В этих плазмидах нуклеотидная последовательность Т-ДНК, фланкированная участками, необходимыми для ее переноса в ядро, была заменена на следующие последовательности: сайт узнавания рестриктазы AscI, последовательность 35S промотера, сайт узнавания рестриктазы PmeI, последовательность открытой рамки считывания, кодирующей белок-супрессор, сайты узнавания рестриктаз PstI и StuI, последовательности nos и 35S терминаторов транскрипции. Полученные конструкции были названы рССар24 и рССаНСРrо и использовали для трансформации Agrobacterium tumefaciens штамма ЕНА105.
Культуры клеток агробактерии, трансформированной конструкциями pA7248-AMV-H-PE, pA7248-AMV-GUS (см. далее), рССаНСРrо или рССар24, выращивали в среде LB с антибиотиками (канамицин, рифампицин, гентамицин) и с 10 мМ MES (2-(N-морфолино)-этансульфоновая кислота) 12 часов на качалке при 28°С. Клетки осаждали при 4000 об/мин в течение 5 минут, осадок ресуспендировали в индуцирующем буфере, содержащем 10 мМ MgSO4, 10 мМ MES. Определяли оптическую плотность, готовили суспензию клеток в индуцирующем буфере с оптической плотностью (ОП600) 0,2. Добавляли раствор ацетосирингона (конечная концентрация 150 мкМ) и выдерживали 3 часа при комнатной температуре. Суспензии клеток агробактерии, трансформированных конструкцией, кодирующей целевой ген (pA7248-AMV-H-PE), и конструкцией супрессора РНК сайленсинга (НСРrо или р24), смешивали и вводили шприцем без иглы в межклеточное пространство листьев растений.
В качестве отрицательного контроля была использована ткань того же листа, инфильтрированная культурой агробактерий, трансформированных конструкцией pA7248-AMV-GUS, несущей последовательность β-глюкуронидазы. Для получения вектора pA7248-AMV-GUS последовательность, кодирующая р-глюкуронидазу, была клонирована в плазмиду pA7248-AMV по сайтам рестрикции AscI и XhoI.
Клетки растений, агроинокулированных конструкцией pA7248-AMV-H-PE и НСРrо или р24, были способны экспрессировать белок с электрофоретической подвижностью, как у белка Н-РЕ, экспрессированного в бактериях (Фиг.7). Доля белка Н-РЕ в растении составляла 0,7-1% от общего количества белка листа.
Выделение и очистку Н-РЕ белка из растения проводили по методике, аналогичной выделению белка Н-РЕ из бактерий. Из 120 г свежей растительной ткани выделяли примерно 8 мг Н-РЕ белка (67 мг белка из 1 кг растительной ткани).
Пример 6. Иммуногенность кандидатной вакцины на основе Н-РЕ, полученного в растениях.
Для характеристики иммуногенности и протективного действия бактериального Н-РЕ белка, полученного в растительной системе экспрессии, путем иммунизации морских свинок в концентрациях, аналогичных при вакцинации бактериальным белком Н-РЕ (300, 120 и 40 мкг).
Через 17 сут после вакцинации у 24 иммунизированных разными дозами антигена и 4 контрольных морских свинок были отобраны пробы крови. Полученные сыворотки крови морских свинок были протестированы в непрямом варианте иммунного ферментного анализа (ИФА) с антигеном вируса ящура О/Тайвань/99 (тест-система ФГУ «ВНИИЗЖ») и с использованием набора О FMDV Ab PrioCHECK (табл.2).
Таблица 2
Результаты исследования иммуногенной и протективной активности растительного Н-РЕ белка на морских свинках
Номер группы Количество вводимого белка Результаты активности белка
0 FMDV Ab PrioCHECK PI (РIпол≥50%) Тест-система ФГУ «ВНИИЗЖ» Контрольное заражение: количество защищенных животных/количество животных в опыте
1 350 мкг 78±14,7% >100 8/8
2 120 мкг 70±22,7% >100 8/8
3 40 мкг 58,5±19,7% >50 6/8
4 Не вводили 16,3±6,5% <50 0/8
Непрямой вариант ИФА проводили по стандартной схеме с некоторыми модификациями. Антигены вируса ящура штаммов О/Приморский/00, О/Маниса и О/Тайвань/99 получали из суспензии зараженной перевиваемой культуры клеток ПГСК-30 в процессе преципитации инактивированных вирусных частиц 8% раствором полиэтиленгликоля (м.м. 6000 Д) с добавлением NaCl до конечной концентрации 0,9% и обработки хлороформом с последующей очисткой и концентрированием антигена ультрацентрифугированием через 20% раствор сахарозы. Анализ препаратов антигена вируса ящура проводили в 12-15% ПААГ [14].
Концентрированный и очищенный антиген вируса ящура адсорбировали в лунках 96-луночного полистиролового планшета фирмы "Nunc" MaxiSorp (Дания) в карбонатно-бикарбонатном буфере (рН 9,6) в количестве 1-2 мкг белка на лунку. Не связавшиеся с антигеном участки в лунках планшета блокировали буфером БСА-ТБСТ (0,02 М Трис-НСl, 0,15М NaCl, 0,05% Твин-20, 1% БСА). Пробы наносили на планшет в буфере ТБСТ, с 5% фетальной сывороткой (ФС-ТБСТ), методом двукратных последовательных разведений. Инкубировали в течение 30 мин при 37°С. После четырехкратного промывания планшета буфером ТБСТ в каждую лунку вносили по 50 мкл антивидового иммунопероксидазного конъюгата (филиал «МЕДГАМАЛ» ГУ НИИЭМ им. Н.Ф.Гамалеи РАМН), разведенного в ФС-ТБСТ 1:1000. Инкубировали еще 30 мин при 37°С. Затем планшет снова промывали. Окрашивание производили с помощью субстратной смеси ABTS (МР Biomedicals, США). Через 10-15 мин реакцию останавливали 1% Ds-Na. Реакцию учитывали с помощью многоканального спектрофотометра путем измерения оптической плотности (ОП) при длине волны 405 нм. Титром сыворотки считали конечное разведение, в котором ОП лунки было меньше или равно удвоенному среднему значению ОП отрицательного контроля.
В качестве референтного теста для выявления антител против вируса ящура типа О использовали коммерческий набор О FMDV Ab PrioCHECK (Нидерланды). Постановку реакции проводили согласно инструкции производителя, а положительным значением считали процент ингибирования (PI)≥50%.
Через 17 сут после однократной иммунизации морских свинок дозой препарата в 350 мкг выработка антител, определяемая согласно референтному тесту О FMDV Ab PrioCHECK, индуцировалась у всех привитых животных.
Однократная иммунизация свинок вакциной, изготовленной на основе масляного адъюванта Montanide ISA 70 с содержанием в прививном объеме растительного Н-РЕ белка в количествах 350 мкг и 120 мкг, вызывала образование у животных вируснейтрализующих антител к вирусу ящура типа О/Тайвань/99, выявляемых в ИФА. У всех иммунизированных такими дозами белка животных не происходило появления вторичных афт на передних лапах через 7 суток после заражения. У группы свинок, иммунизированных растительным Н-РЕ в количестве 40 мкг, вторичные афты появлялась у 2 из 8 свинок. Симптомы ящура появлялись у 8 неиммунизированных морских свинок.
Результаты оценки иммуногенности бактериального и растительного полиэпитопных белков Н-РЕ на морских свинках свидетельствуют о том, что при однократной иммунизации дозой 120 мкг в комбинации масляным адъювантом Montanide ISA 70, он способен индуцировать иммунный ответ у животных, детектируемый методами ИФА и РМН, а также вызывать устойчивость к контрольному заражению гомологичным адаптированным вирусом ящура типа О/Тайвань/99. Следовательно, полученный препарат может рассматриваться в качестве кандидата на вакцину против вируса ящура.
Полученные результаты на морских свинках позволяют экстраполировать достигнутый эффект и на сельскохозяйственных животных.
Полученные данные об эффективности кандидатной вакцины против вируса ящура на основе белка, состоящего из эффективных эпитопов вируса, позволяют предположить, что данный подход может быть успешно использован в создании других (противовирусных вакцин) препаратов для иммунизации животных против вируса ящура различных серотипов и подтипов.
При осуществлении изобретения, помимо методов, раскрытых в данных примерах, использовали хорошо известные специалистам методики, описанные в руководствах по молекулярной биологии и генетической инженерии [15, 16].
Figure 00000001
Figure 00000002

Claims (5)

1. Полиэпитопный вакцинный белок, предназначенный для иммунизации против вируса ящура, имеющий аминокислотную последовательность SEQ ID NO: 1, которая включает аминокислотную последовательность В-клеточного эпитопа белка VP4 с 21-й по 40-ю аминокислоту, начиная с N-конца, аминокислотную последовательность В-клеточного эпитопа белка VP1 с 135-й по 160-ю аминокислоту, начиная с N-конца, аминокислотную последовательность В-клеточного эпитопа белка VP1 с 200-й по 213-ю аминокислоту, начиная с N-конца, аминокислотную последовательность Т-клеточного эпитопа белка 2С с 68-й по 76-ю аминокислоту, начиная с N-конца, аминокислотную последовательность Т-клеточного эпитопа белка 3D с 1-й по 115-ю аминокислоту, начиная с N-конца, и аминокислотную последовательность Т-клеточного эпитопа белка 3D с 421-й по 460-ю аминокислоту вируса ящура серотипа О/Тайвань/99.
2. Нуклеиновая кислота, кодирующая предназначенный для иммунизации против вируса ящура полиэпитопный вакцинный белок по п.1, имеющая последовательность нуклеотидов SEQ ID NO: 2.
3. Рекомбинантная плазмида pA7248-AMV-H-PE, предназначенная для продукции в растениях полиэпитопного вакцинного белка по п.1, содержащая нуклеиновую кислоту по п.2 и имеющая физическую карту, представленную на фиг.5.
4. Вакцинный препарат для профилактики и защиты от инфекции, вызываемой вирусом ящура, вызывающий иммунный ответ против вируса ящура серотипа О/Тайвань/99 и устойчивость к заражению у лабораторных животных, включающий полиэпитопный вакцинный белок по п.1, смешанный с физиологически приемлемым носителем.
5. Вакцинный препарат по п.4, который дополнительно включает адъювант.
RU2010149502/10A 2010-12-06 2010-12-06 Полиэпитопный белок, нуклеотидная последовательность, кодирующая полиэпитопный белок, плазмида с последовательностью, кодирующей полиэпитопный белок, и препарат полиэпитопного белка для индукции иммунного ответа против вируса ящура RU2467014C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010149502/10A RU2467014C2 (ru) 2010-12-06 2010-12-06 Полиэпитопный белок, нуклеотидная последовательность, кодирующая полиэпитопный белок, плазмида с последовательностью, кодирующей полиэпитопный белок, и препарат полиэпитопного белка для индукции иммунного ответа против вируса ящура

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010149502/10A RU2467014C2 (ru) 2010-12-06 2010-12-06 Полиэпитопный белок, нуклеотидная последовательность, кодирующая полиэпитопный белок, плазмида с последовательностью, кодирующей полиэпитопный белок, и препарат полиэпитопного белка для индукции иммунного ответа против вируса ящура

Publications (2)

Publication Number Publication Date
RU2010149502A RU2010149502A (ru) 2012-06-20
RU2467014C2 true RU2467014C2 (ru) 2012-11-20

Family

ID=46680450

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010149502/10A RU2467014C2 (ru) 2010-12-06 2010-12-06 Полиэпитопный белок, нуклеотидная последовательность, кодирующая полиэпитопный белок, плазмида с последовательностью, кодирующей полиэпитопный белок, и препарат полиэпитопного белка для индукции иммунного ответа против вируса ящура

Country Status (1)

Country Link
RU (1) RU2467014C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663004C2 (ru) * 2013-03-26 2018-07-31 Дзе Пирбрайт Инститьют Стабилизированные капсиды fmdv
RU2714428C2 (ru) * 2015-11-23 2020-02-14 Мериал, Инк. Слитые белки fmdv-e2 и их применение

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1270839A (zh) * 1999-04-15 2000-10-25 香港科技大学 口蹄疫的抗原化抗体疫苗
RU2202613C2 (ru) * 1996-09-18 2003-04-20 Байер Акциенгезелльшафт Иммуногенные пептиды вируса ящура
WO2006063445A1 (en) * 2004-12-14 2006-06-22 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Health Recombinant foot and mouth disease vaccine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2202613C2 (ru) * 1996-09-18 2003-04-20 Байер Акциенгезелльшафт Иммуногенные пептиды вируса ящура
CN1270839A (zh) * 1999-04-15 2000-10-25 香港科技大学 口蹄疫的抗原化抗体疫苗
CN101342368A (zh) * 1999-04-15 2009-01-14 香港科技大学 口蹄疫的抗原化抗体疫苗
WO2006063445A1 (en) * 2004-12-14 2006-06-22 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Health Recombinant foot and mouth disease vaccine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663004C2 (ru) * 2013-03-26 2018-07-31 Дзе Пирбрайт Инститьют Стабилизированные капсиды fmdv
US11053286B2 (en) 2013-03-26 2021-07-06 The Pirbright Institute Stabilised FMDV capsids
RU2714428C2 (ru) * 2015-11-23 2020-02-14 Мериал, Инк. Слитые белки fmdv-e2 и их применение

Also Published As

Publication number Publication date
RU2010149502A (ru) 2012-06-20

Similar Documents

Publication Publication Date Title
US5290686A (en) Expression of influenza a M2 protein in baculovirus
CN112076315A (zh) 新冠病毒s蛋白和铁蛋白亚基融合的纳米抗原颗粒、新冠疫苗及其制备方法和应用
Wu et al. Expression of foot-and-mouth disease virus epitopes in tobacco by a tobacco mosaic virus-based vector
CN109867727B (zh) 一种flagellin-fiber2融合蛋白、其制备方法和应用
JP2009524699A (ja) 新規植物ウイルス粒子及びその不活性化の方法
CN113461788B (zh) 猫冠状病毒重组抗原、其基因工程亚单位疫苗及应用
CN106928373B (zh) 一种猪支原体肺炎多表位黏膜疫苗
KR102336158B1 (ko) 돼지유행성설사병바이러스 및 돼지로타바이러스에 대한 백신 조성물
Xu et al. Immunogenicity of T7 bacteriophage nanoparticles displaying GH loop of foot-and-mouth disease virus (FMDV)
Guo et al. Self-assembly of virus-like particles of rabbit hemorrhagic disease virus capsid protein expressed in Escherichia coli and their immunogenicity in rabbits
Lei et al. Artificially designed hepatitis B virus core particles composed of multiple epitopes of type A and O foot‐and‐mouth disease virus as a bivalent vaccine candidate
CN108823218A (zh) 鸡传染性法氏囊病病毒vp2基因、其表达产物、其亚单位疫苗及应用
Motoi et al. Detection of rabies-specific antigens by egg yolk antibody (IgY) to the recombinant rabies virus proteins produced in Escherichia coli
CN110452889B (zh) 一种表达bvdv-e0的重组牛肠道病毒的构建方法与初步应用
Andrianova et al. Foot and mouth disease virus polyepitope protein produced in bacteria and plants induces protective immunity in guinea pigs
KR101600959B1 (ko) 가금 레오바이러스 시그마 c 단백질의 항원 결정기를 포함하는 재조합 단백질 및 이에 대한 항체
RU2467014C2 (ru) Полиэпитопный белок, нуклеотидная последовательность, кодирующая полиэпитопный белок, плазмида с последовательностью, кодирующей полиэпитопный белок, и препарат полиэпитопного белка для индукции иммунного ответа против вируса ящура
RU2453557C1 (ru) Состав полиэпитопного белка для индукции иммунного ответа против вируса ящура
CN113862284B (zh) 一种编码重组禽流感病毒ha蛋白的基因、病毒样颗粒、疫苗及制备与应用
CN115850501A (zh) 非洲猪瘟病毒p30、p72和p54嵌合重组表达蛋白、其制备方法与应用
CN114437236A (zh) 一种重组非洲猪瘟病毒多表位融合蛋白、制备及其应用
Majidi et al. Expression and Purification of Brucella spp. Lumazine Synthase Decameric Carrier in Fusion to Extracellular Domain of Influenza M2E Protein
Wu et al. Yeast-derived sigma C protein-induced immunity against avian reovirus
CN111560386A (zh) 一种可溶性猪圆环病毒2型Cap蛋白及应用
Meshcheryakova et al. Cowpea mosaic virus chimeric particles bearing the ectodomain of matrix protein 2 (M2E) of the influenza A virus: production and characterization

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20180731

PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201207