RU2466455C1 - Способ распознавания радиосигналов - Google Patents

Способ распознавания радиосигналов Download PDF

Info

Publication number
RU2466455C1
RU2466455C1 RU2011144758/08A RU2011144758A RU2466455C1 RU 2466455 C1 RU2466455 C1 RU 2466455C1 RU 2011144758/08 A RU2011144758/08 A RU 2011144758/08A RU 2011144758 A RU2011144758 A RU 2011144758A RU 2466455 C1 RU2466455 C1 RU 2466455C1
Authority
RU
Russia
Prior art keywords
vectors
radio signal
received
criteria
fragments
Prior art date
Application number
RU2011144758/08A
Other languages
English (en)
Inventor
Дмитрий Игоревич Волков (RU)
Дмитрий Игоревич Волков
Сергей Викторович Дворников (RU)
Сергей Викторович Дворников
Александр Сергеевич Дворников (RU)
Александр Сергеевич Дворников
Дмитрий Анатольевич Кожевников (RU)
Дмитрий Анатольевич Кожевников
Александр Михайлович Кудрявцев (RU)
Александр Михайлович Кудрявцев
Андрей Александрович Устинов (RU)
Андрей Александрович Устинов
Александр Павлович Чихонадских (RU)
Александр Павлович Чихонадских
Original Assignee
Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военная академия связи имени маршала Советского Союза С.М. Буденного" Министерства Обороны Российской Федерации (Минобороны России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военная академия связи имени маршала Советского Союза С.М. Буденного" Министерства Обороны Российской Федерации (Минобороны России) filed Critical Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военная академия связи имени маршала Советского Союза С.М. Буденного" Министерства Обороны Российской Федерации (Минобороны России)
Priority to RU2011144758/08A priority Critical patent/RU2466455C1/ru
Application granted granted Critical
Publication of RU2466455C1 publication Critical patent/RU2466455C1/ru

Links

Images

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

Изобретение относится к способам распознавания радиосигналов (PC), в частности, к способам распознавания вида и параметров модуляции PC. Способ может быть использован в технических средствах распознавания PC со сложной частотно-временной структурой. Техническим результатом является повышение вероятности правильного распознавания за счет снижения влияния первичного сигнала, определяемого информационной компонентой, на формируемые векторы признаков. Способ заключается в том, что предварительно из дискретизированных и квантованных отсчетов эталонных PC формируют матрицы распределения энергии на основе их фреймовых вейвлет-преобразований. Из них формируют векторы признаков путем построчной конкатенации всех вейвлет-коэффициентов. После чего элементы векторов признаков нормируют и ранжируют. Каждый принятый для идентификации PC разбивают на N фрагментов, для каждого из которых формируют векторы признаков аналогичным образом. А в качестве векторов признаков принятого для идентификации PC выбирают усредненные значения нормированных и ранжированных векторов признаков всех N фрагментов. Решение об отнесении принятого PC к одному из эталонов распознаваемых классов принимают по результатам сравнения его вектора признаков с векторами признаков эталонов. 7 ил.

Description

Изобретение относится к способам распознавания радиосигналов (PC), в частности к способам распознавания вида и параметров модуляции PC. Способ может быть использован в технических средствах распознавания PC со сложной частотно-временной структурой.
Известен способ распознавания PC на основе сингулярного разложения псевдо-частотно-временного распределения Вигнера-Вилле (псевдо-ЧВРВВ) [N.М.Marinovic, G.Eichmann. An expansion of Wigner distribution and its applications. - Proc. IEEE ICASSP-85, 1985, p.1021-1024,], в котором предварительно на основе псевдо-ЧВРВВ формируют матрицы распределения энергии (РЭ) эталонных PC, выполняют их спектральное разложение и формируют параметры эталонных PC, затем принимают распознаваемый PC и после дискретизации и квантования формируют его матрицу РЭ, затем выделяют признаки принятого PC и сравнивают их с параметрами эталонных PC, по результатам сравнения идентифицируют принятый PC.
Недостатком указанного способа является относительно низкая вероятность правильного распознавания PC сложной частотно-временной структуры, а также PC при воздействии на них шумов и помех. Снижение вероятности правильного распознавания происходит вследствие появления интерференционного фона и ложных пиков мощности в псевдо-ЧВРВВ, искажающих реальную картину РЭ PC в координатах частота-время [Коэн Л. Время-частотные распределения. Обзор // ТИИЭР, 1989, т.77, №10. С.72-121].
Известен способ распознавания PC по патенту РФ №2261476, МПК7 G06K 9/00 от 27.09.2005 г. В известном аналоге предварительно задают эталонные PC. Затем их дискретизируют, квантуют и выполняют над ними операцию непрерывного вейвлет-преобразования (ВП) с целью получения матрицы РЭ. После чего для каждой матрицы РЭ формируют вектор РЭ. Затем для всех полученных векторов РЭ вычисляют общую ковариационную матрицу. После чего выполняют спектральное разложение матриц РЭ эталонных PC путем вычисления собственных векторов и собственных значений общей ковариационной матрицы. Затем формируют усеченную матрицу собственных векторов путем выбора собственных векторов общей ковариационной матрицы, соответствующих ее максимальным собственным значениям. При формировании параметров эталонных PC умножают усеченную матрицу собственных векторов на векторы РЭ эталонных PC, а в качестве параметров эталонов используются средние значения полученных произведений. После чего принимают распознаваемый PC, дискретизируют его, квантуют и затем выполняют операцию непрерывного ВП его квантованных отсчетов. Затем из матрицы РЭ формируют вектор РЭ, а для выделения признаков принятого PC умножают усеченную матрицу собственных векторов на его вектор РЭ. Результаты вычислений принимают в качестве признаков распознавания принятого PC, которые последовательно сравнивают с параметрами полученных ранее эталонов. Результаты сравнения служат основой для принятия решения о соотнесении распознаваемого PC к тому или иному классу.
Недостатком известного аналога является относительно низкая оперативность (быстродействие) (Быстродействие - время перехода системы из некоторого начального состояние в требуемое конечное; одна из оценок качества системы - см. Словарь по кибернетике. Киев.: Укр. Сов. Энциклопедия, 1979 г., 623 с. // С.89.) самого процесса распознавания, обусловленная необходимостью выполнения операций непрерывного ВП, выполнения спектрального разложения матриц РЭ и формирования усеченной матрицы собственных векторов, которые связаны со значительным объемом вычислительных операций.
Наиболее близким аналогом по технической сущности к заявленному является способ распознавания PC по патенту РФ №2356064, МПК7 G06K 9/00 от 20.05.2009 г. В ближайшем аналоге предварительно задают эталонные PC. Затем для каждого эталонного PC формируют его матрицу РЭ. С этой целью эталонные PC дискретизируют, квантуют и затем выполняют операцию фреймового (Вейвлет-фреймы - это вейвлет-преобразование, использующее кратное двум масштабирование (по частоте), и непрерывные сдвиги (по времени). - см. В. Дьяконов Вейвлеты. От теории к практике. - М.: СОЛОН - P, - 2002. 448 с. // С.106) ВП путем фильтрации их квантованных отсчетов посредством фильтров, полосы пропускания которых каждый раз увеличивают в два раза с возрастанием порядкового номера фильтра. После этого полученные с выхода каждого из фильтров вейвлет-коэффициенты (ВК) нормируют, ранжируют и исключают малозначимые ВК. В качестве малозначимых выбирают совокупность ВК, начиная от наименьшего, суммарная энергия которых составляет 10-30% от суммарной энергии всей совокупности ВК на выходе каждого из фильтров соответственно. Затем из оставшихся ВК формируют матрицу РЭ, причем строками матрицы РЭ каждого эталонного PC являются ВК, полученные на выходе фильтров. А из матриц РЭ эталонных PC формируют их векторы признаков путем построчной конкатенации всех ВК сформированных матриц РЭ. После этого принимают распознаваемый PC, из квантованных отсчетов которого формируют матрицу РЭ и вектор признаков аналогично, как и для эталонных PC. Идентифицируют принятый PC путем вычитания по модулю его вектора признаков из векторов признаков каждого из эталонных PC. Распознаваемый PC считают инцидентным эталонному PC, разница векторов признаков с которым минимальна.
Недостатком способа-прототипа является относительно низкая вероятность правильного распознавания PC, обусловленная модуляционным параметром, зависящим от информации переносимой PC. Поскольку первичный сигнал, используемый при модуляции эталонного и распознаваемого PC, определяется содержанием информации (информационной компонентой) и, следовательно, может быть различным, то это приведет к соответствующим различиям и векторов признаков указанных PC, формируемых на основе способа-прототипа.
Целью заявленного технического решения является разработка способа распознавания PC, обеспечивающего повышение вероятности правильного распознавания за счет снижения влияния первичного сигнала, определяемого информационной компонентой, на формируемый вектор признаков.
Поставленная цель достигается тем, что в известном способе распознавания PC, заключающегося в том, что предварительно задают L≥2 эталонных PC, формируют для каждого l-го эталонного PC, где l=1,…, L, матрицу РЭ Ml, для чего его дискретизируют, квантуют и затем выполняют операцию фреймового ВП последовательности его квантованных отчетов с помощью K≥2 фильтров, для чего полосу пропускания ΔФk k-го фильтра, где k=1,…, K, выбирают из условия ΔФk=2(k-1)ΔФ, где ΔФ - ширина полосы пропускания первого фильтра. Затем из ВК, полученных с выхода каждой k-той полосы частот ΔФk, формируют вектор признаков l-го эталонного PC, после чего принимают распознаваемый PC и формируют его вектор признаков аналогично, как и для l-го эталонного PC. Затем идентифицируют принятый PC путем вычитания по модулю его вектора признаков из векторов признаков каждого из эталонных PC. Распознаваемый PC считают инцидентным эталонному PC, разница векторов признаков с которым минимальна.
Вектор признаков l-го эталонного PC формируют путем построчной конкатенации всех ВК его матрицы РЭ, после чего элементы вектора признаков l-го эталонного PC нормируют и ранжируют. А каждый принятый для идентификации PC разбивают на N фрагментов, для каждого из которых выполняют операцию фреймового ВП, после чего формируют вектор признаков каждого фрагмента путем построчной конкатенации всех ВК их матриц РЭ. Затем ВК векторов признаков каждого из N фрагментов нормируют и ранжируют, а в качестве векторов признаков принятого для идентификации PC выбирают усредненные значения нормированных и ранжированных векторов признаков всех N фрагментов.
Благодаря новой совокупности существенных признаков в заявленном способе обеспечивается повышение вероятности правильного распознавания за счет снижения влияния первичного сигнала, определяемого информационной компонентой, на формируемые векторы признаков. Причем снижение указанного влияния достигается в результате предварительного разбиения принятого PC на N фрагментов, из нормированных и ранжированных вейвлет-коэффициентов которых путем усреднения формируется вектор признаков распознавания.
Заявленный способ поясняется чертежами, на которых показаны:
фиг.1. Дискретизированные по времени 128 отсчетов эталонного PC восьми позиционной фазовой телеграфии со скоростью 2400 бит/с (ФТ-8) S1(t);
фиг.2. Трехмерная матрица РЭ эталонного PC ФТ-8 на основе его фреймового ВП M1 размером 128 на 8 ВК;
фиг.3. Вектор признаков эталонного PC ФТ-8, составленный из ВК его матрицы РЭ фреймового ВП m1(i) размером 1024 ВК;
фиг.4. Вектор признаков эталонного PC ФТ-8, составленный из нормированных и ранжированных ВК его матрицы РЭ фреймового ВП
Figure 00000001
размером 1024 ВК;
фиг.5. Вектор признаков первого фрагмента принятого для распознавания PC ФТ-8, составленный из нормированных и ранжированных ВК его матрицы РЭ фреймового ВП
Figure 00000002
размером 1024;
фиг.6. Вектор признаков усредненного по трем фрагментам принятого для распознавания PC ФТ-8, составленный из нормированных и ранжированных ВК их матриц РЭ фреймовых ВП
Figure 00000003
размером 1024;
фиг.7. Векторы разности размером 1024 отчета: R1(i) - между вектором признаков эталонного PC ФТ-8 и вектором признаков первого фрагмента принятого для распознавания PC ФТ-8; R2(i) - между вектором признаков эталонного PC ФТ-8 и вектором признаков усредненного по трем фрагментам принятого для распознавания PC ФТ-8.
В общем случае процесс распознавания PC включает в себя следующие процедуры: формирование матриц РЭ {M1∧ML} для множества {S1(t)∧SL(t)} эталонных PC, где L - количество классов распознаваемых PC; формирование на основе матриц РЭ {M1∧ML} векторов признаков
Figure 00000004
где i=1,…, I, I - число отчетов ВК, используемых для формирования вектора признаков PC; формирование матрицы РЭ
Figure 00000005
распознаваемого PC; формирование на основе матрицы РЭ
Figure 00000006
вектора признаков распознаваемого PC
Figure 00000007
, где l=1,…, L - индекс, указывающий на принадлежность распознаваемого PC к одному из L классов эталонных PC, Σ - индекс, указывающий на усреднение значения вектора признаков распознаваемого PC по N фрагментам; сравнение вектора признаков распознаваемого PC, усредненного по N фрагментов, с векторами признаков эталонных PC
Figure 00000008
; принятие решения о принадлежности распознаваемого PC к одному их L классов распознаваемых PC
Figure 00000009
.
Реализация заявленного способа объясняется следующим образом.
Предварительно задают L классов эталонных PC, число и типы которых охватывают возможное число и типы PC, подлежащих распознаванию. Затем выполняют совокупность операций с целью формирования вектора признаков каждого l-го эталонного PC, где l=1, …, L. Для этого каждый эталонный PC дискретизируют и квантуют. Процедуры дискретизации и квантования аналоговых PC известны и описаны, например [В. Григорьев. Передача сигналов в зарубежных информационно-технических системах. - СПб.: ВАС, 1998, стр.83-85]. В качестве примера на фиг.1 показаны 128 отсчетов S1(t) эталонного PC ФТ-8. Квантованные выборки последовательностей эталонных PC формируют в соответствии с требованиями вычисления статистических оценок [Математический энциклопедический словарь. М.: Сов. Энциклопедия, 1988, 847 с.; Г.Корн, Т.Корн. Справочник по математике. Пер. с англ. - М.: Наука, 1977, стр.638-643]. Длина выборки дискретных отчетов PC выбирается в пределах 64…16384 в зависимости от требований по вероятности правильного распознавания и времени обработки (длина выборки должна быть кратна значению 2i, где i - целое число). Чем больше длина выборки, тем выше вероятность правильного распознавания, но при этом время обработки возрастает.
Затем формируют совокупность матриц РЭ {M1∧ML}, для чего над квантованными выборками эталонных PC выполняют операцию фреймового ВП. Операция фреймового ВП заключается в фильтрации выборок квантованного PC с помощью совокупности из K≥2 фильтров. Общее число K фильтров при этом определяют с учетом условия:
Figure 00000010
где ΔF - ширина спектра радиосигнала; ΔФ1 - ширина полосы пропускания первого фильтра [В.Дьяконов. Вейвлеты. От теории к практике. - М.: СОЛОН-Р, - 2002. 448 с., с.117-121]. В свою очередь ширина полосы пропускания ΔФk k-го фильтра, где k=1,…, K, выбирают из условия
ΔФk=2(k-1)ΔФ1.
Такой выбор полос пропускания фильтров обеспечивает полное перекрытие по частоте спектра радиосигнала системой вейвлет-фильтров, и при этом удается избежать избыточности описания, свойственной непрерывному ВП [В.Дьяконов. Вейвлеты. От теории к практике. - М.: СОЛОН-Р, - 2002. 448 с., с.104-107].
Процедуры формирования матриц РЭ PC на основе их фреймовых ВП известны и описаны, например, в [Способ распознавания PC по патенту РФ №2356064 МПК7, G06K 9/00 от 20.05.2009 г.]. В качестве примера на фиг.2 показано трехмерное представление матрицы РЭ M1 эталонного PC ФТ-8, полученное на основе фреймового ВП для совокупности 8 фильтров.
Затем из совокупности ВК на выходе каждого k-го фильтра формируют вектор признаков l-го эталонного PC путем построчной конкатенации всех ВК его матрицы РЭ. Конкатенация заключается в последовательном выстраивании строк матрицы друг за другом. В качестве примера на фиг.3 показан вектор признаков m1(i) эталонного PC ФТ-8, сформированный выше указанным образом.
После чего элементы вектора признаков l-го эталонного PC нормируют и ранжируют. Нормировка заключается в выделении наибольшего ВК и деление всех остальных ВК на наибольший ВК. Ранжирование заключается в выстраивании элементов вектора в зависимости от убывания их по величине. В качестве примера на фиг.4 показан вектор признаков
Figure 00000011
эталонного PC ФТ-8, элементы которого нормированы и ранжированы.
Процедуры выполнения операций конкатенации, нормирования и ранжирования известны и описаны, например, в [Способ распознавания PC по патенту РФ №2356064, МПК7 G06K 9/00 от 20.05.2009 г.].
Затем принимают распознаваемый PC
Figure 00000012
, делят его на N фрагментов таким образом, чтобы длина каждого из фрагментов распознаваемого PC совпадала с длиной эталонных PC, и выполняют над ними все описанные действия, которые выполнялись над эталонными PC. В результате получим N нормированных и ранжированных векторов признаков
Figure 00000013
где первый индекс l указывает на принадлежность распознаваемого PC к одному из L классов эталонных PC, второй индекс указывает порядковый номер выборки, соответствующий каждому из N фрагментов распознаваемого PC. В качестве примера на фиг.5 показан нормированный и ранжированный вектор признаков
Figure 00000014
первого фрагмента распознаваемого PC ФТ-8.
После этого формируют вектор признаков распознаваемого PC путем усреднения нормированных и ранжированных векторов признаков всех N его фрагментов. На фиг.6 показан вектор признаков
Figure 00000015
распознаваемого PC ФТ-8, сформированного на основе усреднения нормированных и ранжированных векторов признаков трех его фрагментов.
Применение процедуры усреднения, при формировании вектора признаков распознаваемого PC по N фрагментам, позволяет снизить влияния первичного сигнала, определяемого информационной компонентой, на формируемые векторы признаков и тем самым повысить вероятность правильного распознавания. Если при формировании эталонных PC можно подобрать фрагменты, которые наиболее полно характеризуют распознаваемый класс, то принятая для распознавания одна выборка, равная длине эталонного PC, не всегда может из-за формы первичного сигнала содержать признаки, в полной мере характеризующие распознаваемый класс PC. Например, наличие длинных серий логических нулей или единиц в первичном сигнале. Следовательно, применение процедуры усреднения векторов признаков от нескольких фрагментов позволит снизить влияния первичного сигнала, определяемого информационной компонентой, на формируемые векторы признаков и тем самым повысить вероятность правильного распознавания.
Правомерность заявляемого способа распознавания подтвердили данные эксперимента по оценке близости векторов признаков эталонного PC ФТ-8 и векторов признаков распознаваемого PC ФТ-8, сформированного на основе одного фрагмента и на основе усреднения трех фрагментов. Эксперимент проводился в соответствии с требованиями вычисления статистических оценок [Математический энциклопедический словарь. М.: Сов. Энциклопедия, 1988, 847 с.; Г.Корн, Т.Корн. Справочник по математике. Пер. с англ. - М.: Наука, 1977, стр.638-643].
В качестве примера на фиг.7 показаны векторы разности признаков: R1(i) - между вектором признаков эталонного PC ФТ-8 и вектором признаков первого фрагмента принятого для распознавания PC ФТ-8; R2(i) - между вектором признаков эталонного PC ФТ-8 и вектором признаков усредненного по трем фрагментам принятого для распознавания PC ФТ-8. Поскольку величина компонентов R2(i)<R1(i), следовательно, усредненный вектор признаков
Figure 00000016
ближе по своей структуре к вектору эталона
Figure 00000017
чем вектор одного (первого) фрагмента
Figure 00000018
.
Идентифицируют распознаваемый PC путем сравнения его вектора признаков
Figure 00000019
с вектором признаков каждого из эталонных PC
Figure 00000020
. Идентификация может быть реализована с использованием различных приемов. Например, путем вычитания по модулю из вектора признаков принятого PC векторов признаков каждого из L эталонных PC
Figure 00000021
Процедуры принятия решения являются известными и описаны, например, в [Я.Фомин, Г.Тарловский. Статистическая теория распознавания образов. - М.: Радио и связь, 1986, стр.30-46; 10. Сато Обработка сигналов. Первое знакомство. / Пер. с япон., под ред Ёсифуми Амэмия. - М.: Издательский дом «Додека-XXI», 2002. - 176 с. С.41-54]. Распознаваемый PC считают инцидентным одному их L эталонных PC, с использованием одного из решающих правил, например, когда разница между векторами признаков минимальна
Figure 00000022
Реализация процедур идентификации распознаваемого PC в соответствии с выше указанным подходом, а также оценка их эффективности представлены в [Способ распознавания PC по патенту РФ №2356064, МПК7 G06K 9/00 от 20.05.2009 г.].
Таким образом, благодаря новой совокупности существенных признаков в заявленном способе обеспечивается повышение вероятности правильного распознавания за счет снижения влияния первичного сигнала, определяемого информационной компонентой, на формируемые векторы признаков.

Claims (1)

  1. Способ распознавания радиосигналов, заключающийся в том, что предварительно задают L≥2 эталонных радиосигналов, формируют для каждого 1-го эталонного радиосигнала, где l=1,…, L, матрицу распределения энергии M1, для чего его дискретизируют, квантуют и затем выполняют операцию фреймового вейвлет-преобразования последовательности его квантованных отчетов с помощью K≥2 фильтров, для чего полосу пропускания ΔФk k-го фильтра, где k=1,…, K, выбирают из условия ΔФk=2(k-l)ΔФ, где ΔФ - ширина полосы пропускания первого фильтра, затем из вейвлет-коэффициентов, полученных с выхода каждой k-й полосы частот ΔФk, формируют вектор признаков 1-го эталонного радиосигнала, после чего принимают распознаваемый радиосигнал и формируют его вектор признаков аналогично как и для 1-го эталонного радиосигнала, затем идентифицируют принятый радиосигнал путем вычитания по модулю его вектора признаков из векторов признаков каждого из эталонных радиосигналов, распознаваемый радиосигнал считают инцидентным эталонному радиосигналу, разница векторов признаков с которым минимальна, отличающийся тем, что вектор признаков 1-го эталонного радиосигнала формируют путем построчной конкатенации всех вейвлет-коэффициентов его матрицы распределения энергии, после чего элементы вектора признаков 1-го эталонного радиосигнала нормируют и ранжируют, а каждый принятый для идентификации радиосигнал разбивают на N фрагментов, для каждого из которых выполняют операцию фреймового вейвлет-преобразования, после чего формируют вектор признаков каждого фрагмента путем построчной конкатенации всех вейвлет-коэффициентов их матриц распределения энергии, затем вейвлет-коэффициенты векторов признаков каждого из N фрагментов нормируют и ранжируют, а в качестве векторов признаков принятого для идентификации радиосигнала выбирают усредненные значения нормированных и ранжированных векторов признаков всех N фрагментов.
RU2011144758/08A 2011-11-03 2011-11-03 Способ распознавания радиосигналов RU2466455C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011144758/08A RU2466455C1 (ru) 2011-11-03 2011-11-03 Способ распознавания радиосигналов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011144758/08A RU2466455C1 (ru) 2011-11-03 2011-11-03 Способ распознавания радиосигналов

Publications (1)

Publication Number Publication Date
RU2466455C1 true RU2466455C1 (ru) 2012-11-10

Family

ID=47322398

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011144758/08A RU2466455C1 (ru) 2011-11-03 2011-11-03 Способ распознавания радиосигналов

Country Status (1)

Country Link
RU (1) RU2466455C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2551903C1 (ru) * 2014-04-18 2015-06-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства Обороны Российской Федерации (Минобороны России) Способ распознавания радиосигналов
RU2613733C1 (ru) * 2015-09-29 2017-03-21 Федеральное государственное казённое образовательное учреждение высшего профессионального образования "Калининградский пограничный институт Федеральной службы безопасности Российской Федерации" Способ распознавания радиосигналов

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3247710A1 (de) * 1982-12-23 1984-06-28 Gorenje Körting Electronic GmbH & Co, 8217 Grassau Hochfrequenz-empfaenger mit alphanumerischer sender-skala
EP0322024A2 (en) * 1987-12-18 1989-06-28 THORN EMI Electronics Limited Signal receiving arrangement
RU2356064C2 (ru) * 2007-04-24 2009-05-20 ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени С.М. Буденного Способ распознавания радиосигналов
RU2423735C1 (ru) * 2010-03-17 2011-07-10 Государственное образовательное учреждение высшего профессионального образования "Военная академия связи имени С.М. Буденного" Министерства обороны Российской Федерации Способ распознавания радиосигналов
RU2430417C1 (ru) * 2010-05-25 2011-09-27 Государственное образовательное учреждение высшего профессионального образования "Военная академия связи имени С.М. Буденного" Министерства обороны Российской Федерации Способ распознавания радиосигналов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3247710A1 (de) * 1982-12-23 1984-06-28 Gorenje Körting Electronic GmbH & Co, 8217 Grassau Hochfrequenz-empfaenger mit alphanumerischer sender-skala
EP0322024A2 (en) * 1987-12-18 1989-06-28 THORN EMI Electronics Limited Signal receiving arrangement
RU2356064C2 (ru) * 2007-04-24 2009-05-20 ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени С.М. Буденного Способ распознавания радиосигналов
RU2423735C1 (ru) * 2010-03-17 2011-07-10 Государственное образовательное учреждение высшего профессионального образования "Военная академия связи имени С.М. Буденного" Министерства обороны Российской Федерации Способ распознавания радиосигналов
RU2430417C1 (ru) * 2010-05-25 2011-09-27 Государственное образовательное учреждение высшего профессионального образования "Военная академия связи имени С.М. Буденного" Министерства обороны Российской Федерации Способ распознавания радиосигналов

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2551903C1 (ru) * 2014-04-18 2015-06-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства Обороны Российской Федерации (Минобороны России) Способ распознавания радиосигналов
RU2613733C1 (ru) * 2015-09-29 2017-03-21 Федеральное государственное казённое образовательное учреждение высшего профессионального образования "Калининградский пограничный институт Федеральной службы безопасности Российской Федерации" Способ распознавания радиосигналов

Similar Documents

Publication Publication Date Title
CN106899968B (zh) 一种基于WiFi信道状态信息的主动非接触身份认证方法
RU2356064C2 (ru) Способ распознавания радиосигналов
RU2466455C1 (ru) Способ распознавания радиосигналов
RU2423735C1 (ru) Способ распознавания радиосигналов
Shen et al. Node identification in wireless network based on convolutional neural network
RU2551903C1 (ru) Способ распознавания радиосигналов
CN114897002A (zh) 基于LPINet的低截获概率雷达信号脉内调制识别方法
RU2430417C1 (ru) Способ распознавания радиосигналов
CN113780521B (zh) 一种基于深度学习的辐射源个体识别方法
CN115166514A (zh) 一种基于自适应频谱分割去噪的电机故障识别方法及系统
Yarga et al. Efficient spike encoding algorithms for neuromorphic speech recognition
CN113238193A (zh) 一种多分量联合重构的sar回波宽带干扰抑制方法
CN109446910B (zh) 一种通信辐射源信号分类识别方法
RU2430416C1 (ru) Способ распознавания радиосигналов
CN111951611A (zh) 基于多特征融合的ads-b微弱信号检测装置及方法
CN113343802B (zh) 一种基于多小波的射频指纹图域识别方法
RU2533651C2 (ru) Способ распознавания радиосигналов
Huang et al. Novel modulation recognizer for frequency-hopping signals based on persistence diagram
CN115062711A (zh) 基于多源域适应字典学习和稀疏表示的脑电情感识别方法
Xu et al. New Robust LPC-Based Method for Time-resolved Morphology of High-noise Multiple Frequency Signals
RU2652791C1 (ru) Способ распознавания зондирующих сигналов малозаметных радиолокационных станций
Huang et al. Spike sorting based on low-rank and sparse representation
Wang et al. Multiple transformation analysis for interference separation in TDCS
Li et al. Underdetermined blind separation using modified subspace-based algorithm in the time-frequency domain
Green et al. Pulsed Signal Detection Utilizing Wavelet Analysis with a Deep Learning Approach

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131104