RU2466204C1 - Композиционный материал для электротехнических изделий - Google Patents

Композиционный материал для электротехнических изделий Download PDF

Info

Publication number
RU2466204C1
RU2466204C1 RU2011122212/02A RU2011122212A RU2466204C1 RU 2466204 C1 RU2466204 C1 RU 2466204C1 RU 2011122212/02 A RU2011122212/02 A RU 2011122212/02A RU 2011122212 A RU2011122212 A RU 2011122212A RU 2466204 C1 RU2466204 C1 RU 2466204C1
Authority
RU
Russia
Prior art keywords
alloy
composite material
copper
saturated
iron
Prior art date
Application number
RU2011122212/02A
Other languages
English (en)
Inventor
Виктор Александрович Гулевский (RU)
Виктор Александрович Гулевский
Юрий Александрович Мухин (RU)
Юрий Александрович Мухин
Валерий Иванович Антипов (RU)
Валерий Иванович Антипов
Алексей Георгиевич КОЛМАКОВ (RU)
Алексей Георгиевич Колмаков
Леонид Викторович Виноградов (RU)
Леонид Викторович Виноградов
Николай Алексеевич Кидалов (RU)
Николай Алексеевич Кидалов
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ)
Priority to RU2011122212/02A priority Critical patent/RU2466204C1/ru
Application granted granted Critical
Publication of RU2466204C1 publication Critical patent/RU2466204C1/ru

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Изобретение относится к области металлургии и может быть использовано для получения пропиткой композиционных материалов с армирующим углеграфитовым каркасом, которые работают в условиях трения в качестве электротехнических изделий, таких как токосъемники, вставки пантографов, электротехнические щетки и т.д. Композиционный материал состоит из углеграфитового каркаса, пропитанного матричным сплавом на основе меди, содержащим, мас.%: фосфор 4,0-8,0, цинк 0,5-12,5, железо 0,5-1,5, медь - остальное. Техническим результатом изобретения является повышение качества композиционного материала. 1 табл., 5 пр.

Description

Изобретение относится к области металлургии и получения армированных композиционных материалов и отливок и может быть использовано для получения пропиткой композиционных материалов, имеющих армирующий углеграфитовый каркас, которые работают в условиях трения в качестве электротехнических изделий, таких как токосъемники, вставки пантографов, электротехнические щетки и т.п. детали.
Известен полученный методом порошковой металлургии спеченный материал, применяющийся для контактных вставок троллейбуса и имеющий следующий химический состав (мас.%): Рb - 12-16; Sn - 3-8; графит - 1-4; Сu - остальное (Патент РФ №2174563, кл. С22С 009/08; С22С 001/05; Н01Н 001/02, опубл. 10.10.2001). Материал обладает хорошей износостойкостью, но имеет неудовлетворительные прочностные свойства, а также является экологически опасным.
Известен композиционный материал, применяющийся для получения долота вращательного бурения, пропитанный матричным сплавом следующего химического состава (мас.%): Р - 8,4; Сu - остальное (Патент США №4669522, кл. B22F3/26; B22F7/06; С22С 1/04, опубл. 02.06.1998), Материал обладает высокой износостойкостью, но имеет невысокие электротехнические свойства.
Наиболее близким к предлагаемому изобретению является композиционный материал, пропитанный матричным сплавом на основе меди следующего химического состава (мас.%): Р - 6,0-10,0; Сu - остальное, в частности, описан эвтектический сплав Р - 8,4; Сu - 91,6 мас.% (Патент ФРГ №3240709, кл. С04 В 41/04, опубл. 10.05.1984). Матричный сплав указанного состава обладает более высокой прочностью и проникающей способностью, чем сплавы, рассмотренные выше. Однако для получения КМ более высокого качества необходимо повышение прочностных, литейных и электротехнических свойств матричного сплава, например жидкотекучести, усадки, проникающей способности, удельной электрической проводимости.
Техническим результатом данного изобретения является повышение качества композиционного материала, пропитанного данным матричным сплавом.
Технический результат достигается тем, что композиционный материал для электротехнических изделий, состоящий из углеграфитового каркаса, пропитанного сплавом на основе меди, содержащим фосфор, пропитан матричным сплавом на основе меди, дополнительно содержащим цинк в качестве поверхностно-активного вещества и железо в качестве инокулятора при следующем соотношении компонентов в матричном сплаве, мас.%:
Фосфор 4,0-8,0
Цинк 0,5-12,5
Железо 0,5-1,5
Медь Остальное
Введение в состав сплава цинка и железа в указанном диапазоне концентраций приводит к повышению прочностных свойств и электрической проводимости КМ, пропитанного данным матричным сплавом, вследствие измельчения структуры сплава и выделения токопроводящих нитей соответственно. В связи с тем что температура плавления железа (1539°С) значительно выше температуры плавления медно-фосфористой основы сплава (714-800°С) и температуры ведения плавки, частицы железа за общее время пропитки растворяются медленнее в основе расплава, образуя при этом мелкодисперсные частицы в матричном сплаве, которые являются дополнительными центрами кристаллизации и в свою очередь служат инокуляторами при затвердевании сплава. При этом цинк (температура плавления - 419,6°С) успевает раствориться за время пропитки и, являясь поверхностно-активным веществом, способствует выделению токопроводящих нитей в расплаве меди и фосфора, за счет одновременного воздействия температуры и давления, в устройстве для пропитки углеграфитового каркаса.
Введение в состав сплава цинка менее 0,5 мас.% нецелесообразно ввиду отсутствия образования токопроводящих нитей, и поэтому, соответственно, нет увеличения удельной электрической проводимости сплава и КМ, пропитанного данным сплавом.
Введение в состав сплава цинка более 12,5 мас.% нерационально, т.к. приводит к перерасходу добавки, отсутствию дальнейшего значительного увеличения удельной электрической проводимости сплава и КМ, пропитанного данным сплавом.
Введение в состав сплава железа менее 0,5 мас.% нецелесообразно ввиду отсутствия измельчения структуры сплава и его инокулирующей способности, и поэтому, соответственно, нет увеличения прочностных свойств сплава и КМ, пропитанного данным сплавом.
Введение в состав сплава железа более 1,5 мас.% приводит к отсутствию дальнейшего увеличения эффекта инокулирования и повышения прочностных свойств сплава и КМ, пропитанного данным сплавом.
Предлагаемый сплав обеспечивает более высокие прочностные и электротехнические свойства матричного сплава. Кроме того, углеграфитовый каркас, пропитанный данным матричным сплавом, имеет более высокую плотность и прочностные характеристики.
Примеры конкретного изготовления.
ПРИМЕР 1
Сплав с содержанием ингредиентов: (мас.%: Р - 3,5; Zn - 0,4; Fe - 0,4; Cu - остальное).
Приготовление сплава производится следующим образом: в расплав медно-фосфористой лигатуры марки МФ9 ГОСТ 4515-93 (с содержанием меди 90,5-91,5 мас.%, фосфора - 8,5-9,5 мас.%) в количестве 97,0 мас.% и латуни марки Л63 ГОСТ 15527-2004 (с содержанием меди 62,0-65,0 мас.%, цинка - 34,5-37,5 мас.%, железа - 0,2 мас.%) в количестве 2,0 мас.% при температуре 950°С добавляют порошок железа марки ПЖВ2.160.24 (с содержанием железа 99,5 мас.%) в количестве 1,0 мас.%. Плавление осуществляется в индукционной печи (вакуумной литьевой машине Indutherm VC-400). Конструкция печи позволяет осуществлять непрерывное перемешивание ингредиентов сплава в вакууме и разливку под избыточным давлением аргона.
Изготовление КМ производится пропиткой каркаса из углеграфита марки АГ-1500 матричным сплавом под давлением 12 МПа при температуре 950°С и выдержке под давлением 20 мин.
В качестве технологических характеристик сплава исследовались его поверхностное натяжение по отношению к углеграфитовому каркасу в воздушной среде, жидкотекучесть, твердость и удельная электропроводимость.
В качестве технологических характеристик КМ определялись плотность и прочность на сжатие.
Для определения поверхностного натяжения сплавов изготавливались углеграфитовые подложки, на которые помещались навески сплава. Подложки с навесками в свою очередь помещались в алундовую трубку для нагрева в трубчатой печи. Затем по контуру капли рассчитывали поверхностное натяжение методом Дарси. Измерение поверхностного натяжения производили при температуре 950°С.
Жидкотекучесть сплава по отношению к углеграфитовому каркасу определялась по глубине затекания сплава в отверстия диаметром 1,0 мм, выполненные в дне углеграфитового стакана. Для этого в графитовый стакан с конусным основанием вставляли углеграфитовый стакан меньшего диаметра, внутренние размеры: высота 65 мм, диаметр 22 мм с выполненными в нем 4 отверстиями. Таким образом, капли расплава, протекшего через отверстия, собирались на дне внешнего графитового стакана. Капли взвешивали и рассчитывали объем металла, протекший через отверстия. Затем рассчитывали глубину затекания сплава в отверстия. Для уточнения результатов на проникающую способность сплавы исследовали по оригинальной методике, суть которой приводится ниже.
В дне каждого стакана выполнялись четыре отверстия диаметром 1,0 мм. Проникающая способность определялась как среднее значение глубины затекания из трех опытов. Испытания проводились в атмосфере аргона.
Время изотермической выдержки сплава при температуре 950°С составляло 20 мин, постоянство металлостатического давления на дно стакана обеспечивалось заливкой сплава в стаканчик одного уровня.
Твердость матричного сплава определялась на цилиндрических образцах диаметром 20±0,2 мм и высотой 20 мм на прессе Бринелля.
Удельная электрическая проводимость матричного сплава определялась на цилиндрических образцах диаметром 20±0,2 мм и высотой 5 мм вихретоковым методом на приборе «Вихрь-АМ» по ГОСТ 27333-87 после предварительной подготовки образцов по ГОСТ 193-79.
Плотность КМ определялась как процент заполнения открытых пор. При этом объем открытых пор определялся на образцах, предварительно пропитанных водой в вакууме, с последующим определением веса и объема заполнившей образец воды. Сходимость результатов находится в пределах погрешности 1%, с определением открытой пористости на ртутном пористомере.
Прочность КМ на сжатие определялись на цилиндрических образцах диаметром 20±0,2 мм и высотой 20 мм при настройке разрывной машины на максимальную нагрузку 10000 Н.
Матричный сплав и КМ на его основе в условиях испытаний показали: поверхностное натяжение - 1,64 Н/м, жидкотекучесть - 0 мм, температура пропитки - 950°С, твердость по Бринеллю - 105, удельная электрическая проводимость - 9,3 МСм/м, плотность - 44,3%, прочность на сжатие - 222 МПа.
ПРИМЕР 2
Сплав с содержанием ингредиентов: (мас.%: Р - 4,0; Zn - 0,5; Fe - 0,5; Cu - остальное).
Приготовление сплава и условия его испытаний аналогичны примеру 1.
Поверхностное натяжение - 1,60 Н/м, жидкотекучесть - 0,1 мм, температура пропитки - 950°С, твердость по Бринеллю - 114, удельная электрическая проводимость - 9,5 МСм/м, плотность - 49,2%, прочность на сжатие - 227 МПа.
ПРИМЕР 3
Сплав с содержанием ингредиентов: (мас.%: Р - 6,0; Zn - 6,5; Fe - 1,0; Cu - остальное).
Приготовление сплава и условия его испытаний аналогичны примеру 1.
Поверхностное натяжение - 1,21 Н/м, жидкотекучесть - 7,5 мм, температура пропитки - 950°С, твердость по Бринеллю - 135, удельная электрическая проводимость - 12,0 МСм/м, плотность - 58,5%, прочность на сжатие - 236 МПа.
ПРИМЕР 4
Сплав с содержанием ингредиентов: (мас.%: Р - 8,0; Zn - 12,5; Fe - 1,5; Cu - остальное).
Приготовление сплава и условия его испытаний аналогичны примеру 1.
Поверхностное натяжение - 1,10 Н/м, жидкотекучесть - 12 мм, температура пропитки - 950°С, твердость по Бринеллю - 199, удельная электрическая проводимость - 11,5 МСм/м, плотность - 66,0%, прочность на сжатие - 246 МПа.
ПРИМЕР 5
Сплав с содержанием ингредиентов: (мас.%: Р - 8,5; Zn - 13,0; Fe - 2,0; Cu - остальное).
Приготовление сплава и условия его испытаний аналогичны примеру 1.
Поверхностное натяжение - 1,06 Н/м, жидкотекучесть - 13 мм, температура пропитки - 950°С, твердость по Бринеллю - 205, удельная электрическая проводимость - 11,0 МСм/м, плотность - 67,5%, прочность на сжатие - 255 МПа.
Примеры варьирования составом сплава, обосновывающие влияние содержания цинка и железа в указанном соотношении на технологические характеристики сплава и КМ, приведены в таблице 1.
Figure 00000001
В сравнении со сплавом-прототипом (патент ФРГ №3240709) предлагаемый сплав обеспечивает повышение качества композиционного материала, имеющего большую плотность и прочность, в результате пропитки данным матричным сплавом.

Claims (1)

  1. Композиционный материал для электротехнических изделий, состоящий из углеграфитового каркаса, пропитанный матричным сплавом на основе меди, содержащим фосфор, отличающийся тем, что он пропитан матричным сплавом на основе меди, дополнительно содержащим цинк в качестве поверхностно-активного вещества и железо в качестве инокулятора при следующем соотношении компонентов в матричном сплаве, мас.%:
    Фосфор 4,0-8,0 Цинк 0,5-12,5 Железо 0,5-1,5 Медь Остальное
RU2011122212/02A 2011-05-31 2011-05-31 Композиционный материал для электротехнических изделий RU2466204C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011122212/02A RU2466204C1 (ru) 2011-05-31 2011-05-31 Композиционный материал для электротехнических изделий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011122212/02A RU2466204C1 (ru) 2011-05-31 2011-05-31 Композиционный материал для электротехнических изделий

Publications (1)

Publication Number Publication Date
RU2466204C1 true RU2466204C1 (ru) 2012-11-10

Family

ID=47322285

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011122212/02A RU2466204C1 (ru) 2011-05-31 2011-05-31 Композиционный материал для электротехнических изделий

Country Status (1)

Country Link
RU (1) RU2466204C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2571248C1 (ru) * 2014-07-22 2015-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Матричный сплав на основе меди для получения композиционных материалов пропиткой углеграфитового каркаса
RU2571296C1 (ru) * 2014-07-22 2015-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Композиционный материал, содержащий углеграфитовый каркас, пропитанный матричным сплавом на основе меди

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3240709C2 (ru) * 1982-11-04 1990-04-26 Ringsdorff-Werke Gmbh, 5300 Bonn, De
RU2174563C2 (ru) * 1999-11-15 2001-10-10 Закрытое акционерное общество "Техпромстрой" Материал скользящего контакта для электрических машин на основе меди
RU2246379C1 (ru) * 2004-02-25 2005-02-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения композиционного материала
EP1862298A1 (en) * 2005-03-23 2007-12-05 Totankako Co., Ltd. Metal substrate/metal impregnated carbon composite material structure and method for manufacturing said structure
US7799726B2 (en) * 2001-11-23 2010-09-21 Sicat Composites based on carbon nanotubes or nanofibers deposited on an activated support for use in catalysis
EP2289861A1 (en) * 2008-04-14 2011-03-02 Toyo Tanso Co., Ltd. Carbon fiber carbon composite molded body, carbon fiber-reinforced carbon composite material and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3240709C2 (ru) * 1982-11-04 1990-04-26 Ringsdorff-Werke Gmbh, 5300 Bonn, De
RU2174563C2 (ru) * 1999-11-15 2001-10-10 Закрытое акционерное общество "Техпромстрой" Материал скользящего контакта для электрических машин на основе меди
US7799726B2 (en) * 2001-11-23 2010-09-21 Sicat Composites based on carbon nanotubes or nanofibers deposited on an activated support for use in catalysis
RU2246379C1 (ru) * 2004-02-25 2005-02-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения композиционного материала
EP1862298A1 (en) * 2005-03-23 2007-12-05 Totankako Co., Ltd. Metal substrate/metal impregnated carbon composite material structure and method for manufacturing said structure
EP2289861A1 (en) * 2008-04-14 2011-03-02 Toyo Tanso Co., Ltd. Carbon fiber carbon composite molded body, carbon fiber-reinforced carbon composite material and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2571248C1 (ru) * 2014-07-22 2015-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Матричный сплав на основе меди для получения композиционных материалов пропиткой углеграфитового каркаса
RU2571296C1 (ru) * 2014-07-22 2015-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Композиционный материал, содержащий углеграфитовый каркас, пропитанный матричным сплавом на основе меди

Similar Documents

Publication Publication Date Title
RU2466204C1 (ru) Композиционный материал для электротехнических изделий
RU2571248C1 (ru) Матричный сплав на основе меди для получения композиционных материалов пропиткой углеграфитового каркаса
CN109536768B (zh) 一种三维网络碳化硅增强金属基复合材料及制备方法
RU2430983C1 (ru) Композиционный материал, содержащий углеграфитовый каркас, пропитанный матричным сплавом на основе меди
RU2571296C1 (ru) Композиционный материал, содержащий углеграфитовый каркас, пропитанный матричным сплавом на основе меди
He et al. Effect of additive BaO on corrosion resistance of xCu/(10NiO-NiFe2O4) cermet inert anodes for aluminum electrolysis
RU2447171C1 (ru) Матричный сплав меди для получения композиционных материалов пропиткой
JP2009191291A (ja) 自己潤滑性皮膜を有するセラミックス構造体及びその製造方法
Gulevskii et al. Designing of copper-based alloys for the impregnation of carbon-graphite materials
WO2008086088A2 (en) Enhancement of material properties by infiltration of powder metal part: formulation and method of application thereof
Tsakiris et al. W-Cu composite materials for electrical contacts used in vacuum contactors
Kargul et al. The effect of reinforcement particle size on the properties of Cu-Al2O3 composites
RU2653958C1 (ru) Сплав на основе алюминия для получения композиционных материалов
JP5828680B2 (ja) 熱伝導性に優れたバルブシート
CN109234559B (zh) 一种多孔自润滑Fe2B-Fe金属陶瓷复合材料及其制备方法
RU2555737C1 (ru) Литейный сплав на основе алюминия для получения пропиткой композиционных материалов с углеграфитовым каркасом
Merzkirch et al. Manufacturing and characterization of interpenetrating SiC lightweight composites
RU2554263C1 (ru) Матричный сплав на основе свинца для получения композиционных материалов пропиткой
RU2378404C2 (ru) Способ получения антифрикционных порошковых материалов на основе меди
JP2016160523A (ja) 銅−モリブデン複合材料及びその製造方法
JP2014216074A (ja) 真空バルブ用接点材料及びその製造方法
JP2019123898A (ja) 銅合金焼結材料の製造方法
RU2396144C2 (ru) Состав антифрикционных порошковых материалов на основе меди
JP7286037B1 (ja) 鉄基焼結合金バルブシート
CN114540697B (zh) 一种超细Fe-Cu-SiC-C-Al2O3复合材料及其制备方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160601