RU2461138C2 - Защита для передач установки непосредственной линии связи (dls) в системах беспроводной связи - Google Patents
Защита для передач установки непосредственной линии связи (dls) в системах беспроводной связи Download PDFInfo
- Publication number
- RU2461138C2 RU2461138C2 RU2010126108/07A RU2010126108A RU2461138C2 RU 2461138 C2 RU2461138 C2 RU 2461138C2 RU 2010126108/07 A RU2010126108/07 A RU 2010126108/07A RU 2010126108 A RU2010126108 A RU 2010126108A RU 2461138 C2 RU2461138 C2 RU 2461138C2
- Authority
- RU
- Russia
- Prior art keywords
- station
- rts
- cts
- dls
- frame
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 81
- 238000004891 communication Methods 0.000 title description 13
- 238000000034 method Methods 0.000 claims abstract description 45
- 230000004044 response Effects 0.000 claims abstract description 20
- 238000013475 authorization Methods 0.000 claims 8
- 238000005516 engineering process Methods 0.000 abstract description 12
- 239000000126 substance Substances 0.000 abstract 1
- 101100161473 Arabidopsis thaliana ABCB25 gene Proteins 0.000 description 30
- 101100096893 Mus musculus Sult2a1 gene Proteins 0.000 description 30
- 101150081243 STA1 gene Proteins 0.000 description 30
- OVGWMUWIRHGGJP-WVDJAODQSA-N (z)-7-[(1s,3r,4r,5s)-3-[(e,3r)-3-hydroxyoct-1-enyl]-6-thiabicyclo[3.1.1]heptan-4-yl]hept-5-enoic acid Chemical compound OC(=O)CCC\C=C/C[C@@H]1[C@@H](/C=C/[C@H](O)CCCCC)C[C@@H]2S[C@H]1C2 OVGWMUWIRHGGJP-WVDJAODQSA-N 0.000 description 25
- 101000988961 Escherichia coli Heat-stable enterotoxin A2 Proteins 0.000 description 25
- 238000012545 processing Methods 0.000 description 14
- 238000009434 installation Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000004590 computer program Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 238000012897 Levenberg–Marquardt algorithm Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/14—Direct-mode setup
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/16—Interfaces between hierarchically similar devices
- H04W92/18—Interfaces between hierarchically similar devices between terminal devices
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Small-Scale Networks (AREA)
- Communication Control (AREA)
Abstract
Изобретение относится к системам связи. Технический результат заключается в создании соединений таким образом, чтобы избегать столкновений с передачами со скрытых станций. Способ для создания соединения установки непосредственной линии связи (DLS) между станциями в беспроводной локальной сети содержит этапы, на которых: отправляют кадр готовности к передаче (RTS) посредством первой станции, направленный точке доступа (АР) в базовом наборе служб (BSS); принимают, посредством первой станции, кадр разрешения на передачу (CTS), отправляемый из точки АР, отправленный в ответ на RTS, при этом, по меньшей мере, один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции на вторую станцию в BSS по соединению DLS; и обмениваются, посредством первой станции, кадрами данных напрямую со второй станцией по соединению DLS, причем адрес источника RTS устанавливается в адрес управления доступом к среде передачи (MAC) второй станции. 4 н. и 8 з.п. ф-лы, 15 ил.
Description
ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННУЮ ЗАЯВКУ
Эта заявка испрашивает приоритет предварительной заявки на выдачу патента США под порядковым № 60/990904, озаглавленной «Protection for direct link setup (DLS) transmissions in wireless communication systems» и поданной 28 ноября 2007 г, которая полностью включена в материалы настоящей заявки посредством ссылки для всех целей.
ОБЛАСТЬ ТЕХНИКИ
Варианты осуществления настоящего раскрытия в целом относятся к беспроводной связи, а более точно к содействию свободной от состязаний связи между станциями.
УРОВЕНЬ ТЕХНИКИ
Беспроводная локальная сеть (WLAN) типично составлена из группы станций (STA), которые пересылают информацию между ними самими и сетью через точку доступа (AP). Станции и точка доступа, которая типично присоединена к проводной сети, часто указываются ссылкой как базовый набор служб (BSS).
В WLAN AP типично действует в качестве центра распределения. В традиционной WLAN STA обычно не имеют возможности осуществлять связь друг с другом напрямую и должны полагаться на AP для доставки кадров между STA. Однако STA с техническими средствами QoS (QSTA) могут передавать кадры другим напрямую, настраивая передачу данных с использованием того, что указывается ссылкой как установка непосредственной линии связи (DLS).
Линия связи DLS создается, когда одна QSTA (например, STA1) отправляет кадр запроса DLS на AP с техническими средствами QoS (QAP). Запрос включает в себя возможности STA1 и адрес второй QSTA (например, STA2), с которой запрошена настройка DLS. Если DLS сделана возможной в BSS, QAP пересылает эту информацию на STA2 запланированного получателя. Если STA2 допускает это соединение DLS, она отправляет кадр ответа DLS на QAP, который она будет пересылать на STA1. После этой начальной настройки STA1 и STA2 будут способны обмениваться кадрами напрямую.
Если третья STA (STA4) существует в BSS, скрытая от двух STA, которые создали линию связи DLS, то скрытая STA, которая не осведомлена о линии связи DLS, может начинать свою собственную передачу, вызывая столкновение. Соответственно необходим способ для защиты кадров DLS от столкновения с кадрами, передаваемыми со скрытых станций.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Некоторые варианты осуществления настоящего раскрытия предлагают способ для создания соединения настройки непосредственной линии связи (DLS) между станциями в беспроводной локальной сети. Способ в основном включает в себя отправку кадра готовности к передаче (RTS) первой станцией, направленного точке доступа в пределах базового набора служб (BSS), прием кадра готовности к приему (CTS), отправляемого с AP, отправленного в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS содержит поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции на вторую станцию в BSS по соединению DLS, и обмен, посредством первой станции, кадрами данных напрямую со второй станцией по соединению DLS.
Некоторые варианты осуществления настоящего раскрытия предлагают способ для создания соединения установки непосредственной линии связи (DLS) между станциями в беспроводной локальной сети. Способ, большей частью, включает в себя отправку кадра готовности к приему (CTS) на себя (CTS-на-себя) первой станцией в пределах базового набора служб (BSS), CTS-на-себя имеет адрес получателя, установленный равным адресу управления доступом к среде передачи (MAC) первой станции, отправку кадра запроса на передачу (RTS) на вторую станцию в пределах BSS и обмен, посредством первой станции, кадрами данных напрямую со второй станцией по соединению DLS.
Некоторые варианты осуществления настоящего раскрытия предлагают способ для создания соединения установки непосредственной линии связи (DLS) между станциями в беспроводной локальной сети. Способ, большей частью, включает в себя прием кадра готовности к передаче (RTS) с первой станции в пределах базового набора служб (BSS), определение, соответствует ли адрес получателя кадра RTS хранимому адресу обладателя возможности передачи (TXOP), и, если так, отправку кадра готовности к приему (CTS) на первую станцию и прием кадров данных напрямую с первой станции по соединению DLS.
Некоторые варианты осуществления настоящего раскрытия предлагают способ для установления соединения установки непосредственной линии связи (DLS) между станциями в беспроводной локальной сети. Способ в основном включает в себя установку, посредством первой станции, спецификации передачи восходящей линии связи (TSPEC) с точкой доступа (AP) HCCA, прием, посредством первой станции, опроса для данных с AP HCCA и ответ, посредством первой станции, на принятый опрос подтверждением (ACK).
Некоторые варианты осуществления предлагают устройство для установления соединения установки непосредственной линии связи (DLS) между станциями в беспроводной локальной сети. Устройство в основном включает в себя логику для отправки кадра готовности к передаче (RTS) первой станцией, направленного точке доступа в пределах базового набора служб (BSS), логику для приема кадра готовности к приему (CTS), отправляемого с AP, отправленного в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS содержит поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции на вторую станцию в BSS по соединению DLS, и логику для обмена, посредством первой станции, кадрами данных напрямую со второй станцией по соединению DLS.
Некоторые варианты осуществления предлагают устройство для защиты передач установки линии данных в системе беспроводной связи. Устройство в основном включает в себя логику для отправки кадра готовности к приему (CTS) на себя (CTS-на-себя) первой станцией в пределах базового набора служб (BSS), причем CTS-на-себя имеет адрес получателя, установленный в адрес управления доступом к среде передачи (MAC) первой станции, логику для отправки кадра запроса на передачу (RTS) на вторую станцию в пределах BSS и логику для обмена, посредством первой станции, кадрами данных напрямую со второй станцией по соединению DLS.
Некоторые варианты осуществления предлагают устройство для установления соединения установки непосредственной линии связи (DLS) между станциями в беспроводной локальной сети. Устройство в основном включает в себя логику для приема кадра готовности к передаче с первой станции в пределах базового набора служб (BSS) и логику для определения, соответствует ли адрес получателя кадра RTS хранимому адресу обладателя возможности передачи (TXOP), а если так, отправки кадра готовности к приему (CTS) на первую станцию и приема кадров данных напрямую с первой станции по соединению DLS.
Некоторые варианты осуществления предлагают устройство для установления соединения установки линии данных (DLS) в системе беспроводной связи. Устройство в основном включает в себя логику для установки, посредством первой станции, спецификации передачи восходящей линии связи (TSPEC) с точкой доступа (AP) HCCA, логику для приема, посредством первой станции, опроса для данных с AP HCCA и логику для ответа, посредством первой станции, на принятый опрос подтверждением (ACK).
Некоторые варианты осуществления предлагают устройство для установления соединения установки непосредственной линии связи (DLS) между станциями в беспроводной локальной сети. Устройство в основном включает в себя средство для отправки кадра готовности к передаче (RTS) первой станцией, направленного точке доступа в пределах базового набора служб (BSS), средство для приема кадра готовности к приему (CTS), отправляемого с AP, отправленного в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS содержит поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции на вторую станцию в BSS по соединению DLS, и средство для обмена, посредством первой станции, кадрами данных напрямую со второй станцией по соединению DLS.
Некоторые варианты осуществления предлагают устройство для защиты передач установки линии данных в системе беспроводной связи. Устройство в основном включает в себя средство для отправки кадра готовности к приему (CTS) на себя (CTS-на-себя) первой станцией в пределах базового набора служб (BSS), причем CTS-на-себя имеет адрес получателя, установленный в адрес управления доступом к среде передачи (MAC) первой станции, средство для отправки кадра запроса на передачу (RTS) на вторую станцию в пределах BSS и средство для обмена, посредством первой станции, кадрами данных напрямую со второй станцией по соединению DLS.
Некоторые варианты осуществления предлагают устройство для установления соединения установки непосредственной линии связи (DLS) между станциями в беспроводной локальной сети. Устройство в основном включает в себя средство для приема кадра готовности к передаче с первой станции в пределах базового набора служб (BSS) и средство для определения, соответствует ли адрес получателя кадра RTS хранимому адресу обладателя возможности передачи (TXOP), а если так, отправки кадра готовности к приему (CTS) на первую станцию и приема кадров данных напрямую с первой станции по соединению DLS.
Некоторые варианты осуществления предлагают устройство для установления соединения установки линии данных (DLS) в системе беспроводной связи. Устройство в основном включает в себя средство для установки, посредством первой станции, спецификации передачи восходящей линии связи (TSPEC) с точкой доступа (AP) HCCA, средство для приема, посредством первой станции, опроса для данных с AP HCCA и средство для ответа, посредством первой станции, на принятый опрос подтверждением (ACK).
Некоторые варианты осуществления предлагают компьютерный программный продукт для установления соединения установки непосредственной линии связи (DLS) между станциями в беспроводной локальной сети, содержащий машиночитаемый носитель, содержащий команды, хранимые на нем, команды являются исполняемыми одним или более процессорами. Команды в основном включают в себя команды для отправки кадра готовности к передаче (RTS) первой станцией, направленного на точку доступа в пределах базового набора служб (BSS), команды для приема кадра готовности к приему (CTS), отправляемого с AP, отправленного в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS содержит поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции на вторую станцию в BSS по соединению DLS, и команды для обмена, посредством первой станции, кадрами данных напрямую со второй станцией по соединению DLS.
Некоторые варианты осуществления предлагают компьютерный программный продукт для защиты передач установки линии данных в системе беспроводной связи, содержащий машиночитаемый носитель, содержащий команды, хранимые на нем, команды являются исполняемыми одним или более процессорами. Устройство в основном включает в себя команды для отправки кадра готовности к приему (CTS) на себя (CTS-на-себя) первой станцией в пределах базового набора служб (BSS), причем CTS-на-себя имеет адрес получателя, установленный в адрес управления доступом к среде передачи (MAC) первой станции, команды для отправки кадра запроса на передачу (RTS) на вторую станцию в пределах BSS и команды для обмена, посредством первой станции, кадрами данных напрямую со второй станцией по соединению DLS.
Некоторые варианты осуществления предлагают компьютерный программный продукт для установления соединения установки непосредственной линии связи (DLS) между станциями в беспроводной локальной сети, содержащий машиночитаемый носитель, содержащий команды, хранимые на нем, команды являются исполняемыми одним или более процессорами. Устройство в основном включает в себя команды для приема кадра готовности к передаче с первой станции в пределах базового набора служб (BSS) и команды для определения, соответствует ли адрес получателя кадра RTS хранимому адресу обладателя возможности передачи (TXOP), а если так, отправки кадра готовности к приему (CTS) на первую станцию и приема кадров данных напрямую с первой станции по соединению DLS.
Некоторые варианты осуществления предлагают компьютерный программный продукт для установления соединения установки линии данных (DLS) в системе беспроводной связи, содержащий машиночитаемый носитель, содержащий команды, хранимые на нем, команды являются исполняемыми одним или более процессорами. Устройство в основном включает в себя команды для установки, посредством первой станции, спецификации передачи восходящей линии связи (TSPEC) с точкой доступа (AP) HCCA, команды для приема, посредством первой станции, опроса для данных с AP HCCA и команды для ответа, посредством первой станции, на принятый опрос подтверждением (ACK).
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Так, чтобы понять детали вышеперечисленных признаков настоящего раскрытия, более конкретное описание, кратко обобщенное выше, может быть использовано со ссылкой на варианты осуществления, некоторые из которых проиллюстрированы на прилагаемых чертежах. Должно быть отмечено, однако, что прилагаемые чертежи иллюстрируют только некоторые типичные варианты осуществления этого раскрытия, а потому не должны рассматриваться ограничивающими его объем ввиду того, что описание может допускать другие эквивалентно эффективные варианты осуществления.
Фиг.1 иллюстрирует примерную беспроводную локальную сеть (WLAN) в соответствии с некоторыми вариантами осуществления настоящего раскрытия.
Фиг.2 иллюстрирует структурную схему точки доступа (AP) и двух станций в соответствии с некоторыми вариантами осуществления настоящего раскрытия.
Фиг.3 иллюстрирует различные компоненты, которые могут использоваться в беспроводном устройстве, в соответствии с некоторыми вариантами осуществления настоящего раскрытия.
Фиг.4 - блок-схема примерных операций для установления установки непосредственной линии связи (DLS) между станциями в соответствии с некоторыми вариантами осуществления настоящего раскрытия.
Фиг.4A иллюстрирует примерные компоненты, способные к выполнению операций, показанных на фиг.4.
Фиг.5 иллюстрирует примерный обмен сообщениями, соответствующий операциям, показанным на фиг.4.
Фиг.6 - блок-схема примерных операций для установления установки непосредственной линии связи (DLS) между станциями в соответствии с некоторыми вариантами осуществления настоящего раскрытия.
Фиг.6A иллюстрирует примерные компоненты, способные к выполнению операций, показанных на фиг.6.
Фиг.7 иллюстрирует примерный обмен сообщениями, соответствующий операциям, показанным на фиг.6.
Фиг.8 - блок-схема примерных операций для установления установки непосредственной линии связи (DLS) между станциями в соответствии с некоторыми вариантами осуществления настоящего раскрытия.
Фиг.8A иллюстрирует примерные компоненты, способные к выполнению операций, показанных на фиг.8.
Фиг.9 иллюстрирует примерный обмен сообщениями, соответствующий операциям, показанным на фиг.8.
Фиг.10 - блок-схема примерных операций для установления установки непосредственной линии связи (DLS) между станциями в соответствии с некоторыми вариантами осуществления настоящего раскрытия.
Фиг.10A иллюстрирует примерные компоненты, способные к выполнению операций, показанных на фиг.10.
Фиг.11 иллюстрирует примерный обмен сообщениями, соответствующий операциям, показанным на фиг.10.
ПОДРОБНОЕ ОПИСАНИЕ
Некоторые варианты осуществления настоящего раскрытия предлагают технологии и устройство для установления соединений установки непосредственной линии связи (DLS) между станциями в беспроводной локальной сети (WLAN). Соединения DLS могут устанавливаться некоторым образом, который помогает избегать столкновений (коллизий) со скрытыми станциями.
Слово «примерный» используется в материалах настоящей заявки, чтобы означать «служащий в качестве примера, отдельного случая или иллюстрации». Любой вариант осуществления, описанный в материалах настоящей заявки как «примерный», не обязательно должен истолковываться как предпочтительный или преимущественный над другими вариантами осуществления. К тому же, в качестве используемого в материалах настоящей заявки термин «унаследованные станции» указывает большей частью на узлы беспроводной сети, которые поддерживают 802.11n или более ранние варианты стандарта IEEE 802.11.
Способы, описанные в материалах настоящей заявки, могут использоваться в комбинации с различными беспроводными технологиями, такими как множественный доступ с кодовым разделением каналов (CDMA), мультиплексирование с ортогональным частотным разделением каналов (OFDM), множественный доступ с временным разделением каналов (TDMA) и т.д. Многочисленные пользовательские терминалы могут одновременно передавать/принимать данные через разные (1) каналы ортогонального кодирования для CDMA, (2) временные интервалы для TDMA или (3) поддиапазоны для OFDM. Система CDMA может реализовывать IS-2000, IS-95, IS-856, широкополосный CDMA (W-CDMA) или некоторые другие стандарты. Система OFDM может реализовывать IEEE 802.11 или некоторые другие стандарты. Система TDMA может реализовывать GSM (глобальную систему мобильной связи) или некоторые другие стандарты. Эти различные стандарты известны в данной области техники.
Примерная система WLAN
Фиг.1 показывает систему 100 WLAN множественного доступа с точками доступа и пользовательскими терминалами или станциями (STA). Для простоты только одна точка 110 доступа показана на фиг.1. Точка доступа (AP), как правило, является стационарной станцией, которая осуществляет связь с пользовательскими терминалами, и также может указываться как базовая станция или некоторой другой терминологией. Пользовательский терминал может быть стационарным или мобильным и также может указываться ссылкой как мобильная станция, станция (STA), клиент, беспроводное устройство или некоторой другой терминологией. Пользовательский терминал, или STA, может быть беспроводным устройством, таким как сотовый телефон, персональный цифровой секретарь (PDA), карманное устройство, беспроводный модем, дорожный компьютер, персональный компьютер или любой другой тип устройства, способного к беспроводной связи.
Точка 110 доступа может осуществлять связь с одним или более пользовательскими терминалами 120 в любой заданный момент по нисходящей линии связи и восходящей линии связи. Нисходящая линия связи (то есть прямая линия связи) является линией связи от точки доступа к пользовательским терминалам, а восходящая линия связи (то есть обратная линия связи) является линией связи от пользовательских терминалов к точке доступа. Пользовательский терминал также может осуществлять одноранговую связь с другим пользовательским терминалом. Системный контроллер 130 присоединяется к и обеспечивает координирование и управление для точек доступа.
Что касается некоторых вариантов осуществления, один или более пользовательских терминалов 120 могут быть способны к осуществлению связи посредством множественного доступа с пространственным разделением каналов (SDMA). Для некоторых вариантов осуществления один или более пользовательских терминалов 120 могут не поддерживать SDMA. Таким образом, для тех вариантов осуществления, которые включают в себя комбинацию пользовательских терминалов 120, которые поддерживают SDMA, и те, которые не поддерживают, AP 110 может быть сконфигурирована для осуществления связи с пользовательскими терминалами как с SDMA, так и без SDMA.
Система 100 может использовать одну или более передающих и одну или более приемных антенн для передачи данных по нисходящей линии связи и восходящей линии связи. Точка 110 доступа может быть оборудована некоторым количеством Nap одной или более антенн и представляет множественный вход (MI) для передач нисходящей линии связи и множественный выход (MO) для передач восходящей линии связи. Набор Nu выбранных пользовательских терминалов 120 коллективно представляет множественных выход для передач нисходящей линии связи и множественный вход для передач восходящей линии связи. Что касается чистого SDMA, желательно иметь Nap≥Nu≥1, если потоки символов данных для Nu пользовательских терминалов не мультиплексируются по коду, частоте или времени каким-нибудь средством. Nu может быть большим, чем Nap, если потоки символов данных могут мультиплексироваться с использованием разных кодовых каналов с помощью CDMA, непересекающихся множеств поддиапазонов с помощью OFDM и так далее. Каждый выбранный пользовательский терминал передает специфичные для пользователя данные на и/или принимает специфичные для пользователя данные с точки доступа. Вообще, каждый выбранный пользовательский терминал может быть оборудован одной или многочисленными антеннами (то есть Nut≥1). Nu выбранных пользовательских терминалов могут иметь одинаковое или разное количество антенн.
Система 100 может быть системой дуплекса с временным разделением каналов (TDD) и системой дуплекса с частотным разделением каналов (FDD). Что касается системы TDD, нисходящая линия связи и восходящая линия связи совместно используют одну и ту же полосу частот. Что касается системы FDD, нисходящая линия связи и восходящая линия связи используют разные полосы частот. Система 100 также может использовать одиночную несущую или многочисленные несущие для передачи. Каждый пользовательский терминал может быть оборудован одиночной антенной (например для того, чтобы не допускать повышения затрат) или многочисленными антеннами (например в тех случаях, когда могут обеспечиваться дополнительные затраты).
Фиг.2 показывает примерную структурную схему точки 110 доступа и двух пользовательских терминалов 120m и 120x. Несмотря на то, что показана конфигурация MIMO, способы, описанные в материалах настоящей заявки, также применяются к устройствам, использующим одиночную приемопередающую пару антенн.
Иллюстративно точка 110 доступа оборудована Nap антеннами 224a-224ap. Пользовательский терминал 120m оборудован Nut,m антеннами 252ma-252mu, а пользовательский терминал 120x оборудован Nut,x антеннами 252xa-252xu. Точка 110 доступа является передающим объектом для нисходящей линии связи и принимающим объектом для восходящей линии связи. Каждый пользовательский терминал 120 является передающим объектом для восходящей линии связи и принимающим объектом для нисходящей линии связи. В качестве используемого в материалах настоящей заявки «передающий объект» является независимо эксплуатируемым аппаратом или устройством, способным к передаче данных через беспроводный канал, а «принимающий объект» является независимо эксплуатируемым аппаратом или устройством, способным к приему данных через беспроводный канал. В последующем описании нижний индекс «dn» обозначает нисходящую линию связи, нижний индекс «up» обозначает восходящую линию связи, Nup пользовательских терминалов выбраны для одновременной передачи по восходящей линии связи, Ndn пользовательских терминалов выбраны для одновременной передачи по нисходящей линии связи, Nup может быть или может не быть равным Ndn, и Nup и Ndn могут быть статическими значениями или могут изменяться для каждого интервала планирования. Управление положением диаграммы направленности или некоторый другой способ пространственной обработки может использоваться в точке доступа и пользовательском терминале.
В восходящей линии связи, в каждом пользовательском терминале 120, выбранном для передачи восходящей линии связи, процессор 288 данных TX принимает данные потока обмена из источника 286 данных и управляющие данные из контроллера 280. Процессор 288 данных TX обрабатывает (например, кодирует, перемежает и модулирует) данные {dup,m} потока обмена для пользовательского терминала на основании схем кодирования и модуляции, ассоциированных со скоростью, выбранной для пользовательского терминала, и выдает поток {sup,m} символов данных. Пространственный процессор 290 TX выполняет пространственную обработку над потоком {sup,m} символов данных и выдает Nut,m потоков символов передачи для Nut,m антенн. Каждый блок 254 передатчика (TMTR) принимает и обрабатывает (например, преобразует в аналоговую форму, усиливает, фильтрует и преобразует с повышением частоты) соответственный поток символов передачи, чтобы сформировать сигнал восходящей линии связи. Nut,m блоков 254 передатчика предоставляют Nut,m сигналов восходящей линии связи для передачи с Nut,m антенн 252 точке 110 доступа.
Некоторое количество Nup пользовательских терминалов могут планироваться для одновременной передачи по восходящей линии связи. Каждый из этих пользовательских терминалов выполняет пространственную обработку над своим потоком символов данных и передает свой набор потоков символов данных по восходящей линии связи на точку доступа.
В точке 110 доступа Nap антенн 224a-224ap принимают сигналы восходящей линии связи со всех Nup пользовательских терминалов, передающих по восходящей линии связи. Каждая антенна 224 выдает принятый сигнал в соответственный блок 222 приемника (RCVR). Каждый блок 222 приемника выполняет обработку, комплементарную выполняемой блоком 254 передатчика, и выдает принятый поток символов. Пространственный процессор 240 RX выполняет пространственную обработку приемника над Nap принятыми потоками символов из Nap блоков 222 приемника и выдает Nup восстановленных потоков символов данных восходящей линии связи. Пространственная обработка приемника выполняется в соответствии с обращением матрицы корреляции каналов (CCMI), минимальной среднеквадратической ошибки (MMSE), последовательным подавлением помех (SIC) или некоторым другим способом. Каждый восстановленный поток {sup,m} символов данных восходящей линии связи является оценкой потока {sup,m} символов данных, переданного соответственным пользовательским терминалом. Процессор 242 данных RX обрабатывает (например, демодулирует, обращенно перемежает и декодирует) каждый восстановленный поток {sup,m} символов данных восходящей линии связи в соответствии со скоростью, используемой для такого потока, чтобы получать декодированные данные. Декодированные данные для каждого пользовательского терминала могут выдаваться в приемник 244 данных для хранения и/или контроллер 230 для дальнейшей обработки.
В нисходящей линии связи в точке 110 доступа процессор 210 данных TX принимает данные потока обмена из источника 208 данных для Ndn пользовательских терминалов, планируемых для передачи нисходящей линии связи, управляющие данные из контроллера 230 и, возможно, другие данные из планировщика 234. Различные типы данных могут отправляться по разным транспортным каналам. Процессор 210 данных TX обрабатывает (например, кодирует, перемежает и модулирует) данные потока обмена для каждого пользовательского терминала на основании скорости, выбранной для такого пользовательского терминала. Процессор 210 данных TX выдает Ndn потоков символов данных нисходящей линии связи для Ndn пользовательских терминалов. Пространственный процессор 220 TX выполняет пространственную обработку над Ndn потоками символов данных нисходящей линии связи и выдает Nap потоков символов передачи для Nap антенн. Каждый блок 222 передатчика (TMTR) принимает и обрабатывает соответственный поток символов передачи для формирования сигнала нисходящей линии связи. Nap блоков 222 передатчика выдают Nap сигналов нисходящей линии связи для передачи с Nap антенн 224 на пользовательские терминалы.
В каждом пользовательском терминале 120 Nut,m антенн 252 принимают Nap сигналов нисходящей линии связи с точки 110 доступа. Каждый блок 254 приемника (RCVR) обрабатывает принятый сигнал с ассоциированной антенны 252 и выдает принятый поток символов. Пространственный процессор 260 RX выполняет пространственную обработку приемника над Nut,m принятых потоков символов из Nut,m блоков 254 приемника и выдает восстановленный поток {sdn,m} символов данных нисходящей линии связи для пользовательского терминала. Пространственная обработка приемника выполняется в соответствии с CCMI, MMSE или некоторым другим способом. Процессор 270 данных RX обрабатывает (например, демодулирует, обращенно перемежает и декодирует) восстановленный поток символов данных нисходящей линии связи, чтобы получать декодированные данные для пользовательского терминала.
В каждом пользовательском терминале 120 Nut,m антенн 252 принимают Nap сигналов нисходящей линии связи от точки 110 доступа. Каждый блок 254 приемника (RCVR) обрабатывает принятый сигнал с ассоциированной антенны 252 и выдает принятый поток символов. Пространственный процессор 260 RX выполняет пространственную обработку приемника над Nut,m принятых потоков символов из Nut,m блоков 254 приемника и выдает восстановленный поток {sdn,m} символов данных нисходящей линии связи для пользовательского терминала. Пространственная обработка приемника выполняется в соответствии с CCMI, MMSE или некоторым другим способом. Процессор 270 данных RX обрабатывает (например, демодулирует, обращенно перемежает и декодирует) восстановленный поток символов данных нисходящей линии связи, чтобы получать декодированные данные для пользовательского терминала.
Фиг.3 иллюстрирует различные компоненты, которые могут использоваться в беспроводном устройстве 302, которое может применяться в пределах системы 100. Беспроводное устройство 302 является примером устройства, которое может быть сконфигурировано для реализации различных способов, описанных в материалах настоящей заявки. Беспроводное устройство 302 может быть точкой 110 доступа или пользовательским терминалом 120.
Беспроводное устройство 302 может включать в себя процессор 304, который управляет работой беспроводного устройства 302. Процессор 304 также может указываться ссылкой как центральный процессор (CPU). Память 306, которая может включать в себя как постоянное запоминающее устройство (ПЗУ), так и оперативное запоминающее устройство (ОЗУ), выдает команды и данные в процессор 304. Часть памяти 306 также может включать в себя энергонезависимое оперативное запоминающее устройство (NVRAM). Процессор 304 типично выполняет логические и арифметические операции на основании команд управляющей программы, хранимых в памяти 306. Команды в памяти 306 могут быть выполняемыми для реализации способов, описанных в материалах настоящей заявки.
Беспроводное устройство 302 также может включать в себя корпус 308, который может включать в себя передатчик 310 и приемник 312 для предоставления возможности передачи и приема данных между беспроводным устройством 302 и удаленным местоположением. Передатчик 310 и приемник 312 могут быть объединены в приемопередатчик 314. Множество передающих антенн 316 могут быть прикреплены к корпусу 308 и электрически присоединены к приемопередатчику 314. Беспроводное устройство 302 также может включать в себя (не показанные) многочисленные передатчики, многочисленные приемники и многочисленные приемопередатчики.
Беспроводное устройство 302 также может включать в себя детектор 318 сигналов, который может использоваться при попытке детектировать и измерять уровень сигналов, принятых приемопередатчиком 314. Детектор 318 сигналов может детектировать такие сигналы, как сигналы полной энергии, энергии на поднесущую на символ, спектральной плотности мощности и другие сигналы. Беспроводное устройство 302 также может включать в себя цифровой сигнальный процессор 320 (DCP) для использования при обработке сигналов.
Различные компоненты беспроводного устройства 302 могут быть связаны вместе системой 322 шин, которая может включать в себя шину питания, шину сигналов управления и шину сигналов состояния в дополнение к шине данных.
Примерная защита для передач установки непосредственной линии связи (DLS)
Некоторые варианты осуществления настоящего раскрытия предоставляют соединению установки непосредственной линии связи (DLS) возможность быть созданной между станциями таким образом, который может помогать избегать столкновения с передачами с других станций. Как будет описано ниже, соединения DLS могут быть «защищены» по той причине, что они могут быть созданными с использованием механизмов, которые предоставляют потенциально скрытым станциям возможность становиться осведомленными о соединении DLS и корректировать свои установки вектора резервирования сети (NAV) так, что они не будут осуществлять передачу в среде передачи до тех пор, пока не завершены передачи DLS.
Для облегчения понимания следующие примеры иллюстрируют различные технологии для установления защищенного соединения DLS между двумя станциями (STA1 и STA2). Однако специалисты в данной области техники будут принимать во внимание, что способы могут расширяться (а в некоторых случаях повторяться) для установления отдельных защищенных соединений DLS между станцией и другими станциями противной стороны DLS и/или между многочисленными парами станций.
Примерная защита с использованием готовности к передаче (RTS)/готовности к приему (CTS)
Для некоторых вариантов осуществления модифицированная форма протокола с квитированием установления связи запроса на передачу (RTS) и готовности к приему (CTS) может использоваться для установления защищенного соединения DLS между станциями. Например, инициирующая STA может отправлять кадр RTS, но с адресом источника, установленным в адрес управления доступом к среде передачи (MAC) STA противной стороны, с которой должно быть создано соединение DLS, или адрес ее противной стороны DLS.
Фиг.4 иллюстрирует примерные операции для установления защищенного соединения DLS, в котором первая станция (в этом примере STA1) инициирует сеанс, отправляя такой кадр RTS. Предпочтительнее, чем включение своего собственного адреса управления доступом к среде передачи (MAC) в поле адреса передачи (TA), STA1 включает адрес MAC своей целевой противной стороны DLS (в этом примере STA2).
Операции по фиг.4 могут быть поняты со ссылкой на фиг.5, которая иллюстрирует соответствующий обмен кадрами. Подобные номера ссылок используются на фиг.5 для идентификации кадров, соответствующих операциям, показанным на фиг.4. Фиг.5 также иллюстрирует дополнительную станцию (STA-N), представляющую все другие станции в BSS, которые должны слышать кадры, передаваемые посредством STA1, STA2 и AP, и действовать соответствующим образом (например, обновляя установки (настройки) NAV и/или сохраняя адрес владельца возможности передачи, как будет описано ниже). Фиг.7, 9 и 11 служат подобным целям, иллюстрируя кадры, соответствующие фиг.6, 8 и 10, соответственно.
Операции начинаются на 402 первой станцией STA1, отправляющей кадр RTS, направленный AP. Адрес источника этого RTS установлен в MAC-адрес STA2 ее противной стороны DLS.
На 404, в ответ на RTS, AP передает кадр CTS, с STA2 в качестве адреса назначения (скопированного из адреса источника RTS). Все станции в системе должны иметь детектированный по меньшей мере CTS, переданный посредством AP.
На 406 эта комбинация RTS/CTS устанавливает вектор резервирования сети (NAV) во всех STA в BSS. На этапе 408 STA1 и STA2 теперь могут обмениваться пакетами напрямую, и эти передачи DLS будут защищены. Другими словами, так как все STA в BSS способны к прослушиванию AP, они будут устанавливать свои значения NAV соответствующим образом. Для защиты ожидаемого обмена данными DLS поле длительности кадров RTS и CTS может устанавливаться для приспосабливания ко времени, ожидаемом для передачи находящихся на рассмотрении кадров на все из своих противных сторон DLS и их ответа(ов), и, например, может включать в себя запас, который требуется проектом.
Фиг.6 иллюстрирует альтернативные примерные операции 600 для защиты передач DLS с использованием обмена RTS/CTS с AP согласно некоторым вариантам осуществления. Согласно некоторым вариантам осуществления для выполнения этих операций QSTA могут быть сконфигурированы с возможностью хранения MAC-адреса обладателя возможности передачи (TXOP) и сопоставления сохраненного MAC-адреса TXOP с адресом передачи поступающего пакета. Отметим, что обычно TXOP является ограниченным временным интервалом, в течение которого станция может отправлять столько кадров, сколько возможно (поскольку длительность передач не продолжается за пределами максимальной длительности TXOP). Если кадр слишком велик, чтобы передаваться в одиночном TXOP, он может фрагментироваться на меньшие кадры и передаваться в многочисленных TXOP.
Операции вновь предполагают, что STA1 инициирует установление соединения DLS с STA2. Операции по фиг.6 могут быть поняты со ссылкой на фиг.7, которая иллюстрирует соответствующий обмен кадрами. Подобные номера ссылок используются на фиг.7 для идентификации кадров, соответствующих операциям, показанным на фиг.6.
На этапе 602 STA1 отправляет RTS, направленный AP. Поле длительности в этом RTS устанавливается, чтобы охватывать время (которое может включать в себя минимально необходимый запас, который требуется проектом), требуемое для передачи находящихся на рассмотрении кадров всем из своих противных сторон DLS и их ответа(ов). В этом случае адрес источника RTS может быть установлен в MAC-адрес STA1.
На этапе 604 AP отправляет CTS на STA1. Так как все STA в BSS должны слышать CTS, они должны устанавливать свои NAV соответствующим образом. В дополнение STA могут сохранять MAC-адрес обладателя TXOP, который является адресом TA у RTS или адресом RA кадра CTS (в этом примере STA1).
На этапе 606 STA1 передает RTS на первую станцию в своем списке станций DLS (например, STA2). На этапе 608, когда кадр RTS принимается STA2, заданный получатель STA2 будет проверять MAC-адрес в поле TA в кадре RTS и сравнивать его с сохраненным адресом обладателя TXOP (который является MAC-адресом STA1). Если адрес TA RTS не соответствует сохраненному адресу обладателя TXOP, то STA2 может просто не отвечать на RTS.
С другой стороны, если адрес TA RTS соответствует сохраненному адресу обладателя TXOP, то STA2 будет отвечать на RTS кадром CTS. STA2 может отправлять кадр CTS после времени короткого межкадрового промежутка (SIFS), не принимая во внимание и без возвращения в исходное состояние своего NAV. Отметим, что, вообще, короткий межкадровый промежуток (SIFS) является небольшим интервалом между кадром данных и его подтверждением.
На этапе 610 STA1 будет передавать любые кадры данных, которые должны передаваться на STA2, вслед за RTS/CTS. Передача этих кадров данных должна быть защищена при условии, что другие станции обновляли свои установки NAV на основании значения поля длительности в кадрах RTS и/или CTS. Информация, принятая из RTS/CTS, такая как зондирование или обратная связь по скорости, также может использоваться для установки передач последующих обменов пакетами данных.
Если STA1 имеет другие станции в своем списке DLS, то, на 612, операции 606-610 могут повторяться для других STA в списке станций DLS.
Примерные технологии, использующие CTS-на-себя
Фиг.8 иллюстрирует примерные операции 800 для защиты передач DLS с использованием «CTS-на-себя» согласно некоторым вариантам осуществления в тех случаях, когда станция отправляет кадр CTS, задающий свой собственный MAC-адрес в качестве адреса получателя. Как с операциями, показанными на фиг.8, эти операции могут использоваться в некоторых вариантах осуществления, когда QSTA способны хранить MAC-адрес обладателя TXOP и способны сопоставлять его с адресом передачи поступающего пакета.
Операции вновь предполагают, что STA1 инициирует установление соединения DLS с STA2. Операции по фиг.8 могут быть поняты со ссылкой на фиг.9, которая иллюстрирует соответствующий обмен кадрами. Подобные номера ссылок используются на фиг.9 для идентификации кадров, соответствующих операциям, показанным на фиг.8.
На этапе 802 STA1 отправляет CTS-на-себя в качестве первого кадра для инициирования транзакции DLS. Поле длительности в CTS-на-себя может быть установлено, чтобы охватывать время, требуемое для передачи находящихся на рассмотрении кадров и их ответа(ов). В ответ все STA, которые слышат CTS-на-себя в BSS, могут обновлять свои NAV и сохранять адрес обладателя TXOP, который является адресом RA в CTS-на-себя.
На этапе 804 STA1 передает RTS на первую станцию в своем списке станций DLS (в этом примере STA2).
На этапе 806, когда кадр RTS принимается STA2, заданный получатель STA2 будет проверять MAC-адрес в поле TA в кадре RTS и сравнивать его с сохраненным адресом обладателя TXOP (который является MAC-адресом STA1). Если адрес TA не соответствует сохраненному адресу обладателя TXOP, STA может просто не отвечать на RTS. С другой стороны, если адрес TA соответствует сохраненному адресу обладателя TXOP, STA2 может отвечать с CTS через время SIFS, не принимая во внимание и без возврата в исходное состояние своего NAV.
На этапе 808 STA1 будет передавать любые кадры данных, которые должны передаваться на STA2, вслед за RTS/CTS. Передача этих кадров данных должна быть защищена при условии, что другие станции обновляли свои установки NAV на основании значения поля длительности в кадрах RTS и/или CTS. Как отмечено выше, информация, принятая из RTS/CTS, такая как зондирование или обратная связь по скорости, может использоваться в последующих обменах пакетами данных. На 810 операции 804-808 могут повторяться для всех STA в списке станций DLS у STA1.
Примерная защита кадров DLS в HCCA
Некоторые стандарты 802.11 задают гибридную функцию координации (HCF). В пределах HCF есть два способа доступа к каналу, подобных заданным в более ранних стандартах MAC 802.11: управляемый HCF доступ к каналу (HCCA) и улучшенный распределенный доступ к каналу (EDCA), который предоставляет потоку обмена возможность быть назначенным разным классам потока обмена (TC). Некоторые варианты осуществления настоящего раскрытия могут использоваться для защиты кадров DLS при применении HCCA.
Фиг.10 иллюстрирует примерные операции 1000 по защите кадров DLS при управляемом HCF доступе к каналу согласно некоторым вариантам осуществления.
Операции предполагают, что AP является AP HCCA, и вновь предполагают, что STA1 инициирует установление соединения DLS с STA2. Операции по фиг.10 могут быть поняты со ссылкой на фиг.11, которая иллюстрирует соответствующий обмен кадрами. Подобные номера ссылок используются на фиг.11 для идентификации кадров, соответствующих операциям, показанным на фиг.10.
На этапе 1002 STA1 настраивает спецификацию передачи восходящей линии связи (TSPEC) с AP HCCA.
На этапе 1004 AP HCCA опрашивает STA1 касательно данных. Это может делаться отправкой свободного от конкуренции опроса (опроса CF), а длительность TXOP будет устанавливаться в длительность, требуемую для удовлетворения требований к потоку.
На этапе 1006 STA1 отвечает на опрос CF подтверждением (ACK, или CF-ACK). Опрос CF и ACK будет иметь значения длительности, заданные для установки NAV на всех STA в BSS, чтобы приспосабливались к кадрам данных DLS.
На этапе 1008 STA1 передает находящиеся на рассмотрении кадры данных своим противным сторонам DLS. На этапе 1010 STA на другом конце линии связи DLS могут объединять свои кадры данных с ответом и/или они могут настраивать подобный TSPEC с AP HCCA (как в операциях 1002-1008, приведенных выше).
Различные операции способов, описанных выше, могут выполняться различным(и) компонентом(ами) и/или модулем(ями) аппаратных средств и/или программного обеспечения, соответствующими блокам средства плюс функции, проиллюстрированным на фигурах. Обычно там, где есть способы, проиллюстрированные на фигурах, имеющих соответствующие аналогичные фигуры средства плюс функции, блоки операций соотносятся с блоками средства плюс функции подобной нумерацией. Например, операции 400, 600, 800 и 1000, проиллюстрированные на фиг.4, 6, 8 и 10, соответствуют блокам 400A, 600A, 800A и 1000A средства плюс функции, проиллюстрированные на фиг.4A, 6A, 8A и 10A.
В качестве используемого в материалах настоящей заявки термин «определение» охватывает широкое многообразие действий. Например, «определение» может включать в себя расчет, вычисление, обработку, выведение, изучение, отыскивание (например, отыскивание в таблице, базе данных или другой структуре данных), выявление и тому подобное. К тому же, «определение» может включать в себя прием (например, прием информации), осуществление доступа (например, осуществление доступа к данным в памяти) и тому подобное. К тому же, «определение» может включать в себя принятие решения, отбор, выбор, создание и тому подобное.
Информация и сигналы могут быть представлены с использованием любой из многообразия разных технологий и методик. Например, данные, команды, директивы, информация, сигналы и тому подобное, которые могут указываться ссылкой на всем протяжении вышеприведенного описания, могут быть представлены напряжениями, токами, электромагнитными волнами, магнитными полями или частицами, оптическими полями или частицами либо любой их комбинацией.
Различные иллюстративные логические блоки, модули и схемы, описанные в связи с настоящим раскрытием, могут быть реализованы или выполнены с помощью процессора общего назначения, цифрового сигнального процессора (DSP), специализированной интегральной схемы (ASIC), сигнального устройства программируемой пользователем вентильной матрицы (FPGA) или другого программируемого логического устройства (PLD), дискретной вентильной или транзисторной логики, дискретных компонентов аппаратных средств или любой их комбинации, предназначенной для выполнения функций, описанных в материалах настоящей заявки. Процессором общего применения может быть микропроцессор, но в альтернативном варианте процессор может быть доступным для коммерческого приобретения процессором, контроллером, микроконтроллером или конечным автоматом. Процессор также может быть реализован в виде комбинации вычислительных устройств, например комбинации DSP и микропроцессора, множества микропроцессоров, одного или более микропроцессоров в соединении с DSP-ядром, или любой другой такой конфигурации.
Этапы способа или алгоритма, описанные в связи с настоящим раскрытием, могут быть воплощены прямо в аппаратных средствах, в модуле программного обеспечения, выполняемом процессором, или в комбинации этих двух. Модуль программного обеспечения может находиться на любом виде носителя данных, который известен в данной области техники. Некоторые примеры носителей данных, которые могут использоваться, включают в себя оперативное запоминающее устройство (ОЗУ, RAM), постоянное запоминающее устройство (ПЗУ, ROM), флэш-память, память СППЗУ (стираемого программируемого ПЗУ, EPROM), память ЭСППЗУ (электрически стираемого программируемого ПЗУ, EEPROM), регистры, жесткий диск, съемный диск, CD-ROM и так далее. Модуль программного обеспечения может содержать одиночную команду или многочисленные команды и может быть распределен по нескольким разным кодовым сегментам, среди разных программ и по многочисленным носителям данных. Носитель данных может быть присоединен к процессору из условия, чтобы процессор мог считывать информацию с и записывать информацию на запоминающий носитель. В альтернативном варианте запоминающий носитель может быть составляющим одно целое с процессором.
Способы, раскрытые в материалах настоящей заявки, содержат один или более этапов или действий для выполнения описанного способа. Этапы и/или действия способа могут взаимно заменяться друг другом, не выходя из объема формулы изобретения. Другими словами, пока не задан определенный порядок этапов или действий, порядок и/или использование отдельных этапов и/или действий могут модифицироваться, не выходя из объема формулы изобретения.
Описанные функции могут быть реализованы в аппаратных средствах, программном обеспечении, программно-аппаратных средствах или любой их комбинации. Если реализованы в программном обеспечении, функции могут храниться в качестве одной или более команд на машиночитаемом носителе. Носители данных могут быть любыми имеющимися в распоряжении носителями, к которым может осуществляться доступ компьютером. В качестве примера, а не ограничения, такие машиночитаемые носители могут содержать ОЗУ, ПЗУ, ЭСППЗУ, CD-ROM или другое оптическое дисковое запоминающее устройство, магнитное дисковое запоминающее устройство или другие магнитные устройства хранения данных, либо любой другой носитель, который может использоваться для переноса или хранения требуемой управляющей программы в виде команд или структур данных, и к которым может осуществляться доступ компьютером. Диск и немагнитный диск, в качестве используемых в материалах настоящей заявки, включают в себя компакт-диск (CD), лазерный диск, оптический диск, цифровой многофункциональный диск (DVD), гибкий магнитный диск и диск Blu-ray®, где диски обычно воспроизводят данные магнитным образом, наряду с тем, что немагнитные диски воспроизводят данные оптически с помощью лазеров.
Программное обеспечение или команды также могут передаваться через среду передачи. Например, если программное обеспечение передается с веб-сайта, сервера или другого удаленного источника с использованием коаксиального кабеля, волоконно-оптического кабеля, витой пары, цифровой абонентской линии (DSL) или беспроводных технологий, таких как инфракрасная, радиочастотная и микроволновая, то коаксиальный кабель, волоконно-оптический кабель, витая пара, DSL или беспроводные технологии, такие как инфракрасная, радиочастотная и микроволновая, включены в определение среды передачи.
Кроме того, должно приниматься во внимание, что модули и/или другие надлежащие средства для выполнения способов и технологий, описанных в материалах настоящей заявки, могут загружаться и/или иным образом получаться пользовательским терминалом и/или базовой станцией, как применимо. Например, такое устройство может быть присоединено к серверу для содействия передаче средства для выполнения способов, описанных в материалах настоящей заявки. В качестве альтернативы различные способы, описанные в материалах настоящей заявки, могут обеспечиваться через средство хранения (например, ОЗУ, ПЗУ, физический запоминающий носитель, такой как компакт-диск (CD) или гибкий магнитный диск, и т.д.) из условия, чтобы пользовательский терминал и/или базовая станция могли получать различные способы при присоединении или установке средства хранения в устройство. Более того, может использоваться любая другая пригодная технология для обеспечения способов и технологий, описанных в материалах настоящей заявки, устройству.
Должно быть понятно, что формула изобретения не ограничена точной конфигурацией и компонентами, проиллюстрированными выше. Различные модификации, изменения и варианты могут быть сделаны в пределах формулы изобретения.
Claims (12)
1. Способ для создания соединения установки непосредственной линии связи (DLS) между станциями в беспроводной локальной сети, содержащий этапы, на которых:
отправляют кадр готовности к передаче (RTS) посредством первой станции, направленный точке доступа (АР) в базовом наборе служб (BSS);
принимают, посредством первой станции, кадр разрешения на передачу (CTS), отправляемый из точки АР, отправленный в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции на вторую станцию в BSS по соединению DLS; и обмениваются, посредством первой станции, кадрами данных напрямую со второй станцией по соединению DLS,
причем адрес источника RTS устанавливается в адрес управления доступом к среде передачи (MAC) второй станции.
отправляют кадр готовности к передаче (RTS) посредством первой станции, направленный точке доступа (АР) в базовом наборе служб (BSS);
принимают, посредством первой станции, кадр разрешения на передачу (CTS), отправляемый из точки АР, отправленный в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции на вторую станцию в BSS по соединению DLS; и обмениваются, посредством первой станции, кадрами данных напрямую со второй станцией по соединению DLS,
причем адрес источника RTS устанавливается в адрес управления доступом к среде передачи (MAC) второй станции.
2. Способ по п.1, в котором адрес назначения CTS устанавливается в МАС-адрес второй станции, скопированный точкой АР из адреса источника RTS.
3. Способ по п.1, дополнительно содержащий этапы, на которых:
отправляют другой кадр готовности к передаче (RTS) с первой станции, направленный на точку доступа в базовом наборе служб (BSS); и принимают кадр разрешения на передачу (CTS), отправляемый из точки АР, отправленный в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции третьей станции в BSS по другому соединению DLS.
отправляют другой кадр готовности к передаче (RTS) с первой станции, направленный на точку доступа в базовом наборе служб (BSS); и принимают кадр разрешения на передачу (CTS), отправляемый из точки АР, отправленный в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции третьей станции в BSS по другому соединению DLS.
4. Устройство для создания соединения установки непосредственной линии связи (DLS) между станциями в беспроводной локальной сети, содержащее:
первую станцию, содержащую:
логику для отправки кадра готовности к передаче (RTS) первой станцией, направленного точке доступа (АР) в базовом наборе служб (BSS);
логику для приема кадра разрешения на передачу (CTS), отправляемого из точки АР, отправленного в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции на вторую станцию в BSS по соединению DLS; и
логику для обмена кадрами данных напрямую со второй станцией по соединению DLS,
причем адрес источника RTS устанавливается в адрес управления доступом к среде передачи (MAC) второй станции.
первую станцию, содержащую:
логику для отправки кадра готовности к передаче (RTS) первой станцией, направленного точке доступа (АР) в базовом наборе служб (BSS);
логику для приема кадра разрешения на передачу (CTS), отправляемого из точки АР, отправленного в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции на вторую станцию в BSS по соединению DLS; и
логику для обмена кадрами данных напрямую со второй станцией по соединению DLS,
причем адрес источника RTS устанавливается в адрес управления доступом к среде передачи (MAC) второй станции.
5. Устройство по п.4, в котором адрес назначения CTS устанавливается в МАС-адрес второй станции, скопированный точкой АР из адреса источника RTS.
6. Устройство по п.4, дополнительно содержащее:
логику для отправки другого кадра готовности к передаче (RTS) с первой станции, направленного точке доступа в базовом наборе служб (BSS); и
логику для приема кадра разрешения на передачу (CTS), отправляемого из точки АР, отправленного в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции на третью станцию в BSS по другому соединению DLS.
логику для отправки другого кадра готовности к передаче (RTS) с первой станции, направленного точке доступа в базовом наборе служб (BSS); и
логику для приема кадра разрешения на передачу (CTS), отправляемого из точки АР, отправленного в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции на третью станцию в BSS по другому соединению DLS.
7. Устройство для создания соединения установки непосредственной линии связи (DLS) между станциями в беспроводной локальной сети, содержащее:
средство для отправки кадра готовности к передаче (RTS) первой станцией, направленного точке доступа в базовом наборе служб (BSS);
средство для приема, посредством первой станции, кадра разрешения на передачу (CTS), отправляемого из точки АР, отправленного в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции на вторую станцию в BSS по соединению DLS; и
средство для обмена, посредством первой станции, кадрами данных напрямую со второй станцией по соединению DLS,
причем адрес источника RTS устанавливается в адрес управления доступом к среде передачи (MAC) второй станции.
средство для отправки кадра готовности к передаче (RTS) первой станцией, направленного точке доступа в базовом наборе служб (BSS);
средство для приема, посредством первой станции, кадра разрешения на передачу (CTS), отправляемого из точки АР, отправленного в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции на вторую станцию в BSS по соединению DLS; и
средство для обмена, посредством первой станции, кадрами данных напрямую со второй станцией по соединению DLS,
причем адрес источника RTS устанавливается в адрес управления доступом к среде передачи (MAC) второй станции.
8. Устройство по п.7, в котором адресу назначения CTS присваивается МАС-адрес второй станции, скопированный точкой АР из адреса источника RTS.
9. Устройство по п.7, дополнительно содержащее:
средство для отправки другого кадра готовности к передаче (RTS) с первой станции, направленного точке доступа в базовом наборе служб (BSS); и
средство для приема кадра разрешения на передачу (CTS), отправляемого из точки АР, отправленного в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции третьей станции в BSS по другому соединению DLS.
средство для отправки другого кадра готовности к передаче (RTS) с первой станции, направленного точке доступа в базовом наборе служб (BSS); и
средство для приема кадра разрешения на передачу (CTS), отправляемого из точки АР, отправленного в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции третьей станции в BSS по другому соединению DLS.
10. Машиночитаемый носитель, содержащий команды, чтобы заставить один или более процессоров осуществлять способ для создания соединения установки непосредственной линии связи (DLS) между станциями в беспроводной локальной сети, содержащий этапы, на которых:
отправляют кадр готовности к передаче (RTS) первой станцией, направленный точке доступа в базовом наборе служб (BSS);
принимают, посредством первой станции, кадр разрешения на передачу (CTS), отправляемый из точки АР, отправленный в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции второй станции в BSS по соединению DLS; и
обмениваются, посредством первой станции, кадрами данных напрямую со второй станцией по соединению DLS,
причем адрес источника RTS устанавливается в адрес управления доступом к среде передачи (MAC) второй станции.
отправляют кадр готовности к передаче (RTS) первой станцией, направленный точке доступа в базовом наборе служб (BSS);
принимают, посредством первой станции, кадр разрешения на передачу (CTS), отправляемый из точки АР, отправленный в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции второй станции в BSS по соединению DLS; и
обмениваются, посредством первой станции, кадрами данных напрямую со второй станцией по соединению DLS,
причем адрес источника RTS устанавливается в адрес управления доступом к среде передачи (MAC) второй станции.
11. Машиночитаемый носитель по п.10, в котором адрес назначения CTS устанавливается в МАС-адрес второй станции, скопированный точкой АР из адреса источника RTS.
12. Машиночитаемый носитель по п.10, в котором команды дополнительно содержат:
команды для отправки другого кадра готовности к передаче (RTS) с первой станции, направленного точке доступа в базовом наборе служб (BSS); и
команды для приема кадра разрешения на передачу (CTS), отправляемого из точки АР, отправленного в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции на третью станцию в BSS по другому соединению DLS.
команды для отправки другого кадра готовности к передаче (RTS) с первой станции, направленного точке доступа в базовом наборе служб (BSS); и
команды для приема кадра разрешения на передачу (CTS), отправляемого из точки АР, отправленного в ответ на RTS, при этом по меньшей мере один из кадров RTS и CTS имеет поля длительности, установленные для приспосабливания к ожидаемым передачам кадров данных с первой станции на третью станцию в BSS по другому соединению DLS.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US99090407P | 2007-11-28 | 2007-11-28 | |
US60/990,904 | 2007-11-28 | ||
US12/266,516 US20090138603A1 (en) | 2007-11-28 | 2008-11-06 | Protection for direct link setup (dls) transmissions in wireless communications systems |
US12/266,516 | 2008-11-06 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012120853/07A Division RU2012120853A (ru) | 2007-11-28 | 2012-05-21 | Защита для передач установки непосредственной линии связи (dls) в системах беспроводной связи |
RU2012120852/07A Division RU2012120852A (ru) | 2007-11-28 | 2012-05-21 | Защита для передач установки непосредственной линии связи (dis) в системах беспроводной связи |
RU2012120851/07A Division RU2012120851A (ru) | 2007-11-28 | 2012-05-21 | Защита для передач установки непосредственной линии связи (dls) в системах беспроводной связи |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2010126108A RU2010126108A (ru) | 2012-01-10 |
RU2461138C2 true RU2461138C2 (ru) | 2012-09-10 |
Family
ID=40670701
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010126108/07A RU2461138C2 (ru) | 2007-11-28 | 2008-11-14 | Защита для передач установки непосредственной линии связи (dls) в системах беспроводной связи |
RU2012120851/07A RU2012120851A (ru) | 2007-11-28 | 2012-05-21 | Защита для передач установки непосредственной линии связи (dls) в системах беспроводной связи |
RU2012120853/07A RU2012120853A (ru) | 2007-11-28 | 2012-05-21 | Защита для передач установки непосредственной линии связи (dls) в системах беспроводной связи |
RU2012120852/07A RU2012120852A (ru) | 2007-11-28 | 2012-05-21 | Защита для передач установки непосредственной линии связи (dis) в системах беспроводной связи |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012120851/07A RU2012120851A (ru) | 2007-11-28 | 2012-05-21 | Защита для передач установки непосредственной линии связи (dls) в системах беспроводной связи |
RU2012120853/07A RU2012120853A (ru) | 2007-11-28 | 2012-05-21 | Защита для передач установки непосредственной линии связи (dls) в системах беспроводной связи |
RU2012120852/07A RU2012120852A (ru) | 2007-11-28 | 2012-05-21 | Защита для передач установки непосредственной линии связи (dis) в системах беспроводной связи |
Country Status (10)
Country | Link |
---|---|
US (2) | US20090138603A1 (ru) |
EP (3) | EP2309684A1 (ru) |
JP (3) | JP5123395B2 (ru) |
KR (5) | KR20130038411A (ru) |
CN (2) | CN102869118A (ru) |
AT (1) | ATE515866T1 (ru) |
CA (4) | CA2704672C (ru) |
RU (4) | RU2461138C2 (ru) |
TW (1) | TWI380716B (ru) |
WO (1) | WO2009073347A2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2815440C2 (ru) * | 2019-07-04 | 2024-03-15 | Панасоник Интеллекчуал Проперти Корпорейшн Оф Америка | Аппарат связи и способ связи для осуществления связи по усовершенствованной прямой линии связи |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101452504B1 (ko) * | 2008-06-18 | 2014-10-23 | 엘지전자 주식회사 | Vht 무선랜 시스템에서의 채널 접속 방법 및 이를지원하는 스테이션 |
US8605692B2 (en) * | 2009-01-15 | 2013-12-10 | Electronics And Telecommunications Research Institute | Method for setting transmission opportunity and for transmitting and receiving data in wireless LAN system using multiple channel |
WO2010134768A2 (en) | 2009-05-22 | 2010-11-25 | Lg Electronics Inc. | Method and apparatus for space division multiple access for wireless local area network system |
WO2011025145A2 (en) * | 2009-08-26 | 2011-03-03 | Lg Electronics Inc. | Method and apparatus of transmitting a sounding frame and communicating data in a wireless local area network system |
US8750269B2 (en) | 2009-10-23 | 2014-06-10 | Electronics And Telecommunications Research Institute | Method and apparatus for controlling transmission power in WLAN system |
US8886755B1 (en) * | 2009-12-09 | 2014-11-11 | Marvell International Ltd. | Method and apparatus for facilitating simultaneous transmission from multiple stations |
US8532221B2 (en) * | 2010-02-10 | 2013-09-10 | Marvell World Trade Ltd. | Transmission protection for wireless communications |
WO2012002757A2 (en) * | 2010-06-30 | 2012-01-05 | Lg Electronics Inc. | Method and apparatus for transmitting management information in wireless local area network system |
CN103155444B (zh) | 2010-08-26 | 2017-04-12 | 马维尔国际贸易有限公司 | 具有主接入类别和辅接入类别的无线通信 |
EP2866514A3 (en) * | 2010-11-16 | 2015-05-20 | Interdigital Patent Holdings, Inc. | Method and apparatus for wireless direct link operation |
WO2013058512A1 (ko) * | 2011-10-17 | 2013-04-25 | 엘지전자 주식회사 | 무선랜 시스템에서 프레임을 전송하는 방법 및 장치 |
US8938551B2 (en) * | 2012-04-10 | 2015-01-20 | Intel Mobile Communications GmbH | Data processing device |
JP5839701B2 (ja) * | 2012-05-23 | 2016-01-06 | 日本電信電話株式会社 | 無線通信装置及び無線通信方法 |
US9148892B2 (en) * | 2012-08-31 | 2015-09-29 | Cambridge Silicon Radio Limited | Transmitting data |
US9504032B2 (en) * | 2012-09-13 | 2016-11-22 | Interdigital Patent Holdings, Inc. | Method, wireless transmit/receive unit (WTRU) and base station for transferring small packets |
WO2014061994A1 (ko) * | 2012-10-16 | 2014-04-24 | 엘지전자 주식회사 | 무선랜 시스템에서 신호 전송 방법 및 장치 |
CN103916302B (zh) * | 2013-01-04 | 2017-03-15 | 上海贝尔股份有限公司 | 向虚拟wlan提供sdn流路径的方法和设备 |
EP3755108A1 (en) * | 2013-05-03 | 2020-12-23 | Interdigital Patent Holdings, Inc. | Methods for wifi sectorization mac enhancement |
WO2015023143A1 (ko) * | 2013-08-14 | 2015-02-19 | 엘지전자 주식회사 | 무선랜에서 데이터를 전송하는 방법 및 장치 |
US9775171B2 (en) * | 2013-12-18 | 2017-09-26 | Futurewei Technologies, Inc. | System and method for speed frame exchange |
US9699054B2 (en) * | 2014-02-24 | 2017-07-04 | Qualcomm Incorporated | Compensation procedure for excess transmission opportunity time |
CN106538026B (zh) * | 2014-07-11 | 2019-12-17 | Lg 电子株式会社 | 在无线通信系统中在非许可频谱中发送wi-fi信号的方法和装置 |
CN104079686B (zh) * | 2014-07-17 | 2017-11-21 | 福州瑞芯微电子股份有限公司 | 终端设备mac地址的设置方法以及分配方法 |
US10045374B2 (en) * | 2014-07-29 | 2018-08-07 | Qualcomm Incorporated | Low latency WLAN medium access |
US10820314B2 (en) | 2014-12-12 | 2020-10-27 | Qualcomm Incorporated | Traffic advertisement in neighbor aware network (NAN) data path |
US10827484B2 (en) | 2014-12-12 | 2020-11-03 | Qualcomm Incorporated | Traffic advertisement in neighbor aware network (NAN) data path |
US9693368B2 (en) * | 2015-01-26 | 2017-06-27 | Qualcomm Incorporated | Bandwidth acquisition in contention-based networks |
US9942843B2 (en) | 2015-07-01 | 2018-04-10 | Intel IP Corporation | Determining a network allocation vector setting and a response to a multi-user transmission opportunity |
US9942920B2 (en) | 2015-07-01 | 2018-04-10 | Intel IP Corporation | Trigger frame response with network allocation vector |
KR102373578B1 (ko) * | 2015-07-31 | 2022-03-11 | 엘지전자 주식회사 | 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치 |
WO2017033789A1 (ja) * | 2015-08-21 | 2017-03-02 | 日本電信電話株式会社 | 無線通信システムおよび無線通信方法 |
US10056952B2 (en) * | 2015-09-10 | 2018-08-21 | Intel Corporation | Method of controlling uplink multiple user transmissions in densely deployed wireless local area networks |
KR102163572B1 (ko) | 2015-12-09 | 2020-10-07 | 주식회사 윌러스표준기술연구소 | 다중 베이직 서비스 식별자 세트를 이용하는 무선 통신방법 및 무선 통신 단말 |
US10321485B1 (en) * | 2015-12-14 | 2019-06-11 | Newracom, Inc. | Multiple network allocation vector operation |
JP2017123585A (ja) * | 2016-01-08 | 2017-07-13 | ソニー株式会社 | 情報処理装置、通信システム、情報処理方法およびプログラム |
CN115426089A (zh) | 2016-03-04 | 2022-12-02 | 韦勒斯标准与技术协会公司 | 一种无线通信方法和无线通信终端 |
SG10201906255QA (en) | 2019-07-04 | 2021-02-25 | Panasonic Ip Corp America | Communication apparatus and communication method for enhanced direct link communication |
KR20210127103A (ko) * | 2020-04-13 | 2021-10-21 | 한국전자통신연구원 | 무선랜에서 직접 통신을 위한 방법 및 장치 |
US20230135332A1 (en) * | 2020-04-14 | 2023-05-04 | Hyundai Motor Company | Method and device for direct communication in wireless lan system |
WO2023184289A1 (zh) * | 2022-03-30 | 2023-10-05 | Oppo广东移动通信有限公司 | 网络分配向量设置方法、装置、设备及存储介质 |
CN114726849B (zh) * | 2022-06-10 | 2022-09-23 | 武汉四通信息服务有限公司 | 文件传输方法、装置、服务器及计算机可读存储介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2003134279A (ru) * | 2002-11-27 | 2005-05-27 | Майкрософт Корпорейшн (Us) | Собственная wi-fi архитектура для сетей 802.11 |
WO2007056103A1 (en) * | 2005-11-03 | 2007-05-18 | Intel Corporation | Method, system and readable medium for setting up secure direct links between wireless network stations using direct link set-up (dls) protocol |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1563625A4 (en) * | 2002-11-19 | 2009-12-16 | Bae Systems Information | BANDWIDTHEFFICIENT WIRELESS NETWORK MODEM |
US7512070B2 (en) * | 2003-06-23 | 2009-03-31 | Intel Corporation | Adaptive use of a transmit opportunity |
US8233462B2 (en) * | 2003-10-15 | 2012-07-31 | Qualcomm Incorporated | High speed media access control and direct link protocol |
US8842657B2 (en) * | 2003-10-15 | 2014-09-23 | Qualcomm Incorporated | High speed media access control with legacy system interoperability |
US20050108527A1 (en) * | 2003-11-13 | 2005-05-19 | Boris Ginzburg | Method and apparatus to provide secured link |
JP2005286859A (ja) * | 2004-03-30 | 2005-10-13 | Matsushita Electric Ind Co Ltd | データ通信システム |
WO2005096752A2 (en) * | 2004-04-01 | 2005-10-20 | Devicescape Software, Inc. | Multi channel throughput enhancement |
JP4470628B2 (ja) * | 2004-07-22 | 2010-06-02 | ソニー株式会社 | 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム |
US7599340B2 (en) * | 2005-01-25 | 2009-10-06 | Interdigital Technology Corporation | Method and apparatus or eliminating interference caused by hidden nodes |
US7885287B2 (en) * | 2005-03-29 | 2011-02-08 | Intel Corporation | Method and apparatus for adaptive network allocation |
WO2006133414A2 (en) * | 2005-06-08 | 2006-12-14 | Avaya Technology Corp. | Avoiding hidden terminals in wireless local area networks |
GB2427978A (en) * | 2005-06-30 | 2007-01-10 | Nokia Corp | Setting up a direct link between peripheral and device in a WLAN |
US20070010237A1 (en) * | 2005-07-05 | 2007-01-11 | Airgo Networks, Inc. | Mac-level protection for networking extended-range and legacy devices in a wireless network |
US8600336B2 (en) * | 2005-09-12 | 2013-12-03 | Qualcomm Incorporated | Scheduling with reverse direction grant in wireless communication systems |
TWI565278B (zh) * | 2006-01-04 | 2017-01-01 | 內數位科技公司 | 用於在存取點以及站台所使用的方法及其裝置 |
JP2007295541A (ja) * | 2006-03-28 | 2007-11-08 | Matsushita Electric Ind Co Ltd | 無線通信システム |
US7706397B2 (en) * | 2006-03-31 | 2010-04-27 | Intel Corporation | Apparatus and method of controlling transmission in reverse direction |
US8432920B2 (en) * | 2006-09-19 | 2013-04-30 | Marvell World Trade Ltd. | Direct link setup mechanisms for wireless LANs |
US20080170558A1 (en) * | 2007-01-15 | 2008-07-17 | Nokia Corporation | Techniques for transmission protection for wireless networks |
-
2008
- 2008-11-06 US US12/266,516 patent/US20090138603A1/en not_active Abandoned
- 2008-11-14 KR KR1020137005569A patent/KR20130038411A/ko not_active Application Discontinuation
- 2008-11-14 CA CA2704672A patent/CA2704672C/en not_active Expired - Fee Related
- 2008-11-14 AT AT08857019T patent/ATE515866T1/de not_active IP Right Cessation
- 2008-11-14 EP EP11152131A patent/EP2309684A1/en not_active Withdrawn
- 2008-11-14 CN CN2012103255111A patent/CN102869118A/zh active Pending
- 2008-11-14 CA CA2793882A patent/CA2793882A1/en not_active Abandoned
- 2008-11-14 KR KR1020127012129A patent/KR101242026B1/ko not_active IP Right Cessation
- 2008-11-14 CN CN2008801183394A patent/CN101878625B/zh not_active Expired - Fee Related
- 2008-11-14 KR KR1020127012132A patent/KR101279901B1/ko active IP Right Grant
- 2008-11-14 KR KR1020127012130A patent/KR101242028B1/ko not_active IP Right Cessation
- 2008-11-14 CA CA2793887A patent/CA2793887A1/en not_active Abandoned
- 2008-11-14 KR KR1020107014290A patent/KR101195635B1/ko active IP Right Grant
- 2008-11-14 EP EP11152125A patent/EP2309683A1/en not_active Withdrawn
- 2008-11-14 RU RU2010126108/07A patent/RU2461138C2/ru not_active IP Right Cessation
- 2008-11-14 EP EP08857019A patent/EP2215784B1/en not_active Not-in-force
- 2008-11-14 JP JP2010536057A patent/JP5123395B2/ja not_active Expired - Fee Related
- 2008-11-14 WO PCT/US2008/083702 patent/WO2009073347A2/en active Application Filing
- 2008-11-14 CA CA2793829A patent/CA2793829A1/en not_active Abandoned
- 2008-11-28 TW TW097146514A patent/TWI380716B/zh not_active IP Right Cessation
-
2012
- 2012-05-21 RU RU2012120851/07A patent/RU2012120851A/ru not_active Application Discontinuation
- 2012-05-21 RU RU2012120853/07A patent/RU2012120853A/ru not_active Application Discontinuation
- 2012-05-21 RU RU2012120852/07A patent/RU2012120852A/ru not_active Application Discontinuation
- 2012-08-22 JP JP2012183328A patent/JP2013031186A/ja active Pending
- 2012-08-22 JP JP2012183327A patent/JP2013031185A/ja active Pending
-
2013
- 2013-01-11 US US13/739,672 patent/US20130121293A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2003134279A (ru) * | 2002-11-27 | 2005-05-27 | Майкрософт Корпорейшн (Us) | Собственная wi-fi архитектура для сетей 802.11 |
WO2007056103A1 (en) * | 2005-11-03 | 2007-05-18 | Intel Corporation | Method, system and readable medium for setting up secure direct links between wireless network stations using direct link set-up (dls) protocol |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2815440C2 (ru) * | 2019-07-04 | 2024-03-15 | Панасоник Интеллекчуал Проперти Корпорейшн Оф Америка | Аппарат связи и способ связи для осуществления связи по усовершенствованной прямой линии связи |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2461138C2 (ru) | Защита для передач установки непосредственной линии связи (dls) в системах беспроводной связи | |
JP7129522B2 (ja) | Wlanにおけるbssカラー強化型送信(bss-cet) | |
JP6247726B2 (ja) | 無線lanシステムにおいて帯域幅によるフレーム送受信方法及び装置 | |
JP6259102B2 (ja) | 無線lanシステムにおいてセクター化された送信機会を用いた動作方法及び装置 | |
US10051627B2 (en) | Method for channel access in wireless LAN system and apparatus thereof | |
JP2018538728A (ja) | 複数のユーザアップリンクのための方法および装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20201115 |