RU2458862C1 - СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ СОЕДИНЕНИЙ LnSF (Ln=La-Dy) - Google Patents

СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ СОЕДИНЕНИЙ LnSF (Ln=La-Dy) Download PDF

Info

Publication number
RU2458862C1
RU2458862C1 RU2011108132/05A RU2011108132A RU2458862C1 RU 2458862 C1 RU2458862 C1 RU 2458862C1 RU 2011108132/05 A RU2011108132/05 A RU 2011108132/05A RU 2011108132 A RU2011108132 A RU 2011108132A RU 2458862 C1 RU2458862 C1 RU 2458862C1
Authority
RU
Russia
Prior art keywords
lnsf
compounds
powder
ree
phase
Prior art date
Application number
RU2011108132/05A
Other languages
English (en)
Inventor
Ольга Геннадьевна Михалкина (RU)
Ольга Геннадьевна Михалкина
Петр Олегович Андреев (RU)
Петр Олегович Андреев
Андрей Николаевич Бойко (RU)
Андрей Николаевич Бойко
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Тюменский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Тюменский государственный университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Тюменский государственный университет"
Priority to RU2011108132/05A priority Critical patent/RU2458862C1/ru
Application granted granted Critical
Publication of RU2458862C1 publication Critical patent/RU2458862C1/ru

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение относится к области неорганической химии, а именно к способу получения порошков соединений фторсульфидов редкоземельных элементов, применяемых в лазерной и инфракрасной технике. Способ получения фазово-однородных порошков соединений LnSF (Ln=La-Dy) в состоянии, обеспечивающем их последующее прессование без дополнительного размельчения, заключается в воздействии 3% раствора фтористоводородной кислоты взятой в избытке на 0,5-1 мол.% от стехиометрического количества на порошки полуторных сульфидов редкоземельных элементов Ln2S3 (Ln=La-Dy) и последующей обработкой полученной шихты в атмосфере аргона и сульфидирующих газов - H2S+CS2 при температурах 700-850°С. Изобретение обеспечивает быстроту протекания реакции в объеме одной частицы, минимизацию возможности образования кислородсодержащих примесей и получение конечного продукта с высокими характеристиками. 2 пр.

Description

Изобретение относится к области неорганической химии, а именно к способу получения порошков соединений фторсульфидов редкоземельных элементов (РЗЭ) LnSF (Ln=La-Dy), применяемых в лазерной и инфракрасной технике.
Известен способ получения фторсульфидов РЗЭ, заключающийся в спекании эквимолярных количеств полуторных сульфидов РЗЭ Ln2S3 (Ln=La-Dy) и трифторидов РЗЭ LnF3 в вакуумированных ампулах при температуре 600-900°C. Фторсульфиды получаются в спеченном или сплавленном состоянии [1, 2].
Недостаток метода в том, что данным методом практически невозможно получить фазово-однородный продукт. Шихта, образованная порошками исходных веществ, даже тщательно перетертая, состоит из разнородных зерен, степень контакта между которыми, особенно в насыпном объеме, незначительна. Взаимодействие поверхностных слоев будет приводить к образованию затрудняющего слоя, препятствующего дальнейшему протеканию реакции. Отжиг такой шихты, даже на протяжении многих сотен часов, не приводит к получению гомогенного продукта. Вскрытие ампулы, перетирание порошка неизбежно будет привносить дополнительные нежелательные примеси. Механически размельченные порошки спрессовываются при более высоких давлениях по сравнению с синтезированными порошкообразными веществами.
В работе [3] описан синтез фторсульфидов РЗЭ, с использованием редкоземельного металла - Ln, трифторида РЗЭ - LnF3 и серы - S, которые берутся в эквимолярном соотношении 2:1:3. Шихта помещается в танталовую или ниобиевую капсулу, которая опускается в кварцевую ампулу, вакуумируется и запаивается. Синтез фторсульфида осуществляется при 850°C в течении пяти дней.
Недостаток данного метода заключается в фазовой неоднородности получаемого фторсульфида. Из литературных данных [5, 6] известно, что взаимодействие РЗЭ с серой при 600°C приводит к образованию LnS2 и остается редкоземельный металл, при 850°C даже после продолжительных выдержек остается редкоземельный металл и получается смесь сульфидных фаз. По мере образования Ln2S3 будет происходить формирование LnSF. Продуктом данного метода будет фазово-неоднородная смесь различной степени спеченности.
В [4] порошки фторсульфидов получают путем взаимодействия фторидо-карбонатов РЗЭ с газообразными сульфидирующими агентами (H2S+CS2) при температуре не ниже 800-1000°C в течение 1-1,5 часов. В качестве газа-носителя используют гелий. Сульфидирующая смесь вместе с газом-носителем подается в реакционное пространство со скоростью ~6 л/час.
Недостатком данного способа является сложность получения исходного фторидокарбоната РЗЭ и неконтролируемость процесса получения целевого продукта - LnSF. Для получения LnSF (Ln=La-Dy) необходимо чтобы карбонатная составляющая исходного фторидокарбоната, имеющая связь (-Ln-O-С-) перешла в связь (-Ln-S-). При 800-1000°C для сульфидирования кислородсодержащих соединений РЗЭ требуется минимум несколько часов обработки. Сульфидирующие газы, поступающие со скоростью ~6 л/час, воздействуют также и на связь (-Ln-F-), что неизбежно приведет к неконтролируемой потере части атомов фтора.
Цель заявляемого изобретения - разработать эффективный способ получения фазово-однородных порошков фторсульфидов РЗЭ LnSF (Ln=La-Dy).
Цель достигается тем, что для получения фазово-однородных порошков LnSF в состоянии, обеспечивающем их последующее прессование без дополнительного размельчения, в качестве исходных соединений используют порошки полуторных сульфидов РЗЭ Ln2S2 (Ln=La-Dy), на которые воздействуют 3% раствором фтористоводородной кислоты, взятой в избытке на 0,5-1 мол.% от стехиометрического количества, с последующей обработкой полученной шихты в атмосфере аргона и сульфидирующих газов - H2S+CS2 (не менее 50 объемных %) при температурах 700-850°C.
Способ получения порошков соединений LnSF (Ln=La-Dy) заключается в воздействии фторирующего вещества на соединения редкоземельных элементов (РЗЭ) с последующей термической обработкой шихты, отличающийся тем, что для получения фазово-однородных порошков LnSF в состоянии, обеспечивающем их последующее прессование без дополнительного размельчения, в качестве исходных соединений используют порошки полуторных сульфидов РЗЭ Ln2S3 (Ln=La-Dy), на которые воздействуют 3% раствором фтористоводородной кислоты (HF), взятой в избытке на 0,5-1 мол.% от стехиометрического количества, при комнатной температуре и перемешивании до прекращения выделения газа, твердую фазу отделяют от раствора декантацией, высушивают при температуре 80°C и остаточном давлении менее 0,1 атм, полученную шихту термически обрабатывают в предварительно вакуумированном реакторе в атмосфере аргона и сульфидирующих газов - H2S+CS2 (не менее 50 объемных %) при температурах 700-850°C. Продолжительность обработки увеличивается в ряду РЗЭ La-Dy при 700°C от 7 до 17 часов, при 800-850°C от 1 до 2 часов.
Получение фазово-однородных порошков фторсульфидов РЗЭ обеспечивается следующими факторами:
- равномерностью образования на поверхности всех частиц Ln2S3 (Ln=La-Dy) слоя фазы LnF3, в каждой отдельной частице в соотношении, близком к стехиометрическому 1 Ln2S3:1 LnF3, что обеспечивается одинаковыми условиями нахождения частиц Ln2S3 в перемешивающемся 3% растворе фтористоводородной кислоты, с содержанием HF, необходимым для достижения соотношения фаз 1 Ln2S3:1 LnF3
- практически полным смещением равновесия реакции:
Ln2S3+6HF=2LnF3+3H2S↑
в сторону образования продуктов, в связи с выделением газообразного вещества - H2S.
- термической обработкой шихты в восстановительной атмосфере аргона и сульфидирующих газов - H2S+CS2 с продолжительность обработки, увеличивающейся в ряду РЗЭ La-Dy при 700°C от 7 до 17 часов, при 800-850°C от 1 до 2 часов обеспечивает протекание реакции:
Ln2S3+LnF3=3LnSF
и получение фазово-однородного порошка соединений LnSF (Ln=La-Dy). Полученные частички соединения LnSF обособлены либо слабо спечены.
Особенность способа получения фазово-однородных порошков фторсульфидов РЗЭ в том, что при воздействии на порошки полуторных сульфидов РЗЭ эквивалентным количеством 3% раствора фтористоводородной кислоты при перемешивании, вследствие быстроты протекания реакции и эквивалентного количества HF, только поверхностный слой частицы порошка Ln2S3 реагирует с фтористоводородной кислотой, образуя на поверхности частиц трифторид лантаноида LnF3 (Ln=La-Dy). В каждой отдельной частице создается близкое к стехиометрии соединений LnSF соотношение фаз: LnF3 - на поверхности и Ln2S3 - в центре частицы. При термической обработке таких частиц диффузионное взаимодействие фаз LnF3 и Ln2S3 преимущественно происходит в объеме одной частицы, что существенно сокращает время термической обработки образования гомогенного продукта.
Заполнение реактора сульфидирующими газами H2S+CS2 создает восстановительную атмосферу, предотвращающую взаимодействие кислородсодержащих молекул с LnSF с образованием оксисоединений. В процессе нагрева CS2 взаимодействует с возможными остатками H2O и O2, с образованием соединений CO, H2S, S2, SO2, которые уже не вызывают окисление целевых продуктов, предотвращая образование кислородсодержащих примесей:
2H2O+2CS2→2H2S+2CO+S2
2CS2+O2→2CO+2S2
2CS2+2O2→2C+2SO2+S2
Термообработка, проводимая при температурах 700-850°C, обеспечивает количественное образование фторсульфида преимущественно в объеме одной частицы.
Соединения LnSF (Ln=La-Dy) по данным рентгенофазового анализа, результатам изучения микроструктуры спеченных или литых образцов являются однофазными.
Заявляемый способ осуществляют следующим образом:
Пример 1. Получение порошка фторсульфида лантана LaSF
4,0 г порошка полуторного сульфида лантана La2S3 помещают в стеклоуглеродный тигель и приливают 13,5 мл 3% фтористоводородной кислоты, при комнатной температуре и слабом перемешивании. После прекращения выделения газа (около 10 минут) твердую фазу отделяют от раствора декантацией, высушивают при температуре 80°C и остаточном давлении менее 0,1 атм. Полученную шихту термически обрабатывают в предварительно вакуумированном реакторе в атмосфере аргона и сульфидирующих газов - H2S+CS2 (не менее 50 объемных %).
При температуре 700°C длительность процесса образования фторсульфида лантана составляет 7 часов. При 800°C - 1 час, дальнейшее увеличение температуры до 850°C не приводит к заметному уменьшению времени получения LaSF, и составляет также около 1 часа, при этой температуре порошок начинает спекаться.
По результатам изучения микроструктуры спеченных или литых образцов фторсульфид является однофазным. По данным рентгенофазового анализа полученный продукт обладает фазовой однородностью и присутствуют только рефлексы фазы LaSF.
Пример 2. Получение порошка фторсульфида гадолиния GdSF, как в примере 1, но отличающийся тем, что при температуре 700°C длительность процесса образования фторсульфида гадолиния составила 16 часов. При 800°C - 1,5 часа, дальнейшее увеличение температуры до 850°C не приводит к уменьшению времени получения фторсульфида и составляет также около 1,5 часа, при этой температуре порошок начинает спекаться
По результатам изучения микроструктуры спеченных или литых образцов фторсульфид является однофазным. По данным рентгенофазового анализа полученный продукт обладает фазовой однородностью и присутствуют только рефлексы фазы GdSF.
Доступность исходных веществ, быстрота протекания реакции в объеме одной частицы и минимизация возможности образования кислородсодержащих примесей обеспечивает получение фазово-однородного порошка LnSF (Ln=La-Dy), который без дополнительной механической обработки отвечает требованиям сырья для получения изделий методом прессования.
Литература
1. Demorgues A. Rare earth fluorosulfides LnSF and Ln2AF4S2 as new colour pigments. / Demorgues A., Tressaud A., Laronze H. // Journal of allous and compounds. - 2001 - vol.323-324. - s.223-230.
2. Ардашникова Е.И., Борзенкова М.П., Новоселова А.В. Система DyF3-Dy2S3-Bi2S3. / Журнал неорганической химии. - 1985. - Т.34. - вып.5. - с.1303-1309.
3. Schleid T. Drei Formen von Selten-Erd(III)-Fluoridsulfiden: A-LaFS, B-YFS und C-LuFS // Zeitschrift für anorganische und allgemeine Chemie. - 1999. - Volume 625 (10). - Pages 1700-1706.
4. Верховец М.Н. Исследование диаграмм плавкости систем La2S3-La2O3, La2S3-LaF3, La2O3-LaF3: Автореф. дисс. к.х.н. - Новосибирск, 1973.
5. Фазовая диаграмма системы лантан-сера. / К.Е.Миронов, И.Г.Васильева, А.А.Камарзин и др. // Неорг. материалы. - 1978. - Т.14. - №4. - С.641-644.
6. Горбунова Л.Г. Физико-химический анализ систем Ln-S (Ln=Nd, Er): Дис. канд. хим. наук. - Новосибирск, 1990. - 212 с.

Claims (1)

  1. Способ получения порошков соединений LnSF (Ln=La-Dy) заключается в воздействии фторирующего вещества на соединения редкоземельных элементов (РЗЭ) и последующей термической обработкой шихты, отличающийся тем, что для получения фазово-однородных порошков LnSF в состоянии, обеспечивающем их последующее прессование без дополнительного размельчения, в качестве исходных соединений используют порошки полуторных сульфидов РЗЭ Ln2S3 (Ln=La-Dy), на которые воздействуют 3%-ным раствором фтористоводородной кислоты, взятой в избытке на 0,5-1 мол.% от стехиометрического количества, с последующей обработкой полученной шихты в атмосфере аргона и сульфидирующих газов - H2S+CS2 при температурах 700-850°С.
RU2011108132/05A 2011-03-02 2011-03-02 СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ СОЕДИНЕНИЙ LnSF (Ln=La-Dy) RU2458862C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011108132/05A RU2458862C1 (ru) 2011-03-02 2011-03-02 СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ СОЕДИНЕНИЙ LnSF (Ln=La-Dy)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011108132/05A RU2458862C1 (ru) 2011-03-02 2011-03-02 СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ СОЕДИНЕНИЙ LnSF (Ln=La-Dy)

Publications (1)

Publication Number Publication Date
RU2458862C1 true RU2458862C1 (ru) 2012-08-20

Family

ID=46936608

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011108132/05A RU2458862C1 (ru) 2011-03-02 2011-03-02 СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ СОЕДИНЕНИЙ LnSF (Ln=La-Dy)

Country Status (1)

Country Link
RU (1) RU2458862C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2028275C1 (ru) * 1992-01-04 1995-02-09 Иртышский химико-металлургический завод Способ получения фторидов редкоземельных металлов
RU2109686C1 (ru) * 1996-02-01 1998-04-27 Акционерное общество закрытого типа "Техноген" Способ извлечения редкоземельных элементов из фосфогипса
RU2328448C1 (ru) * 2006-12-06 2008-07-10 ФГУП "Всероссийский научно-исследовательский институт химической технологии" Способ получения фторидов металлов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2028275C1 (ru) * 1992-01-04 1995-02-09 Иртышский химико-металлургический завод Способ получения фторидов редкоземельных металлов
RU2109686C1 (ru) * 1996-02-01 1998-04-27 Акционерное общество закрытого типа "Техноген" Способ извлечения редкоземельных элементов из фосфогипса
RU2328448C1 (ru) * 2006-12-06 2008-07-10 ФГУП "Всероссийский научно-исследовательский институт химической технологии" Способ получения фторидов металлов

Similar Documents

Publication Publication Date Title
EP3459920B1 (en) Method for producing an oxide electrolyte sintered body of garnet-type
Atuchin et al. Electronic structure of β-RbNd (MoO4) 2 by XPS and XES
JPWO2020136956A1 (ja) ハロゲン化物の製造方法
Meyer The Reduction of Rare‐Earth Metal Halides with Unlike Metals–Wöhler's Metallothermic Reduction
Yeamans et al. Oxidative ammonolysis of uranium (IV) fluorides to uranium (VI) nitride
Rojac et al. The formation of a carbonato complex during the mechanochemical treatment of a Na2CO3–Nb2O5 mixture
RU2458862C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ СОЕДИНЕНИЙ LnSF (Ln=La-Dy)
RU2500502C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ФТОРСУЛЬФИДОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ LnSF
Niewa et al. New ways to high-quality bulk scandium nitride
Knausenberger et al. Preparation and phase studies of titanium phosphides
Kruger et al. Preparation of the sulphides and phosphides of plutonium
Sato et al. Synthesis, crystal structure refinement and electrical properties of uranium oxysulfide, UOS
Merz et al. Thermo‐analytical Investigations on the Superoxides AO2 (A= K, Rb, Cs), Revealing Facile Access to Sesquioxides A4O6
Jin et al. Solid-state syntheses and single-crystal characterizations of three tetravalent thorium and uranium silicates
JP6201680B2 (ja) 導電性酸化亜鉛粉末およびその製造方法
Scott et al. In situ study of the precursor conversion reactions during solventless synthesis of Co 9 S 8, Ni 3 S 2, Co and Ni nanowires
RU2659250C1 (ru) Способ получения сложного оксида тулия и железа TmFe2O4±δ
Donkova et al. Thermal magnetic investigation of the decomposition of NixMn1− xC2O4· 2H2O
SU1119982A1 (ru) Способ получени титаната лити
EP4129913A1 (en) Method for producing halide
RU2640121C2 (ru) Способ получения карбоборидов редкоземельных металлов
Schadow et al. Investigations Concerning the Quasi‐binary System V2O5–Nb2O5
RU2679244C1 (ru) Способ получения поликристаллов четверных соединений ALnAgS3 (A = Sr, Eu; Ln = Dy, Ho)
Buchinskaya et al. Synthesis of Nonstoichiometric Samarium Fluoride SmF 2+ x
Beuermann et al. Syntheses, some properties and Infrared and Raman spectra of new xenon (VI) fluorometalates

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180303