RU2456314C2 - Материал для получения биочипа - Google Patents

Материал для получения биочипа Download PDF

Info

Publication number
RU2456314C2
RU2456314C2 RU2010138789/05A RU2010138789A RU2456314C2 RU 2456314 C2 RU2456314 C2 RU 2456314C2 RU 2010138789/05 A RU2010138789/05 A RU 2010138789/05A RU 2010138789 A RU2010138789 A RU 2010138789A RU 2456314 C2 RU2456314 C2 RU 2456314C2
Authority
RU
Russia
Prior art keywords
cema
biochip
monomer
edma
copolymer
Prior art date
Application number
RU2010138789/05A
Other languages
English (en)
Other versions
RU2010138789A (ru
Inventor
Татьяна Борисовна Тенникова (RU)
Татьяна Борисовна Тенникова
Евгения Георгиевна Влах (RU)
Евгения Георгиевна Влах
Марина Юрьевна Робер (RU)
Марина Юрьевна Робер
Original Assignee
Учреждение Российской академии наук Институт высокомолекулярных соединений РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт высокомолекулярных соединений РАН filed Critical Учреждение Российской академии наук Институт высокомолекулярных соединений РАН
Priority to RU2010138789/05A priority Critical patent/RU2456314C2/ru
Publication of RU2010138789A publication Critical patent/RU2010138789A/ru
Application granted granted Critical
Publication of RU2456314C2 publication Critical patent/RU2456314C2/ru

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Изобретение относится к области химии высокомолекулярных соединений и может найти применение в аналитической химии, молекулярной биологии, биотехнологии, фармакологии и медицине для анализа белков и ДНК. Описан материал для получения биочипа, который представляет собой сополимер, состоящий из функционального и сшивающего сомономеров. В качестве функционального мономера используют 2-цианоэтилметакрилат (ЦЭМА). Для получения материала с меньшим содержанием функционального мономера и, вместе с тем, обладающего гидрофильными свойствами, часть мономера ЦЭМА замещают на мономер 2-гидроксиэтилметакрилат (ГЭМА). При этом для синтеза используют следующие соотношения мономеров: ЦЭМА - 23 мол.%; ГЭМА - 45 мол.%; ЭДМА - 32 мол.%. Материал представляет собой макропористый слой, который синтезируют на поверхности стеклянной подложки. Для получения биочипа на поверхности полимерного материала ковалентно иммобилизуют соответствующий биозонд (белки или ДНК/РНК). Технический результат - возможность введения белковых зондов в более мягких условиях (pH 7.5, температура 20-22°C) и за меньшее время (4 часа). При этом чувствительность биоанализа повышается как минимум в 2 раза (сополимер ЦЭМА-ГЭМА-ЭДМА), по сравнению с использованием ближайших аналогов-биочипов на основе макропористого материала, полученного из сополимера глицидилметакрилата с этиленгликольдиметакрилатом (ГМА-ЭДМА). 2 табл., 2 пр.

Description

Данное изобретение относится к области химии высокомолекулярных соединений и предназначено для применения в аналитической химии, молекулярной биологии, биотехнологии, фармакологии и медицине для анализа белков и ДНК.
Одними из наиболее известных трехмерных материалов, используемых для получения основы, или платформы биочипа, являются материалы на основе полиакриламидных гелей [А.Ю.Рубина, С.В.Паньков, С.М.Иванов, Е.И.Дементьева, А.Д.Мирзабеков. // ДАН, 2001, Т.381, №5, С.701-704; Пат. РФ 2206575, патентообладатель Институт молекулярной биологии им. В.А.Энгельгардта РАН (Москва), «Композиция для иммобилизации биологических макромолекул в гидрогелях, способ приготовления композиции, биочип, способ проведения ПЦР на биочипе», дата приоритета 25.07.2001, дата публикации 20.03.2006]. Разработанные авторами материалы представляют собой слабосшитые сетчатые набухающие гидрогели, получаемые методом фотоинициируемой радикальной полимеризации. Структура гидрогеля по своей природе неоднородна и трудно воспроизводима. Поровая структура материала достигается за счет набухания трехмерной сетки в термодинамически хорошем растворителе, вследствие чего пористость гидрогеля существенно зависит от типа растворителя. При эксплуатации известных биочипов речь идет о диффузии исследуемых веществ в набухшую гелевую структуру (сетку), степень упорядоченности которой и удельную рабочую поверхность контролировать невозможно. Для получения биочипов на поверхности полиакриламидного геля иммобилизуют биологические макромолекулы (ДНК), представляющие собой так называемые биозонды (лиганды). Использование только полиакриламидных гелей ограничивает спектр получаемых гидрогелей по структуре и пористости, так как варьирование морфологической структуры геля возможно в очень узких пределах. Кроме того, неконтролируемость упорядоченности структуры и удельной рабочей поверхности геля требует для гарантируемого качества анализов на известном биочипе вводить гораздо большее количество однородных молекул-зондов в гель на единицу объема.
Другим примером материалов, используемых в качестве основы биочипа, являются нитроцеллюлозные мембраны [В.A.Stillman, J.L.Tonkinson. // FAST slides: A novel surface for microarrays. Biotechiniques. 2000, V.29, P.630-635]. Биочипы на основе нитроцеллюлозных мембран получают путем прикрепления стопки из нескольких мембран к поверхности инертной поддерживающей матрицы (стекло, пластмассовая пластина или др.). Использование стопки из нескольких мембран позволяет повысить емкость биочипа, а следовательно, чувствительность анализа. Нитроцеллюлозные мембраны характеризуются химической стабильностью и высокой степенью гидрофильности. Последнее, с одной стороны, создает благоприятное микроокружение для биологических молекул и способствует снижению неспецифических взаимодействий по гидрофобному механизму, а с другой, приводит к существенному ухудшению качества анализируемой зоны, вызванному ее размыванием.
Биочипы на основе полиакриламидных гелей и нитроцеллюлозных мембран были разработаны специально для анализа ДНК и мало пригодны для анализа других классов биологических структур, например белков. В отличие от ДНК, белки представляют собой гораздо более сложные и лабильные структуры, требующие специального подхода к их модификации и анализу. В частности, необходимо свести к минимуму любые манипуляции с белками вне среды их естественного обитания.
Существенным и очевидным недостатком обоих типов материалов является, в первую очередь, отсутствие реакционно-способных функциональных групп, позволяющих проводить непосредственную иммобилизацию биозондов. Это, в свою очередь, требует проведения дополнительных стадий модификации или активации поверхности с целью введения таких реакционных центров, необходимых для осуществления последующей биофункционализации материала, что, в свою очередь, существенно усложняет процесс изготовления биочипов.
Указанные выше недостатки известных изобретений свидетельствуют о том, что проблема улучшения качества биочипов остается актуальной.
Наиболее близкими к заявляемому изобретению являются материалы на основе макропористого полимерного слоя, представляющего собой сополимер глицидилметакрилата (ГМА) и этиленгликольдиметакрилата (ЭДМА) или сополимер 2-цианоэтилметакрилата (ЦЭМА) и этиленгликольдиметакрилата, и предложенные недавно для использования в качестве платформы биочипа [Пат. РФ 2298797, патентоообладатель ЗАО НЦ БиаХром, «Биочип и способ его изготовления», дата приоритета: 03.05.2005, дата выдачи: 10.05.2007; М.Ю.Робер. // Функциональные полимерные системы для высокочувствительного анализа белков. Диссертация на соискание ученой степени кандидата наук, ИВС РАН, Санкт-Петербург, 2009]. Данные материалы получают методами радикальной фотоиницируемой сополимеризации мономеров в присутствии инициаторов и порогенных растворителей. При этом платформы биочипов состоят из инертной поддерживающей пластины (стекло, алюминий) и ковалентно связанного с ней слоя макропористого полимерного материала. К принципиальным отличиям разработанных платформ от описанных выше аналогов относятся простота синтеза, постоянство и воспроизводимость поровой структуры, которая сохраняет свои свойства, как в сухом состоянии, так и в водно-органических средах. Стабильная макропористая структура материала обеспечивает отсутствие диффузионных ограничений массопереносу, что, в свою очередь, сокращает временные интервалы, требуемые для проведения стадий промывания биочипов. Кроме того, отличительной чертой анализа с использованием биочипов на основе сополимера ГМА-ЭДМА от, например, нитроцеллюлозных мембран, является возможность формирования четких, компактных сферических аналитических зон. Данные материалы были разработаны специально для анализа белков.
Сополимер ГМА-ЭДМА, а следовательно, и макропористый полимерный материал, изготовленный из этого сополимера, содержит собственные реакционно-способные эпоксидные группы, позволяющие проводить одностадийную модификацию поверхности аминосодержащими биолигандами (белки, ДНК). К существенным недостаткам материала на основе сополимера ГМА-ЭДМА относится длительность реакции биофункционализации. Так, для достижения максимума количества вводимого в поверхность сорбента белка требуется время, равное 16-18 часам при температуре 37°C. Кроме того, низкая реакционная способность эпоксидных групп, локализованных на твердой матрице, ограничивает возможность увеличения емкости аналитической ячейки, т.е. количества вводимого биозонда.
Использование материала на основе сополимера ЦЭМА-ЭДМА позволяет сократить время, требуемое для биофункционализации поверхности материала. К недостаткам данных материалов можно отнести гидрофобную природу поверхности, способствующую появлению неспецифических взаимодействий и замедлению проникновения водных растворов биологических веществ в поры материала.
Технической задачей и положительным результатом предлагаемого изобретения является синтез гидрофильных макропористых материалов монолитного типа, представляющих собой универсальные матрицы для создания как белковых, так и ДНК-биочипов, а именно материалов на основе сополимера 2-цианоэтилметакрилата (ЦЭМА) с 2-гидроксипропилендиметакрилатом (ГПДМА), а также тройного сополимера 2-цианоэтилметакрилата с 2-гидроксиэтилметакрилатом (ГЭМА) и этиленгликольдиметакрилатом. Использование полученных гидрофильных материалов в качестве основы биочипа ускоряло смачивание поверхности водными растворами и, как следствие, обеспечивало более быстрое проникновение реагентов в поры полимерной матрицы. Так, полная смачиваемость ЦЭМА-ГПДМА слоя 0.01 М натрий-фосфатным буферным раствором достигалась в течение 1 мин, тогда как для слоя известных аналогов ГМА-ЭДМА и ЦЭМА-ЭДМА это время составляло около 15-20 мин. При этом для всех полученых материалов сохранялось высокое качество анализируемых зон, характеризовавшихся четкой сферичностью и однородностью. Коэффициент вариации зон для полученных материалов, характеризующий воспроизводимость биоанализа, лежал в пределах 6-8% и был близок к аналогичным материалам на основе известного ГМА-ЭДМА сополимера 6%. Проведена апробация и показана пригодность разработанных материалов для создания высокочувствительных биочипов. Так, в случае использованной модельной пары белков предел детектирования составлял 2-10 нг белка/мл раствора, что соответствует 0.01-0.07 пмоль белка/мл раствора.
Пример 1. Синтез материалов на основе сополимера ЦЭМА-ГПДМА
С целью получения платформы на основе сополимеров 2-цианоэтилметакрилата для последующего получения биочипа синтез полимерного материала проводят в ячейках поддерживающей матрицы, роль которой выполняют стеклянные пластины, содержащие ячейки размером 0.2×25.0×50.0 мм. Для синтеза использовали мономеры 97-99% чистоты. Отношение между мономерами было постоянно во всех экспериментах (мол.%) и составляло: ЦЭМА - 68, ГПДМА - 32. Синтез полимерных материалов проводили методом свободно-радикальной фотоинициируемой полимеризации с использованием в качестве инициатора 2-гидрокси-2,2-диметилацетофенона. Оптимальная концентрация инициатора составляла 1.0 масс.%, а время полимеризации - 20 мин. В качестве порогенных растворителей использовали композиции различного состава, состоящие из додеканола и ПЭГ-200/400 или 1% раствора полистирола с молекулярной массой 44000 в толуоле (Таблица 1).
Согласно данным ртутной порозиметрии средний размер пор полученных образцов М1-М4 лежал в пределах 560-2130 нм в зависимости от использованной системы порообразующих веществ. Значения удельной площади поверхности варьировали в пределах от 27 до 40 м2/г. Значения общей пористости лежали в интервале 50-56%. Все полученные материалы характеризовались узким распределением пор по размерам.
Получение биочипов на основе макропористых полимерных слоев, изготовленных из сополимеров ЦЭМА, и их тестирование осуществляли с использованием модельных аффинных пар белков и нуклеиновых кислот. В первом случае использовали пару мышиный иммуноглобулин G-антитела к мышиному иммуноглобулину G, полученные путем иммунизации коз, во втором случае использовали пару В2573 RpoE нуклеотид - РНК из клеток культуры Escherichia coli. Введение макромолекул биозондов осуществляли путем проведения прямых реакций ковалентного связывания с поверхностью макропористого материала. Концентрацию раствора белка варьировали в пределах от 0.2-1.0 мг/мл; концентрацию нуклеотида от 10 до 50 мкМ; значения pH буферных растворов, используемых для иммобилизации аффинных лигандов, составляли 7.5, 8.0 и 9.4. Показано, что оптимальные условия введения биозонда были следующими: концентрация раствора белка - 0.8-1.0 мг/мл, нуклеотида - 50 мкМ; pH 7.4 для обоих типов реакций. Оптимальное время для иммобилизации белков составило 4 часа при температуре 22°C, а для нуклеиновых кислот - 2 часа при температуре 80°C.
Установлено, что из ряда полученных образцов совокупностью наиболее оптимальных свойств для получения эффективного биочипа обладали материалы М2 и М4. Предел детектирования для использованной пары белков составлял 0.01 пмоль белка/мл раствора.
Пример 2. Синтез материалов на основе сополимера ЦЭМА-ГЭМА-ЭДМА
В синтезе тройного сополимера ЦЭМА-ГЭМА-ЭДМА соотношение мономеров в исходной смеси составляло (мол.%): ЦЭМА - 23, ГЭМА - 45, ЭДМА - 32. В качестве порообразующих веществ использовали композиции, состоящие из додеканола и циклогексанола или ПЭГ-200, -400 или -600 (Таблица 2). Прочие условия были аналогичными таковым, описанным в Примере 1.
Согласно данным ртутной порозиметрии средний размер пор полученных образцов М5-М10 лежал в пределах 720-1450 нм в зависимости от использованной системы порообразующих веществ. Значения удельной площади поверхности варьировали в пределах от 27 до 43 м2/г. Значения общей пористости лежали в интервале 49-56%. Все полученные материалы характеризовались узким распределением пор по размерам.
Биочипы на основе материалов ЦЭМА-ГЭМА-ЭДМА были протестированы так же, как описано в Примере 1. Установлено, что из ряда полученных материалов совокупностью наиболее оптимальных свойств обладал материал М9. Предел детектирования для использованной пары белков составляла 0.07 пмоль белка/мл раствора.
Таким образом, наиболее оптимальными характеристиками, обеспечивающими получение эффективных биоаналитических систем (биочипов), обладали следующие материалы: на основе сополимера ЦЭМА-ГПДМА - М2 и М4; на основе сополимера ЦЭМА-ГЭМА-ЭДМА - М9. Характеристики материалов, а именно размер пор, распределение пор по размерам, удельная поверхность являлись однородными, контролируемыми, воспроизводимыми и могут быть стандартизованы.
Макропористый материал на основе сополимера ЦЭМА-ГПДМА был использован для разработки тест-системы для анализа остеопонтина (маркерного белка костеобразования), экскретируемого в культуральную жидкость в процессе инженерии костной ткани. Предел детектирования остеопонтина в биологической жидкости составил 1 нг/мл (30 фмоль остеопонтина/мл раствора).
Таблица 1
Характеристики материалов на основе сополимера ЦЭМА-ГПДМА
Материал Пороген(ы) Соотношение порогенов Средний размер пор, нм Удельная площадь поверхности, м2
M1 Додеканол - 560 40
M2 ПЭГ-200: додеканол 3:7 850 28
M3 ПЭГ-400: додеканол 3:7 830 27
M4 Додеканол: 1% полистирол в толуоле 3:7 2130 31
Таблица 2
Характеристики материалов на основе сополимера ЦЭМА-ГЭМА-ЭДМА
Материал Пороген(ы) Соотношение порогенов Средний размер пор, нм Удельная площадь поверхности, м2
M5 Додеканол - 880 33
M6 Циклогексанол: додеканол 7:3 1290 27
M7 Циклогексанол: додеканол 1:1 1450 28
M8 ПЭГ-200: додеканол 3:7 1290 30
M9 ПЭГ-400: додеканол 3:7 1110 42
M10 ПЭГ-600: додеканол 3:7 720 43

Claims (1)

  1. Материал для получения биочипа, представляющий собой сополимер, состоящий из 2-цианоэтилметакрилата, 2-гидроксиэтилметакрилата и этиленгликольдиметакрилата, синтезируют, используя следующие соотношения мономеров, мол.%:
    2-цианоэтилметакрилат 23 2-гидроксиэтилметакрилат 45 этиленгликольдиметакрилат 32
RU2010138789/05A 2010-09-20 2010-09-20 Материал для получения биочипа RU2456314C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010138789/05A RU2456314C2 (ru) 2010-09-20 2010-09-20 Материал для получения биочипа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010138789/05A RU2456314C2 (ru) 2010-09-20 2010-09-20 Материал для получения биочипа

Publications (2)

Publication Number Publication Date
RU2010138789A RU2010138789A (ru) 2012-03-27
RU2456314C2 true RU2456314C2 (ru) 2012-07-20

Family

ID=46030545

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010138789/05A RU2456314C2 (ru) 2010-09-20 2010-09-20 Материал для получения биочипа

Country Status (1)

Country Link
RU (1) RU2456314C2 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2851181A1 (fr) * 2003-02-17 2004-08-20 Commissariat Energie Atomique Procede de revetement d'une surface
RU2298797C2 (ru) * 2005-05-03 2007-05-10 Закрытое акционерное общество Научный центр "БИАХРОМ" Биочип и способ его изготовления

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2851181A1 (fr) * 2003-02-17 2004-08-20 Commissariat Energie Atomique Procede de revetement d'une surface
RU2298797C2 (ru) * 2005-05-03 2007-05-10 Закрытое акционерное общество Научный центр "БИАХРОМ" Биочип и способ его изготовления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
РОБЕР М.Ю. Функциональные полимерные системы для высокочувствительного анализа белков. Автореф. дисс. на соиск. уч. ст. канд. хим. наук. - СПб., 2009. СИНИЦИНА Е.С. Синтез макропористых полимерных материалов монолитного типа с использованием макромолекулярных порогенов. http://conf.msu.ru/archive/Lomonosov_2009/28_3.pdf, 2009. ВЛАХ Е.Г. Макропористые полимерные материалы: синтез нового функционального сополимера и его использование для биологического микроанализа. - Высокомолекулярные соединения, Серия Б, 2009, том 51, №9, с.1677-1684. *

Also Published As

Publication number Publication date
RU2010138789A (ru) 2012-03-27

Similar Documents

Publication Publication Date Title
US7172866B2 (en) Methods and gel compositions for encapsulating living cells and organic molecules
US10306883B2 (en) Use of porous polymer materials for storage of biological samples
KR100709795B1 (ko) 바이오칩 및 이의 제조방법
JP6903048B2 (ja) ポリマー粒子
US20090280997A1 (en) Microarray system
JP2007510889A (ja) 表面への分子の結合
CN103364565B (zh) 用于检测样品中靶蛋白质的蛋白质印迹免疫检测方法
WO1987006152A1 (en) Methods for selectively reacting ligands immobilized within a temperature-sensitive polymer gel
US20120276576A1 (en) Porous polymer monoliths, processes for preparation and use thereof
EP1546406A1 (en) Bio-chip prepared by gelation on a chip substrate
RU2216547C2 (ru) Способ полимеризационной иммобилизации биологических макромолекул и композиция для его осуществления
RU2456314C2 (ru) Материал для получения биочипа
RU2298797C2 (ru) Биочип и способ его изготовления
Sinitsyna et al. New platforms for 3-D microarrays: Synthesis of hydrophilic polymethacrylate monoliths using macromolecular porogens
Rober et al. New 3-D microarray platform based on macroporous polymer monoliths
JP5093633B2 (ja) 複数物質応答性ゲルおよびその製造方法並びにその利用
KR20070031759A (ko) 고분자겔을 이용한 바이오칩의 제조방법
GB2493763A (en) Microplates with Enhanced Immobilisation capabilities
RU2401693C1 (ru) Способ получения макропористого полимерного материала монолитного типа
CN116891551A (zh) 一种星型聚合物及其制备方法和应用
US20080103239A1 (en) Radically Crosslinkable Hydrogel Comprising Linker Groups
CN116446055A (zh) 一种具有高密度反应位点的基底的制备方法及应用
JP2014020938A (ja) バイオチップの製造方法及びバイオチップ
Fillaeli Review of the Molecularly Imprinted Hydrogel In Chemical Analysis
JP2007225574A (ja) 固相担体の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170921