RU2454306C1 - Способ разрушения массивного чугунного монолита - Google Patents

Способ разрушения массивного чугунного монолита Download PDF

Info

Publication number
RU2454306C1
RU2454306C1 RU2010144498/02A RU2010144498A RU2454306C1 RU 2454306 C1 RU2454306 C1 RU 2454306C1 RU 2010144498/02 A RU2010144498/02 A RU 2010144498/02A RU 2010144498 A RU2010144498 A RU 2010144498A RU 2454306 C1 RU2454306 C1 RU 2454306C1
Authority
RU
Russia
Prior art keywords
spear
oxygen
hole
roll
monolith
Prior art date
Application number
RU2010144498/02A
Other languages
English (en)
Other versions
RU2010144498A (ru
Inventor
Алексей Константинович Самойлов (RU)
Алексей Константинович Самойлов
Александр Григорьевич Зельцер (RU)
Александр Григорьевич Зельцер
Леонид Константинович Павлушков (RU)
Леонид Константинович Павлушков
Владимир Валентинович Каморин (RU)
Владимир Валентинович Каморин
Михаил Владимирович Горбунов (RU)
Михаил Владимирович Горбунов
Сергей Викторович Чолак (RU)
Сергей Викторович Чолак
Андрей Борисович Мальцев (RU)
Андрей Борисович Мальцев
Original Assignee
Открытое акционерное общество "Северсталь" (ОАО "Северсталь")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Северсталь" (ОАО "Северсталь") filed Critical Открытое акционерное общество "Северсталь" (ОАО "Северсталь")
Priority to RU2010144498/02A priority Critical patent/RU2454306C1/ru
Publication of RU2010144498A publication Critical patent/RU2010144498A/ru
Application granted granted Critical
Publication of RU2454306C1 publication Critical patent/RU2454306C1/ru

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Heat Treatment Of Articles (AREA)
  • Earth Drilling (AREA)

Abstract

Изобретение относится к экономичным способам разрушения массивных чугунных монолитов, в том числе отработанных чугунных прокатных валков и может быть использовано в копровых цехах металлургических комбинатов и на предприятиях переработки металлолома. Внутри массивного чугунного монолита создают неравномерные термические напряжения. Для этого посредством высокотемпературного огнеструйного источника тепла в монолите забуривают шпур, постепенно продвигая огнеструйный источник тепла внутрь монолита. По достижении необходимой глубины шпура прекращают дальнейшее продвижение источника тепла внутрь монолита и интенсивно прогревают внутреннюю часть монолита, продолжая непрерывно подводить тепловую энергию через образовавшийся шпур. В качестве высокотемпературного огнеструйного источника тепла для забуривания шпура в монолите используют термическую кислородно-копьевую резку. Интенсивное прогревание внутренней части монолита осуществляют за счет сгорания материала кислородного копья. Технический результат изобретения - расширение арсенала технических средств и технологических приемов разрушения чугунных монолитов. 5 з.п. ф-лы, 5 ил.

Description

Изобретение относится к экономичным способам разрушения массивных чугунных монолитов, в том числе отработанных чугунных прокатных валков и может быть использовано в копровых цехах металлургических комбинатов и на предприятиях переработки металлолома.
Известен способ разрушения крупногабаритных отходов металлургического производства, в том числе валков мощных прокатных станов (RU №2042098, МПК 6 F27D 3/15, С22В 1/248, опубл. 1993). Этот способ включает формирование шпура в объекте разрушения, закладку в него взрывчатого вещества, инициирование взрыва, при этом шпур формируют кумулятивной струей, образующейся при взрыве кумулятивного заряда, а кумулятивный заряд направляют в зону центра масс разрушаемого объекта.
Этот способ эффективен, т.к. при кумулятивном взрыве происходит формирование шпура диаметром 60-100 мм и длиной 700-1400 мм. Однако данный способ требует специального оборудования и взрывчатых веществ, а также повышенных мер безопасности.
Известен наиболее близкий к заявленному изобретению способ термической кислородно-копьевой резки металлов (RU №2330748, МПК В23K 7/08, опубл. 2006). В этом способе после создания первоначального очага жидкого расплавления и сгорания, рабочую часть копья охлаждают до минимально возможной скорости ее сгорания посредством подачи высокоэнергетичной копьевой струи с повышенными значениями массопереноса кислорода и посредством установки торца рабочей части копья с зазором относительно поверхности металла, при этом интенсификация процесса разделки обеспечивается за счет более полного и более интенсивного сгорания разрезаемого металла, которое происходит в результате внутриполостной турбулентности высокоэнергетичной копьевой струи.
Данное изобретение применимо только для разделки крупногабаритных стальных массивов, т.к. поступление тепла в зону резания происходит в основном за счет сгорания разрезаемого стального материала.
Технический результат изобретения - расширение арсенала технических средств и технологических приемов разрушения чугунных монолитов.
Технический результат достигается тем, что производят забуривание шпура посредством термической кислородно-копьевой резки с постепенным продвижением кислородного копья внутрь монолита, а при достижении необходимой глубины шпура прекращают дальнейшее продвижение кислородного копья внутрь монолита и продолжают непрерывный подвод тепловой энергии через образовавшийся шпур с интенсивным прогреванием внутренней части монолита без его расплавления до его растрескивания за счет сгорания материала кислородного копья.
В качестве монолита для разрушения использован отработанный чугунный прокатный валок, при этом забуривание шпура производят в диаметральном направлении до продольной оси валка. В качестве копья термической кислородно-копьевой резки используют трубку, в полости которой расположены дополнительные стержни для горения, дополнительный стержень располагают по всей длине трубки и выполняют его в виде скрутки из нескольких проволок круглого сечения. Для забуривания шпура использовано кислородное копье без дополнительного стержня внутри трубки, а для интенсивного прогревания внутренней части монолита используют второе кислородное копье с дополнительным стержнем внутри трубки. При разрушении отработанного чугунного валка интенсивное прогревание может быть осуществлено только в одной из половин поперечного сечения валка, при этом забуривание шпура производят таким образом, чтобы точечное горение копья в шпуре происходило в точке шпура, равноудаленной от границ выбранной для прогревания половины поперечного сечения валка.
На фиг.1 изображена схема осуществления основного варианта способа с центральным прогреванием в поперечном сечении монолитного прокатного валка; на фиг.2 - вид А, на фиг.3 - конструкция кислородного копья с внутренней вставкой, профильный разрез; на фиг.4 - разрез Б-Б на фиг.3; на фиг.5 - схема осуществления дополнительного варианта способа с периферийным прогреванием прокатного валка, поперечное сечение.
Способ разрушения массивного чугунного монолита осуществляется следующим образом (фиг.1-5).
Вначале (фиг.1, 2) посредством сгорающего кислородного копья 1 термической кислородно-копьевой резки в массивном чугунном монолите (например, в чугунном прокатном валке 2 забуривают шпур 3, постепенно продвигая сгорающее кислородное копье 1 внутрь валка 2 (например, в диаметральном направлении 4 до продольной оси 5 валка 2), с выдуванием образующихся шлаков избыточным кислородом копья 1.
По достижении необходимой глубины шпура 3 (например, до продольной оси 5 валка 2 или глубже) прекращают дальнейшее продвижение копья 1 внутрь монолитного валка 2. При этом может быть продолжена работа копья 1 по его прямому назначению - выдуванию в конце шпура 3 каплевидной полости 6, размеры которой больше диаметра шпура и которая может быть полезной для дальнейшего продолжения процесса увеличения неравномерных термических напряжений внутри валка 2 (т.е. с целью интенсивного нагревания без расплавления сформированных стенок шпура).
По окончании формирования шпура 3 (при этом шпур 3 может быть углублен дальше расположения каплевидной полости 6, например, для улучшения условий прогревания валка 2, (такой удлиненный шпур на чертежах, фиг.1,2, не показан, но забуривание шпура 3 до сквозного отверстия, т.е. «на выходе», нежелательно из-за больших потерь тепла через сквозное отверстие), необходимо интенсифицировать процесс нагревания всех образовавшихся внутри валка 2 стенок и дна шпура 3, т.к. чем быстрее они будут нагреваться до максимально возможной температуры (в оптимальном режиме без оплавления стенок и дна), тем полнее будут использоваться возможности теплопередачи в глубину материала валка 2 по всем направлениям 7, 8, 9, 10, 11 в диаметральной плоскости валка 2 (фиг.1) и по всем направлениям 12, 13, 14, 15, 16 множества профильных плоскостей валка 2, проходящих через продольную ось 5 валка 2 (фиг.2), тем больше будут перепады температур в материале валка 2 и тем большая неравномерность термических напряжений возникнет в массиве материала валка 2 (что и может привести к разрушению валка 2, например, к появлению трещины 17 на поверхности 18 валка 2).
Поэтому необходимо продолжать непрерывный интенсивный подвод тепловой энергии через образовавшийся шпур 3, но уже без плавления материала валка 2, как при забуривании шпура 3. В рассматриваемом способе продолжают подводить ту же экзотермическую тепловую энергию сгорания железа копья 1 в кислороде, но при этом узконаправленное факельно-огнеструйное выделение тепла в струе избыточного кислорода копьевой резки преобразуют посредством исключения подачи избыточного кислорода в точечное выделение тепла, т.е. копьевой факел горения преобразуют в точечное горение железа копья 1 при безызбыточной подаче кислорода (например, при уменьшенном давлении кислорода или при уменьшенном проходном сечении копья 1).
Безызбыточная подача кислорода внутрь шпура с поддержанием интенсивного горения железа возможна, потому что, во-первых, вся полость шпура 3 постоянно заполняется наступающим из копья 1 кислородом, во-вторых, все продукты сгорания вытесняются слабым давлением поступающего кислорода и успевают отдать большую часть тепла стенкам шпура 3 и, в-третьих, внутри шпура 3 постоянно поддерживается первоначальная высокая температура, необходимая для интенсивного окисления (горения) железа копья 1.
При вышеописанном прекращении дальнейшего продвижения копья по окончании формирования шпура 3, преобразовании огнеструйного горения копья в точечное горение копья и, особенно, при возникающей целесообразности интенсификации точечного горения копья, - наличие в шпуре 3 каплевидной полости 6 может предотвратить оплавление стенок и дна шпура 3 и их шлакование продуктами сгорания копья с уменьшением коэффициента теплопередачи в материал валка 2 (особенно при оптимальном расположении копья в центре каплевидной полости 6 и при размерах этой полости, превышающей диаметр шпура 3 в несколько раз, например, в 2-3 раза).
Тем не менее, для дальнейшей интенсификации горения копья внутри полости 6 желательно увеличить количество сгорающего в ней железа. Этого увеличения достигают, например, введением в трубку копья 1 дополнительного материала для экзотермического горения с соответствующим увеличением подачи кислорода для горения дополнительного материала. При этом желательно увеличить общую площадь поверхностей реагирования дополнительного материала с кислородом, поступающим по копью 1, и, по возможности, увеличить сопротивление течению потока кислорода в трубке копья 1 (особенно с целью быстрого нагревания дополнительного железа для его быстрейшего воспламенения и точечного сгорания копья для исключения поступления избыточного кислорода, например, при оптимальном давлении кислорода копьевой резки, чтобы не использовать интуитивное регулирование давления поступающего кислорода). Этих двух целей можно легко добиться, например, регламентированием основных технических характеристик копья 1 с внутренней вставкой из дополнительного железосодержащего материала для каждого из значений давления кислорода, используемых в кислородно-копьевой резке.
Например, на фиг.3, 4 показана конструкция копья 19 с внутренней вставкой 20, в которой большую часть поперечного проходного сечения трубки 21 заполняют дополнительным материалом внутренней вставки 20, а в свободную меньшую часть 22 поперечного проходного сечения трубки 21 подают кислород оптимального давления, используемого для кислородно-копьевой резки. Такая конструкция копья 19 удовлетворяет обеим вышеуказанным целям, так как вставку 2 располагают по всей длине трубки 21 и выполняют ее в виде скрутки из нескольких проволок 23 круглого сечения. Наиболее точную по диаметру вставку 20 (чтобы подавать строго определенное количество кислорода по меньшей части 22 поперечного сечения трубки 21) удобно выполнять в виде скрутки из 7 круглых проволок, как показано на фиг.3, 4.
Однако могут быть выполнены и другие варианты копья 19. Например, скрутка внутренней вставки 20 в трубку 21 может быть выполнена из меньшего или большего числа проволок 23, причем необязательно круглого сечения, а, например, прямоугольного сечения. При этом можно добиться значительного увеличения сопротивления течению потока кислорода (в том числе, например, уменьшением зазора 24 между вставкой 20 и трубкой 21, наличием множества ребристых сужений 25 и ребристых расширений 26 скрученной вставки 20, закручивающих струи кислорода при его течении внутри трубки 21).
Возможности предлагаемого способа разрушения массивных чугунных монолитов могут быть значительно расширены, например, некоторыми ниже описываемыми технологическими приемами, которые можно применить в дополнительной технологии.
Например, для удобства работы могут использоваться два разных копья (чтобы исключить случайные факторы в работе), например, для забуривания шпура 3 используют кислородное копье без дополнительного материала внутри трубки, а для интенсивного прогревания внутренней части монолита используют второе кислородное копье с дополнительным материалом внутри трубки, с вышеописанными регламентированными характеристиками, гарантирующими высокое качество работы и высокую эффективность.
Следует указать, что на фиг.1, 2 показан вариант бурения шпуров 3 наклонно вниз. Однако шпур может быть пробурен как горизонтально, так и наклонно вверх (на чертежах не показано), например, для улучшения условий выдувания каплевидной полости 6 и удаления шлаков.
Как при отсутствии видимых признаков разрушения монолита, так и при наличии трещин после интенсивного прогревания внутренней части монолита его могут разбивать мощным ударом, например копровой разбивкой.
При больших размерах монолитов, а также при их различных физико-химических и механических характеристиках выгодными могут быть другие точки забуривания шпуров (т.е. не в центр тяжести монолита, как в вышеописанном варианте выполнения способа разрушения по фиг.1, 2).
Например, очень эффективным может быть интенсивное прогревание (фиг.5) не от центра 27 массивного валка 28 по направлениям ко всем периферийным участкам 29, 30, 31, 32 валка 28 (как в вышеописанном основном варианте), а только, например, верхней половины сечения валка (заштрихованный на фиг.5). В этом случае шпур 33 пробуривают в валке 28 таким образом, чтобы центр 34 каплевидной полости 35 был примерно равноудален от границ выбранного участка сечения валка (т.е. от границ верхней половины сечения валка 28). При этом шпур 33 может быть углублен дальше каплевидной полости 35 продолжающимся участком 36 шпура 33 (с целью улучшения условий быстрого прогревания всей верхней половины сечения валка 28). При этом суммарные неравномерные термические напряжения и, как следствие, их суммарные разрывающие усилия в прогретой верхней половине сечения валка 28 будут иметь не только большие значения, но и большое плечо действия по отношению к нижней (незаштрихованной на фиг.5) половине сечения валка 28 и особенно по отношению к ее периферийному участку 31, оставшемуся в холодном состоянии. Поэтому именно из-за большого плеча действия усилий в верхней половине сечения валка 28 относительно нижней половины сечения валка 28 наиболее вероятно появление скрытых микроскопических или открытых трещин в нижней половине сечения от центра 27 валка 28 до его периферийного участка 31. При этом, как и в вышеописанном варианте осуществления способа, направление шпура 33 может быть не только наклонно вверх, как на фиг.5, но и в любом удобном для работы положении, например, наклонно вниз, вертикально вниз, горизонтально и т.д. (на чертежах не показано).
Технико-экономические преимущества способа разрушения массивного чугунного монолита - уменьшение затрат и экономичное использование тепла экзотермических реакций.

Claims (6)

1. Способ разрушения массивного чугунного монолита, включающий создание внутри монолита неравномерных термических напряжений путем забуривания шпура посредством термической кислородно-копьевой резки с постепенным продвижением кислородного копья внутрь монолита, отличающийся тем, что при достижении необходимой глубины шпура прекращают дальнейшее продвижение кислородного копья внутрь монолита и продолжают непрерывный подвод тепловой энергии через образовавшийся шпур, причем осуществляют интенсивное прогревание внутренней части монолита без расплавления до его растрескивания за счет сгорания материала кислородного копья.
2. Способ по п.1, отличающийся тем, что осуществляют разрушение монолита в виде отработанного чугунного прокатного валка, а забуривание шпура производят в диаметральном направлении до продольной оси валка.
3. Способ по п.2, отличающийся тем, что в качестве копья термической кислородно-копьевой резки используют трубку, в полости которой расположены дополнительные стержни для горения.
4. Способ по п.3, отличающийся тем, что дополнительный стержень располагают по всей длине трубки и выполняют его в виде скрутки из нескольких проволок круглого сечения.
5. Способ по п.2, отличающийся тем, что для забуривания шпура используют кислородное копье без дополнительного стержня внутри трубки, а для интенсивного прогревания внутренней части монолита используют второе кислородное копье с дополнительным стержнем внутри трубки.
6. Способ по п.1, отличающийся тем, что осуществляют разрушение монолита в виде отработанного чугунного прокатного валка, а интенсивное прогревание организуют только в одной из половин поперечного сечения валка, при этом забуривание шпура производят таким образом, чтобы точечное горение копья в шпуре происходило в точке шпура, равноудаленной от границ выбранной для прогревания половины поперечного сечения валка.
RU2010144498/02A 2010-10-29 2010-10-29 Способ разрушения массивного чугунного монолита RU2454306C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010144498/02A RU2454306C1 (ru) 2010-10-29 2010-10-29 Способ разрушения массивного чугунного монолита

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010144498/02A RU2454306C1 (ru) 2010-10-29 2010-10-29 Способ разрушения массивного чугунного монолита

Publications (2)

Publication Number Publication Date
RU2010144498A RU2010144498A (ru) 2012-05-10
RU2454306C1 true RU2454306C1 (ru) 2012-06-27

Family

ID=46311879

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010144498/02A RU2454306C1 (ru) 2010-10-29 2010-10-29 Способ разрушения массивного чугунного монолита

Country Status (1)

Country Link
RU (1) RU2454306C1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640152B (zh) * 2021-08-05 2024-03-22 北京凯特破碎机有限公司 测试钢渣颗粒可碎性能突变性的实验装置及实验方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU149297A1 (ru) * 1961-04-24 1961-11-30 Ю.А. Калачев Способ термохимической копьевой резки
US4423855A (en) * 1975-07-17 1984-01-03 Rudolf Kallenbach Thermochemical drilling and separating process for Si02 containing minerals and device for carrying out the process
FR2673556B1 (fr) * 1991-03-04 1993-06-25 Creusot Loire Procede et machine pour percer par oxycoupage un avant-trou dans une tole epaisse.
RU2042098C1 (ru) * 1993-06-23 1995-08-20 Товарищество с ограниченной ответственностью компания "Металл" Способ разрушения крупногабаритных отходов металлургического производства
RU2330748C2 (ru) * 2006-08-21 2008-08-10 Открытое акционерное общество "Северсталь" Способ термической кислородно-копьевой резки металлов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU149297A1 (ru) * 1961-04-24 1961-11-30 Ю.А. Калачев Способ термохимической копьевой резки
US4423855A (en) * 1975-07-17 1984-01-03 Rudolf Kallenbach Thermochemical drilling and separating process for Si02 containing minerals and device for carrying out the process
FR2673556B1 (fr) * 1991-03-04 1993-06-25 Creusot Loire Procede et machine pour percer par oxycoupage un avant-trou dans une tole epaisse.
RU2042098C1 (ru) * 1993-06-23 1995-08-20 Товарищество с ограниченной ответственностью компания "Металл" Способ разрушения крупногабаритных отходов металлургического производства
RU2330748C2 (ru) * 2006-08-21 2008-08-10 Открытое акционерное общество "Северсталь" Способ термической кислородно-копьевой резки металлов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ГЛИЗМАНЕНКО Д.Л. Сварка и резка металлов. - М.: Высшая школа, 1974, с.21-214. *

Also Published As

Publication number Publication date
RU2010144498A (ru) 2012-05-10

Similar Documents

Publication Publication Date Title
JP5671862B2 (ja) 多結晶シリコンロッドのクラック発生方法及びクラック発生装置
EP1848927B1 (en) Multifuncion injector and relative combustion process for metallurgical treatment in an electric arc furnace
CN104175062B (zh) 全纤维组织大型双法兰电机主轴锻造方法
CN102519328B (zh) 采用水切割和切槽爆破技术的岩巷掘进方法
Chludzinski et al. Fracture toughness of friction hydro-pillar processing welding in C–Mn steel
CN105127746A (zh) 轴承套圈的生产工艺
CN102605145A (zh) 钢铁等温淬火-回火冷却工艺
RU2454306C1 (ru) Способ разрушения массивного чугунного монолита
CN102483305B (zh) 具有多层耐火材料结构的炉的解体方法
Ning et al. Analysis of microstructure and mechanical strength of lap joints of TZM alloy welded by a fiber laser
JP5027682B2 (ja) 高融点金属インゴットの製造方法
Morales et al. Tap-hole opening: advances and improvements
CN104368623A (zh) 一种大口径不锈钢无缝钢管的生产方法
RU2578875C1 (ru) Способ механической обработки с дроблением стружки
CN204171262U (zh) 一种高强度轴类锻件
RU2297897C2 (ru) Способ правки труб
CN204176318U (zh) 一种高强度调整环锻件
CN106735966B (zh) 一种矿井井筒用钢筋熔渣防飞溅护罩
RU2042919C1 (ru) Способ разрушения массивов со свободной поверхностью из материалов с малой прочностью на растяжение
RU2805724C1 (ru) Способ электродуговой наплавки изделий из чугунов
JPH03291311A (ja) 高炉の残銑および耐火レンガの撤去方法
CN213507078U (zh) 一种用于向球化炉内喷料的喷枪
CN1717533B (zh) 岩石热破碎在薄矿脉开采中的应用
JP7280479B2 (ja) アーク式電気炉、アーク式電気炉における排滓方法及び溶融金属の製造方法
RU2042098C1 (ru) Способ разрушения крупногабаритных отходов металлургического производства