RU2450979C2 - Способ очистки цианидсодержащих вод - Google Patents

Способ очистки цианидсодержащих вод Download PDF

Info

Publication number
RU2450979C2
RU2450979C2 RU2010124769/05A RU2010124769A RU2450979C2 RU 2450979 C2 RU2450979 C2 RU 2450979C2 RU 2010124769/05 A RU2010124769/05 A RU 2010124769/05A RU 2010124769 A RU2010124769 A RU 2010124769A RU 2450979 C2 RU2450979 C2 RU 2450979C2
Authority
RU
Russia
Prior art keywords
water
cyanides
thiocyanates
cyanide
percarbonate
Prior art date
Application number
RU2010124769/05A
Other languages
English (en)
Other versions
RU2010124769A (ru
Inventor
Владимир Феофанович Петров (RU)
Владимир Феофанович Петров
Сергей Владимирович Петров (RU)
Сергей Владимирович Петров
Original Assignee
Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" (ОАО "Иргиредмет")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" (ОАО "Иргиредмет") filed Critical Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" (ОАО "Иргиредмет")
Priority to RU2010124769/05A priority Critical patent/RU2450979C2/ru
Publication of RU2010124769A publication Critical patent/RU2010124769A/ru
Application granted granted Critical
Publication of RU2450979C2 publication Critical patent/RU2450979C2/ru

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Detergent Compositions (AREA)

Abstract

Изобретение может быть использовано на предприятиях цветной металлургии, золотодобывающей промышленности и на гальваническом производстве. Для осуществления способа проводят обработку цианидсодержащих сточных вод перкарбонатсодержащим реагентом при перемешивании и при содержании в водах ионов меди не более 20 мг/л без подачи каких-либо катализаторов, активаторов или регуляторов рН среды в зону реакции. Затем обрабатываемые воды выдерживают без перемешивания в течение времени, достаточного для завершения окислительных процессов. Удаление цианидов и тиоцианатов происходит за счет окислительных реакций, тяжелые металлы осаждаются в виде карбонатов и гидроксидов. Способ обеспечивает совместную очистку вод от цианидов, тиоцианатов и тяжелых металлов при минимальном расходе окисляющего реагента, улучшает санитарные условия при их обезвреживании за счет использования малотоксичного, практически не пылящего, удобного в обращении и транспортировке реагента и исключения вторичного загрязнения вод, снижающего экологическую нагрузку в районе размещения промышленного объекта. 1 ил., 2 табл., 4 пр.

Description

Изобретение относится к способам очистки вод, содержащих цианиды, тиоцианаты и тяжелые металлы, и может найти применение на предприятиях цветной металлургии, золотодобывающей промышленности и в гальваническом производстве.
Известен способ удаления цианидов из водных растворов посредством их обработки смесью SO2 и воздуха в присутствии катализатора - ионов меди [1].
Недостатком способа является сложность технологического оформления процесса, требуется введение в зону реакции ионов меди, выступающих в качестве катализатора, не достигается требуемая глубина очистки от тиоцианатов, очищенные воды содержат продукты распада реагентов - сульфаты.
Известен способ очистки цианидсодержащих вод гипохлоритом кальция или натрия. Процесс протекает в щелочной среде (рН>10,5), что требует введения в зону реакции щелочных агентов: CaO, NaOH и т.п. Способ позволяет эффективно удалять из раствора цианиды, тиоцианаты и тяжелые металлы. Введения катализаторов для интенсификации химических реакций не требуется [2].
Недостатком способа является использование опасного при транспортировке, хранении и промышленном использовании токсичного реагента - гипохлорита кальция, требуется введение в зону реакции щелочных агентов для поддержания заданного уровня рН. Обработанные воды загрязняются хлоридами, являющимися продуктами распада реагентов.
Известен способ удаления свободных цианидов и комплексных цианидов из растворов посредством их обработки перекисью водорода в присутствии катализатора [3].
Недостатком способа является использование опасного при транспортировке и хранении реагента - перекиси водорода, требуется введение в зону реакции ионов меди в качестве катализатора.
Наиболее близким по технической сущности к предлагаемому способу является способ очистки вод, содержащих цианиды и тяжелые металлы, такие как Mn, Co, Ni, Cd, Zn и особенно Cu, их обработкой пероксидными соединениями при рН от 8 до 12. Пероксидные соединения представляют собой перкарбонаты щелочных и пероксиды щелочноземельных металлов. Они добавляются в раствор, где образуется пероксид водорода и другие компоненты. В качестве основных реагентов рекомендуется использовать перборат натрия, перкарбонат натрия и пероксид кальция [4]. Из описания изобретения следует, что для интенсификации реакции в качестве катализатора используется медь, вводимая в виде солей, например Cu (II), или уже присутствующая в сточных водах. В ряде случаев для повышения эффективности процесса детоксикации используется добавка «Активатора CN», производимого Degussa AG. Способ позволяет эффективно удалять из раствора цианиды и указанные выше тяжелые металлы. Возможность обезвреживания тиоцианатов перкарбонатами не оговаривается.
Недостатком способа является требование к наличию достаточно высокого содержания меди в исходных растворах, используемой в качестве катализатора (по описанию изобретения 60 мг/л и более). В случае ее недостатка рекомендуется использовать добавки солей, например, содержащих Cu (II) и/или добавок «Активатора CN», производимого Degussa AG; отсутствие данных по обезвреживанию тиоцианатов перкарбонатами. Использование для обезвреживания перборатов приводит к вторичному загрязнению вод борсодержащими соединениями.
Задачей изобретения является устранение указанных недостатков за счет использования солей, содержащих перкарбонаты, например малотоксичного, практически не пылящего, удобного в обращении и транспортировке реагента - перкарбоната натрия (эмпирическая формула - Na2CO3·1,5H2O2), что позволяет исключить вторичное загрязнение сточных вод сульфатами, хлоридами или соединениями бора. Минимизация расхода реагента достигается за счет проведения реакции при низком содержании меди в обезвреживаемом растворе (от 20 мг/л и менее). В этих условиях также достигается высокая степень очистки от тиоцианатов.
Технический результат достигается тем, что в способе очистки цианидсодержащих вод, включающем их обработку перкарбонатом щелочного или щелочноземельного металла, предпочтительно перкарбонатом натрия, в присутствии ионов меди в очищаемой воде, заключающуюся в перемешивании вод с ним, согласно изобретению цианидсодержащие воды обрабатывают перкарбонатсодержащим реагентом при содержании ионов меди не более 20 мг/л, а затем их выдерживают без перемешивания в течение времени, достаточного для завершения окислительных процессов.
В случае если цианидсодержащие сточные воды содержат медь в количестве более 20 мг/л, проводят их предварительную обработку для снижения концентрации меди до требуемого предела любым известным способом.
Каждый отличительный признак является существенным, т.к. отсутствие любого из них не позволяет достигнуть указанный технический результат.
Сущность способа заключается в следующем. Растворы или пульпы, содержащие цианиды, тиоцианаты и тяжелые металлы (содержание меди от 20 мг/л и менее), подвергают обработке перкарбронатсодержащим соединением, предпочтительно перкарбонатом натрия, в реакторе 1 при непрерывной агитации в течение 30-45 минут.
При этом происходит окисление цианидов и тиоцианатов:
1,5CN-+Na2CO3·1,5H2O2=1,5CNO-+Na2CO3+1,5H2O
Figure 00000001
гидролиз карбонатов с выделением ОН- иона:
Figure 00000002
окисление комплексных цианидов и вывод металлов в виде нерастворимых соединений, на примере цинка:
1,5[Zn(CN)4]2-+4Na2CO3·1,5H2O2+3ОН-=6CNO-+4Na2CO3+6H2O+1,5Zn(OH)2
затем воды или пульпа поступают в реактор 2 для выдержки, где происходит завершение окислительных процессов. В реакторе 2 растворы или пульпа находятся в течение времени, достаточного для завершения окислительных процессов, примерно 12-24 часов без перемешивания. Для проведения этой операции может быть использована любая гидроизолированная емкость подходящего объема, в том числе пруды, выполненные в виде выемки в грунте, хранилища отходов переработки руд и т.д.
Очищенные растворы направляются на сброс или используются вторично в качестве оборотной воды.
Предложенное техническое решение отличается от прототипа проведением обезвреживания при концентрации ионов меди не более 20 мг/л в растворах или пульпах без введения в зону реакции каких-либо добавок, катализаторов, регуляторов рН среды, кроме перкабонатсодержащего реагента, выдерживанием без перемешивания в течение времени, достаточного для завершения окислительных процессов, и возможностью удаления, кроме цианидов, и тиоцианатов.
Предлагаемый способ очистки цианидсодержащих вод обладает рядом преимуществ: достигается глубокое удаление цианидов, тяжелых металлов, а также тиоцианатов при минимальном расходе реагента; процесс отличается простой и не требует введения в зону реакции дополнительных соединений, например катализаторов, активаторов, щелочных агентов и т.п.; используемый реагент является малотоксичным, удобным в обращении и транспортировке; сточная вода или жидкая фаза пульпы после очистки может быть использована в системе оборотного водоснабжения, возникает возможность устранить негативное влияние сульфатов, хлоридов и борсодержащих соединений при организации замкнутого водного цикла переделов и технологических операций; улучшаются санитарные условия в отделении обезвреживания; снижается экологическая нагрузка в районе размещения промышленного объекта.
Способ поясняется рисунком 1.
Способ подтверждается следующими примерами.
Пример 1. По прототипу. Обезвреживали раствор, содержащий 136 мг/л Cu и 568 мг/л CN-. Концентрация меди по сравнению с прототипом была увеличена в 2,27 раза. Воды обрабатывали при различном мольном соотношении (расходе перкарбоната натрия) «активный кислород»:CN-. Значение рН находилось на уровне 10,8-11,2. Процесс вели до остановки реакции (прекращение снижения концентрации цианида в растворе). Его продолжительность составила 30-60 минут.
По заявляемому способу. Обезвреживали раствор, содержащий только CN- в количестве 570 мг/л. Воды обрабатывались при различном мольном соотношении (расходе перкарбоната натрия) «активный кислород»:CN-. Общая продолжительность проведения процесса составила 23 часа (с учетом выдерживания). Полученные результаты представлены в таблице 1.
Таблица 1
Обработка по прототипу (136 мг/л Cu и 568 мг/л CN-)
Мольное соотношение «активный кислород»: CN- Расход перкарбоната натрия (13% по «активному кислороду»), г на г CN- Остаточная концентрация цианида, мг/л
0,30:1 1,42 366,0
0,60:1 2,84 197,0
1,20:1 5,68 90,6
1,80:1 8,52 31,0
2,40:1 11,36 0,11
3,00:1 14,20 0,09
3,60:1 17,04 0,08
Обработка по предлагаемому способу (570 мг/л CN-)
0,30:1 1,42 348,0
0,63:1 2,98 241,0
1,27:1 6,01 31,9
1,90:1 8,99 <0,05
2,45:1 11,60 <0,05
3,07:1 14,53 <0,05
3,68:1 17,42 <0,05
При обработке медьсодержащих растворов по прототипу приемлемая глубина удаления цианидов (0,11 мг/л) достигается при мольном соотношении «активный кислород»:СN- 2,40:1. Обезвреживание вод, содержащих такое же количество цианидов, по предлагаемому способу позволяет добиться их более полного удаления уже при мольном соотношении «активный кислород»:СN- 1,90:1. Снижение расхода перкарбоната натрия составило 2,37 г на г цианид-иона. Присутствие меди в зоне реакции, с одной стороны, ускоряет процесс детоксикации, с другой, вызывает каталитическое разложение перекисных соединений и нецелевое расходование реагента.
Пример 2. По прототипу. Обезвреживали раствор, содержащий 96 мг/л Cu и 489 мг/л SCN-. Воды обрабатывали при различном мольном соотношении (расходе перкарбоната натрия) «активный кислород»:SCN-. Значение рН находилось на уровне 9,8-10,5. Продолжительность проведения реакции составляла 23 часа.
По заявляемому способу. Обезвреживали раствор, содержащий только SCN- в количестве 602 мг/л. Воды обрабатывались при различном мольном соотношении (расходе перкарбоната натрия) «активный кислород»:SCN-. Общая продолжительность проведения процесса составила 23 часа (с учетом выдерживания). Полученные результаты представлены в таблице 2.
Таблица 2
Обработка по прототипу (96 мг/л Cu и 489 мг/л SCN-)
Мольное соотношение «активный кислород»:SCN- Расход перкарбоната натрия (13% по «активному кислороду»), г на г SCN- Остаточная концентрация тиоцианатов, мг/л Удалено тиоцианатов, %
0,78:1 1,66 461,0 5,73
1,56:1 3,31 461,0 5,73
3,11:1 6,60 445,0 9,00
Обработка по предлагаемому способу (602 мг/л SCN-)
0,64:1 1,36 537,0 10,80
1,29:1 2,74 465,0 22,76
2,49:1 5,28 431,0 28,41
3,73:1 7,92 369,0 38,70
4,97:1 10,55 310,0 48,50
6,43:1 13,64 35,5 94,10
7,71:1 16,36 20,2 96,64
При обработке растворов по прототипу удаления тиоцианатов практически не наблюдается, медь вызывает каталитическое разложение перекисных соединений и их вывод из зоны реакции. Обезвреживание вод по предлагаемому способу позволяет получить приемлемую глубину удаления SCN- при мольном соотношении «активный кислород»:SCN- 6,43:1, что соответствует расходу перкарбоната натрия 13,64 г на г тиоцианат-иона.
Пример 3. По прототипу. В реактор подавали исходный раствор следующего состава: CN- - 2200 мг/л; SCN- - 208,0 мг/л; Cu - 1900,0 мг/л; Zn - 15,2 мг/л. Воды обрабатывались при рН 10,5 и расходе перкарбоната натрия 51,6 кг/м3. Очищенные воды имели следующий состав: суммарное содержание CN- и SCN- - 88,0 мг/л; Cu - 42,8 мг/л; Zn - 0,012 мг/л.
Проведенная обработка раствора в соответствии с прототипом позволила удалить цианиды и тиопианаты на 96,2%, медь на 97,7%, цинк на 99,9%.
По предлагаемому способу. Обработку исходного раствора проводили следующим образом. Из раствора была удалена медь с помощью известного способа (например, US №4587110, C01G 3/12; 06.05.86), концентрация токсичных веществ составила: CN- - 2200 мг/л; SCN- - 211,0 мг/л; Cu - 19,0 мг/л; Zn - 4,9 мг/л. В реактор 1, снабженный механическим перемешиванием, подавали цианидсодержащие воды и перкарбонат натрия, продолжительность контакта составляла 30 минут. Затем воды поступали в реактор 2, где выдерживались без перемешивания в течение времени, достаточного для завершения окислительных процессов, в течение 12 часов. Расход перкарбоната натрия (13% по «активному кислороду») составил 27,0 кг/м3. Очищенные воды имели следующий состав: суммарное содержание CN- и SCN- - 0,21 мг/л; Cu - 0,07 мг/л; Zn - 0,027 мг/л.
Проведенная обработка раствора в соответствии с предлагаемым способом позволила удалить цианиды и тиоцианаты на 99,9%, медь на 99,6%, цинк на 99,5%. Проведение перкарбонатной обработки при низком содержании меди позволило значительно сократить расход реагента и повысить качество обезвреживания.
Пример 4. По прототипу. В реактор подавали исходный раствор следующего состава: CN- - 1113 мг/л; SCN- - 1810,0 мг/л; Cu - 779,0 мг/л; Zn - 0,68 мг/л. Воды обрабатывались при рН 10,2 и расходе перкарбоната натрия 168 кг/м3. Очищенные воды имели следующий состав: суммарное содержание CN- и SCN- - 0,25 мг/л; Cu - 2,18 мг/л; Zn - 0,11 мг/л.
Проведенная обработка раствора в соответствии с прототипом позволила удалить цианиды и тиоцианаты на 99,9%, медь на 99,7%, цинк на 83,8%.
По предлагаемому способу. Обработку исходного раствора проводили следующим образом. Из раствора была удалена медь с помощью известного способа (например, US №4587110, C01G 3/12; 06.05.86), концентрация токсичных веществ составила: CN- - 1113,0 мг/л; SCN- - 1815,0 мг/л; Cu - 17,9 мг/л; Zn - 0,41 мг/л. В реактор 1, снабженный механическим перемешиванием, подавали цианидсодержащие воды и перкарбонат натрия, продолжительность контакта составляла 30 минут. Затем воды поступали в реактор 2, где они выдерживались без перемешивания в течение времени, достаточного для завершения окислительных процессов, в течение 12 часов. Расход перкарбоната натрия (13% по «активному кислороду») составил 52,0 кг/м3. Очищенные воды имели следующий состав: суммарное содержание CN- и SCN- - 0,18 мг/л; Cu - 0,12 мг/л; Zn - 0,09 мг/л.
Проведенная обработка раствора в соответствии с предлагаемым способом позволила удалить цианиды и тиоцианаты на 99,9%, медь на 99,3%, цинк на 78,0%. Проведение перкарбонатной обработки при низком содержании меди позволило значительно сократить расход реагента без ухудшения качества обезвреживания.
Предлагаемый способ очистки цианидсодержащих вод и пульп позволяет достичь высокой глубины удаления цианидов, тиоцианатов и тяжелых металлов при минимальном расходе перкарбонатсодержащих реагентов, улучшить санитарные условия в отделении обезвреживания, избежать вторичного загрязнения вод хлоридами, сульфатами или соединениями бора, снизить экологическую нагрузку в районе размещения промышленного объекта. Процесс отличается технологической простотой и не требует введения в зону реакции катализаторов, активаторов или регуляторов рН среды.
Источники информации
1. Borbely G.J, Devuyst E.A., Ettel V.A., Mosoiu M.A., Schitka K.J - Inco Ltd. Процесс удаления цианидов из водных растворов. Process for the removal of cyanide from aqueous solutions. Заявка 2091713, Великобритания. Заявл. 28.01.82, №8202444, опубл. 04.08.82. МКИ C02F 1/58, НКИ С 1 С.
2. Милованов Л.М. Очистка сточных вод предприятий цветной металлургии. - M: Металлургия, 1971. 384 с.
3. Vickell Gregg A., Norcross Roy, Chattopadhyay Jaganmay; Degussa Corp. Процесс детоксикации отходов, содержащих свободные или комплексные цианиды. Process for the detoxification of effluents containing free or complexed cyanides. Пат. 5676846 США, МПК6 C02F 1/72, №648619; заявл. 16.05.96; опубл. 14.10.97; НПК 210-759.
4. Norbert Steiner, Stephen Gos, Frank Ladwig, Manfred Diehl; Degussa Aktiengesellschaft. Процесс детоксикации цианидсодержащих водных растворов. Process for the detoxification of cyanide-containing aqueous solution. Пат. 5207925 США, МПК5 C02F 1/72; заявл. 27.03.91; опубл. 04.05.93.

Claims (1)

  1. Способ очистки цианидсодержащих вод, включающий их обработку перкарбонатом щелочного или щелочноземельного металла, предпочтительно перкарбонатом натрия, в присутствии ионов меди, заключающийся в перемешивании вод с ним, отличающийся тем, что цианидсодержащие воды обрабатывают перкарбонатсодержащим реагентом при содержании в водах ионов меди не более 20 мг/л, а затем их выдерживают без перемешивания в течение времени, достаточного для завершения окислительных процессов.
RU2010124769/05A 2010-06-16 2010-06-16 Способ очистки цианидсодержащих вод RU2450979C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010124769/05A RU2450979C2 (ru) 2010-06-16 2010-06-16 Способ очистки цианидсодержащих вод

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010124769/05A RU2450979C2 (ru) 2010-06-16 2010-06-16 Способ очистки цианидсодержащих вод

Publications (2)

Publication Number Publication Date
RU2010124769A RU2010124769A (ru) 2011-12-27
RU2450979C2 true RU2450979C2 (ru) 2012-05-20

Family

ID=45782115

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010124769/05A RU2450979C2 (ru) 2010-06-16 2010-06-16 Способ очистки цианидсодержащих вод

Country Status (1)

Country Link
RU (1) RU2450979C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2579450C1 (ru) * 2014-12-29 2016-04-10 Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) Способ очистки сточных вод от тиоцианатов
RU2615023C2 (ru) * 2015-04-30 2017-04-03 Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" ОАО "Иргиредмет" Способ комплексной очистки сточных вод от цианидов, тиоцианатов, мышьяка, сурьмы и тяжелых металлов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204008A (en) * 1991-03-27 1993-04-20 Degussa Aktiengesellschaft Process for the detoxification of aqueous solutions containing cyanohydrins and/or nitriles
US5207925A (en) * 1991-03-27 1993-05-04 Degussa Aktiengesellschaft Process for the detoxification of cyanide-containing aqueous solutions
RU2008109549A (ru) * 2008-03-12 2009-09-20 Закрытое акционерное общество "Золотодобывающая компания "Полюс" (RU) Способ кондицианирования оборотной воды
RU2389695C1 (ru) * 2008-12-11 2010-05-20 Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) Способ очистки сточных вод от тиоцианатов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204008A (en) * 1991-03-27 1993-04-20 Degussa Aktiengesellschaft Process for the detoxification of aqueous solutions containing cyanohydrins and/or nitriles
US5207925A (en) * 1991-03-27 1993-05-04 Degussa Aktiengesellschaft Process for the detoxification of cyanide-containing aqueous solutions
RU2008109549A (ru) * 2008-03-12 2009-09-20 Закрытое акционерное общество "Золотодобывающая компания "Полюс" (RU) Способ кондицианирования оборотной воды
RU2389695C1 (ru) * 2008-12-11 2010-05-20 Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) Способ очистки сточных вод от тиоцианатов

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2579450C1 (ru) * 2014-12-29 2016-04-10 Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) Способ очистки сточных вод от тиоцианатов
RU2615023C2 (ru) * 2015-04-30 2017-04-03 Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" ОАО "Иргиредмет" Способ комплексной очистки сточных вод от цианидов, тиоцианатов, мышьяка, сурьмы и тяжелых металлов

Also Published As

Publication number Publication date
RU2010124769A (ru) 2011-12-27

Similar Documents

Publication Publication Date Title
CN100491276C (zh) 高浓度氨氮废水的组合式处理方法
KR102119234B1 (ko) 시안 함유 폐수의 처리방법
Kitis et al. Destruction of cyanide by hydrogen peroxide in tailings slurries from low bearing sulphidic gold ores
KR102071241B1 (ko) 시아나이드 착물 함유 폐수의 처리방법 및 그것에 사용하는 처리제
CA2135171A1 (en) A process and a device for the decomposition of free and complex cyanides, aox, mineral oil, complexing agents, cod, nitrite, chromate, and separation of metals in waste waters
WO2001030473A1 (en) Cyanide detoxification process
JP2013123655A (ja) シアン含有廃水の処理方法
EP0355418B1 (en) Process for the treatment of effluents containing cyanide and toxid metals, using hydrogen peroxide and trimercaptotriazine
CN104961272A (zh) 一种黄金行业氰化尾矿浆处理方法
RU2450979C2 (ru) Способ очистки цианидсодержащих вод
CN102452762A (zh) 一种己内酰胺生产废水的处理方法
KR102470058B1 (ko) 폐수들의 처리를 위한 방법
US4029557A (en) Treatment of water containing cyanide
RU2550189C1 (ru) Способ обезвреживания циансодержащих растворов и пульп
JP2021053620A (ja) シアン含有廃水の処理方法
RU2526069C2 (ru) Способ обезвреживания цианистых растворов
KR102054535B1 (ko) 시안 함유 배수의 처리 방법
US5676846A (en) Process for the detoxification of effluents containing free or complexed cyanides
JP5990717B1 (ja) シアン含有廃水用処理剤およびそれを用いるシアン含有廃水の処理方法
US5137642A (en) Detoxification of aqueous cyanide solutions
JP2018030104A (ja) シアン含有廃水用処理剤およびそれを用いるシアン含有廃水の処理方法
RU2310614C1 (ru) Способ обезвреживания цианид- и роданидсодержащих сточных вод
JP2005313112A (ja) シアン含有廃水の処理方法
JP7353619B2 (ja) シアン含有廃水の処理方法
US5178775A (en) Cost effective process for detoxification of cyanide-containing effluents