RU2449150C1 - Двухконтурный газотурбинный двигатель с низким уровнем шума для воздушного судна - Google Patents

Двухконтурный газотурбинный двигатель с низким уровнем шума для воздушного судна Download PDF

Info

Publication number
RU2449150C1
RU2449150C1 RU2010149962/06A RU2010149962A RU2449150C1 RU 2449150 C1 RU2449150 C1 RU 2449150C1 RU 2010149962/06 A RU2010149962/06 A RU 2010149962/06A RU 2010149962 A RU2010149962 A RU 2010149962A RU 2449150 C1 RU2449150 C1 RU 2449150C1
Authority
RU
Russia
Prior art keywords
edge
gas turbine
turbine engine
cold
outlet
Prior art date
Application number
RU2010149962/06A
Other languages
English (en)
Inventor
Жером ЮБЕР (FR)
Жером ЮБЕР
Клаус ДЕБАТИН (FR)
Клаус ДЕБАТИН
Амаду Андре СИЛЛА (FR)
Амаду Андре СИЛЛА
Оливье ПЕЛАГАТТИ (FR)
Оливье ПЕЛАГАТТИ
Original Assignee
Эрбюс Операсьон (Сас)
Эрбюс (Сас)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эрбюс Операсьон (Сас), Эрбюс (Сас) filed Critical Эрбюс Операсьон (Сас)
Application granted granted Critical
Publication of RU2449150C1 publication Critical patent/RU2449150C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/46Nozzles having means for adding air to the jet or for augmenting the mixing region between the jet and the ambient air, e.g. for silencing
    • F02K1/48Corrugated nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/38Introducing air inside the jet
    • F02K1/386Introducing air inside the jet mixing devices in the jet pipe, e.g. for mixing primary and secondary flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/11Two-dimensional triangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/13Two-dimensional trapezoidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/182Two-dimensional patterned crenellated, notched
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/184Two-dimensional patterned sinusoidal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Двухконтурный газотурбинный двигатель содержит гондолу с наружным капотом, включающую вентилятор и центральный генератор, кольцевой канал холодного потока вокруг центрального генератора горячего потока, наружный капот вентилятора, выпускное отверстие холодного потока, край которого образован наружным капотом гондолы и наружным капотом вентилятора, сходящимися друг к другу, и множество шевронов, распределенных вокруг края выпускного отверстия. Шевроны попарно разнесены друг от друга на расстояние с образованием проходов между ними, причем каждый шеврон наклонен в направлении продольной оси для проникновения в холодный поток под углом проникновения, измеренным от наружного капота вентилятора и приблизительно равным 30°. Угол проникновения и длина каждого шеврона от края выпускного отверстия холодного потока выбраны так, что высота проникновения последнего в холодный поток составляет от 0,01 до 0,03 диаметра выпускного отверстия холодного потока. Изобретение позволяет повысить эффективность снижения шума реактивной струи. 7 з.п. ф-лы, 5 ил.

Description

Настоящее изобретение касается двухконтурного газотурбинного двигателя с низким уровнем шума для воздушного судна.
Известно, что сзади сопла выходящая из него реактивная струя входит в контакт по меньшей мере с одним другим газовым потоком: в случае одноконтурного газотурбинного двигателя с одним потоком этот поток вступает в контакт с окружающим воздухом, а в случае двухконтурного газотурбинного двигателя холодный поток и горячий поток вступают в контакт не только друг с другом, но также с окружающим воздухом.
Учитывая, что скорость реактивной струи, выходящей из сопла, отличается от скорости другого или других газовых потоков, сталкивающихся с реактивной струей, происходят сдвиги текучей среды при проникновении между потоками, при этом сдвиги текучей среды вызывают шум, обычно называемый в авиации «шумом реактивной струи».
Для уменьшения такого шума реактивной струи было предложено создавать завихрения на границах между потоками, имеющими разные скорости, чтобы добиваться их быстрого смешивания.
Например, в документе GB-A-766 985 описано сопло, выпускное отверстие которого выполнено на своей периферии с множеством выступов, направленных назад, общее направление которых по меньшей мере приблизительно совпадает с направлением реактивной струи, выходящей из сопла. Такие выступы выполнены в виде «зубьев», которые могут иметь самые разные формы.
В качестве альтернативы, в документе GB-А-2 289 921 предложено выполнение углублений на краю выпускного отверстия сопла. Эти углубления распределены по периферии выпускного отверстия, и каждое из них имеет по меньшей мере приблизительно форму треугольника, основание которого совпадает с краем выпускного отверстия, а вершина которого находится спереди этого выпускного края. В результате этого между двумя последовательными вырезами получают зуб по меньшей мере приблизительно в виде треугольника или трапеции.
Такие выступающие зубья в авиации обычно называют «шевронами», независимо от их конкретной формы.
В двухконтурных газотурбинных двигателях такие шевроны, как правило, выполняют как в задней части горячего сопла, так и в задней части холодного сопла.
Вместе с тем, можно легко понять, что, если известные шевроны и являются эффективными для снижения шума реактивной струи горячего сопла, их эффективность проявляется намного меньше в отношении шума, создаваемого холодным соплом.
Скорее всего, это связано с тем, что в результате прерывистости статического давления между наружным давлением и давлением на выходе холодного сопла этот сверхзвуковой холодный поток создает множество ячеек сжатия-расширения (колебания скорости), действующих как усилители шума и создающих шум, называемый в авиации «шумом ударной ячейки». При этом оказывается, что шевроны, выполненные на холодном сопле, хотя и являются эффективными в ослаблении шума реактивной струи за счет создания завихрений, способствующих смешиванию холодного потока и наружного аэродинамического потока, являются мало эффективными для снижения шума ударной ячейки.
Настоящее изобретение направлено на устранение данного недостатка.
Для этого предложен двухконтурный газотурбинный двигатель для воздушного судна, содержащий вокруг своей продольной оси:
- гондолу, снабженную наружным капотом гондолы и вмещающую вентилятор, создающий холодный поток, и центральный генератор, создающий горячий поток;
- кольцевой канал для холодного потока, выполненный вокруг центрального генератора горячего потока;
- наружный капот вентилятора, ограничивающий кольцевой канал холодного потока со стороны наружного капота гондолы;
- выпускное отверстие для холодного потока, край которого образован наружным капотом гондолы и наружным капотом вентилятора, сходящимися друг к другу; и
- множество шевронов, распределенных вокруг края выпускного отверстия холодного потока, выступающих в заднем направлении газотурбинного двигателя,
при этом:
- шевроны попарно разнесены друг от друга на расстояние с образованием проходов между ними;
- каждый шеврон наклонен в направлении продольной оси для проникновения в холодный поток под углом проникновения, измеренным от наружного капота вентилятора и по меньшей мере приблизительно равным 30°; и
- угол проникновения и длина каждого шеврона от края выпускного отверстия холодного потока выбраны так, что высота проникновения последнего в холодный поток составляет от 0,01 до 0,03 диаметра выпускного отверстия холодного потока.
Благодаря настоящему изобретению, на периферии холодного потока на выходе соответствующего сопла происходит его разделение на реактивные струи разных направлений и разной структуры в зависимости от того, проходят ли упомянутые реактивные струи через шевроны глубокого проникновения, хотя и относительно небольшой длины, или через проходы между шевронами. Действительно, струи холодного потока, проходящие через проходы, имеют направление, продолжающее наружный капот вентилятора, и имеют на краю выпускного отверстия холодного потока значение ускорения, равное номинальному значению сопла. Что же касается струй холодного потока, проходящих через шевроны, то они значительно отклоняются в сторону оси газотурбинного двигателя и глубоко проникают в холодный поток.
Таким образом, проникающие шевроны в соответствии с настоящим изобретением:
- создают радиальные неравномерности в поле давления холодного потока на выходе сопла вентилятора, то есть локально расстраивают структуру холодного потока, что приводит сзади газотурбинного двигателя к уменьшению интенсивности ударных ячеек и, следовательно, амплитуды колебаний скорости; и
- одновременно способствуют смешиванию между холодным потоком и аэродинамическим потоком вокруг газотурбинного двигателя, что приводит к снижению шума реактивной струи.
Таким образом, шевроны в соответствии с настоящим изобретением позволяют одновременно влиять на завихрение (источник шума) и на ударные ячейки (усиление этого шума).
Предпочтительно длина каждого шеврона не превышает 150 мм.
Когда, как известно, каждый шеврон имеет по меньшей мере приблизительно форму трапеции с двумя боковыми сторонами, сходящимися друг к другу и удаляющимися от края выпускного отверстия холодного потока, предпочтительно каждая из боковых сторон шевронов образует с краем угол в пределах от 125° до 155°.
Из всего вышесказанного легко понять, что шевроны в соответствии с настоящим изобретением являются короткими и узкими и глубоко проникают в холодный поток наподобие когтей. Поэтому, чтобы ограничить аэродинамические потери, предпочтительно расстояние между двумя последовательными шевронами превышает 1,5 ширины шеврона вдоль края выпускного отверстия холодного потока. Предпочтительно это расстояние приблизительно равно двойному значению ширины шеврона.
Чтобы еще больше снизить шум реактивной струи, когда каждый шеврон имеет по меньшей мере приблизительную форму трапеции, предпочтительно, чтобы малое основание трапеции, отстоящее от края выпускного отверстия холодного потока, содержало центральное углубление. В результате этого малое основание содержит два боковых выступа, разделенные центральным углублением. Таким образом, получают завихрения, способствующие смешиванию между наружным аэродинамическим потоком и холодным потоком.
Действительно, каждый из боковых выступов такого шеврона создает завихрение, при этом два завихрения одного шеврона частично накладываются друг на друга и имеют противоположные направления вращения. Таким образом, группа шевронов создает вихревую систему, быстро гомогенизирующую газовый поток сзади сопла. В результате происходит быстрое ослабление шума реактивной струи.
Кроме того, чтобы избежать краевых эффектов и образования побочных источников шума, предпочтительно каждый шеврон имеет скругленную форму. Для этого:
- малое основание трапеции выполняют волнистым с образованием двух боковых закруглений (скругленных выступов), разделенных углублением тоже скругленной формы; и
- каждая из боковых сторон шевронов соединена с краем выпускного отверстия холодного потока скругленной вогнутой линией.
Выполнение настоящего изобретение более наглядно показано на прилагаемых чертежах. На этих чертежах аналогичные элементы обозначены одинаковыми позициями.
Фиг. 1 - схематичный вид в осевом разрезе усовершенствованного газотурбинного двигателя в соответствии с настоящим изобретением.
Фиг. 2 - схематичный и частичный вид сзади сопла холодного потока газотурбинного двигателя, показанного на фиг. 1 в направлении стрелки II.
Фиг. 3 - схематичный вид в разрезе по линии III-III на фиг. 2.
Фиг. 4 - схематичный частичный вид в плане края выпускного отверстия холодного потока, снабженного шевронами в соответствии с настоящим изобретением.
Фиг. 5 - схема изменения давления Р сзади двигателя в зависимости от расстояния d вдоль его оси, соответственно для известного двигателя и для этого же двигателя, усовершенствованного в соответствии с настоящим изобретением.
Показанный на фиг. 1 двухконтурный газотурбинный двигатель 1 с продольной осью L-L содержит гондолу 2, ограниченную снаружи наружным капотом 3 гондолы.
Спереди гондола 2 содержит воздухозаборник 4, содержащий передний край 5, а сзади - выпускное отверстие 6 для воздуха, имеющее диаметр Ф и ограниченное краем 7, являющимся задним краем гондолы.
Внутри гондолы 2 расположены:
- вентилятор 8, направленный к воздухозаборнику 4 и выполненный с возможностью создания холодного потока 9 для газотурбинного двигателя 1;
- центральный генератор 10, содержащий, как известно, компрессоры низкого и высокого давления и создающий горячий поток 11 газотурбинного двигателя 1; и
- кольцевой канал 12 холодного потока, проходящий вокруг центрального генератора 10 между внутренним капотом 13 вентилятора и наружным капотом 14 вентилятора.
Наружный капот 14 вентилятора образует сопло для холодного потока и сходится в заднем направлении газотурбинного двигателя 1 с наружным капотом 3 гондолы, образуя вместе с ним край 7 отверстия 6, то есть выпускного отверстия холодного потока.
На крае 7 отверстия 6 вокруг оси L-L распределено множество шевронов 15, выступающих в заднем направлении газотурбинного двигателя 1.
Как показано на фиг. 2, шевроны 15 попарно расположены на расстоянии с образованием проходов 16 между ними. Кроме того, каждый шеврон 15 наклонен в направлении продольной оси L-L, проникая в холодный поток 9 под углом а проникновения (см. фиг. 3). Этот угол а проникновения, измеренный от наружного капота 14 вентилятора, по меньшей мере равен 20° и предпочтительно равен примерно 30°.
Под углом а проникновения следует понимать угол, образованный касательной Т к наружному капоту 14 вблизи края 7 и общим направлением D наружной поверхности шеврона 15.
Длина l каждого шеврона 15 от края 7 выпускного отверстия 6 составляет от 0,03 до 0,06 диаметра Ф этого отверстия. Эта длина l не превышает, например, 150 мм.
При этом:
- под длиной l шеврона 15 следует понимать расстояние между краем 7 отверстия 6 и дистальным концом 15А шеврона 15 относительно края 7 в общем направлении D шеврона 15 (см. фиг. 3); и
- под диаметром Ф выпускного отверстия 6 следует понимать внутренний диаметр, образованный краем 7 отверстия 6 перед шевронами 15 (см. фиг. 1).
Кроме того, угол а проникновения и длину l определяют таким образом, чтобы радиальная высота h проникновения шевронов 15 в холодный поток 9 составляла от 0,01 до 0,03 диаметра Ф выпускного отверстия 6 холодного потока.
Как показано на фиг. 4, каждый шеврон 15 имеет по меньшей мере приблизительно форму трапеции с боковыми сторонами 17, 18, сходящимися друг к другу и удаляющимися от края отверстия 6 холодного потока. Каждая из боковых сторон 17, 18 образует с краем 7 угол b, составляющий от 125° до 155°.
Кроме того, расстояние Е между двумя последовательными шевронами 15 вдоль края 7 больше 1,5 ширины L шевронов 15 на уровне края 7. Расстояние Е может быть близким к двойному значению ширины L.
Если рассматривать на фиг. 4 схематичный и частичный вид в плане края 7 выпускного отверстия 6, снабженного шевронами 15, то:
- под углом b следует понимать угол, образованный касательной S к краю 7 и прямой M, N, продолжающей боковую сторону 17, 18 шеврона 15;
- под шириной L шеврона 15 следует понимать расстояние, разделяющее пересечение I1 прямой М, продолжающей боковую сторону 17 шеврона 15, с касательной S к краю 7 и пересечение I2 прямой N, продолжающей другую боковую сторону 18 шеврона 15, с касательной к краю 7; и
- под расстоянием Е следует понимать расстояние, разделяющее пересечение I1 прямой М, продолжающей боковую сторону 17 шеврона15, с касательной S к краю 7 и пересечение I2 прямой N, продолжающей боковую сторону 18 смежного шеврона 15, c касательной S к краю 7.
Малое основание шевронов 15, отстоящее от края 7, содержит центральное углубление 19. Вследствие этого малое основание содержит два боковых выступа 20 и 21, разделенные углублением 19. Как показано на чертеже, углубление 19 и боковые выступы 20 и 21 выполнены скругленными, поэтому малое основание является волнистым с двумя боковыми закруглениями (выступами 20 и 21), разделенными углублением 19.
Кроме того, каждая из боковых сторон 17, 18 шевронов 15 соединена с краем 7 отверстия 6 скругленной вогнутой линией 22 или 23 соответственно.
Когда воздушное судно (не показано) с установленным на нем газотурбинным двигателем 1 находится в движении, вокруг гондолы 2 проходит аэродинамический поток V, входящий в контакт с наружным капотом 3 гондолы (см. фиг. 1 и 3). Кроме того, как показано на фиг. 3, на периферии холодного потока 9 его струи 9.15 отклоняются упомянутыми шевронами 15 в направлении оси L-L газотурбинного двигателя 1, а другие струи 9.16 холодного потока проходят между шевронами 15 через проходы 16 в продолжении наружного капота 14 вентилятора, при этом ускорение струй 9.15 намного больше ускорения струй 9.16.
Благодаря завихрениям, создаваемым закруглениями 20 и 21 шевронов 15, происходит отличное смешивание между холодным потоком 9 и аэродинамическим потоком V. Таким образом, шум реактивной струи снижается. Кроме того, за счет разности ускорений струй 9.15 и 9.16 на выпуске отверстия 6 холодный поток 9 разрушается по меньшей мере на периферии, за счет чего уменьшаются ударные шумовые ячейки.
Это проиллюстрировано на фиг. 5.
На этой фиг. 5 показаны результаты испытаний на газотурбинном двигателе, которым снабжен воздушный лайнер большой дальности полетов. Фиг. 5 представляет собой диаграмму, иллюстрирующую колебания давления Р сзади газотурбинного двигателя в зависимости от расстояния d от этого двигателя.
Сплошная кривая 24 на фиг. 5 соответствует усовершенствованному газотурбинному двигателю в соответствии с настоящим изобретением, содержащему 14 шевронов 15, равномерно распределенных по периферии выпускного отверстия наружного капота и образующих столько же проходов 16.
Пунктирная кривая 25 на фиг. 5 соответствует такому же газотурбинному двигателю, не усовершенствованному согласно настоящему изобретению.
Сравнивая кривые 24 и 25, можно заметить, что настоящее изобретение позволяет уменьшить примерно на 20% амплитуду этих колебаний давления.

Claims (8)

1. Двухконтурный газотурбинный двигатель для воздушного судна, содержащий вокруг своей продольной оси (L-L):
- гондолу (2), снабженную наружным капотом (3) гондолы и вмещающую вентилятор (8), создающий холодный поток (9), и центральный генератор (10), создающий горячий поток (11);
- кольцевой канал (12) для холодного потока, выполненный вокруг центрального генератора (10) горячего потока;
- наружный капот (14) вентилятора, ограничивающий кольцевой канал (12) холодного потока со стороны наружного капота (3) гондолы;
- выпускное отверстие (6) для холодного потока, край (7) которого образован наружным капотом (3) гондолы и наружным капотом (14) вентилятора, сходящимися друг к другу; и
- множество шевронов (15), распределенных вокруг края выпускного отверстия (6) холодного потока, выступающих в заднем направлении газотурбинного двигателя,
отличающийся тем, что
- шевроны (15) попарно разнесены друг от друга на расстояние (Е) с образованием проходов (16) между ними;
- каждый шеврон (15) наклонен в направлении продольной оси (L-L) для проникновения в холодный поток под углом (а) проникновения, измеренным от наружного капота (14) вентилятора, и по меньшей мере приблизительно равным 30°; и
- угол (а) проникновения и длина (1) каждого шеврона (15) от края (7) выпускного отверстия (6) холодного потока выбраны так, что высота (h) проникновения последнего в холодный поток составляет от 0,01 до 0,03 диаметра (Ф) выпускного отверстия (6) холодного потока.
2. Газотурбинный двигатель по п.1, отличающийся тем, что длина (1) каждого шеврона (15) не превышает 150 мм.
3. Газотурбинный двигатель по п.1, в котором каждый шеврон (15) имеет по меньшей мере приблизительно форму трапеции с двумя боковыми сторонами (17, 18), сходящимися друг к другу и удаляющимися от края (7) выпускного отверстия (6) холодного потока, при этом каждая из боковых сторон (17, 18) шевронов (15) образует с краем (7) угол (b), составляющий от 125° до 155°.
4. Газотурбинный двигатель по п.1, отличающийся тем, что расстояние (Е) между двумя последовательными шевронами (15) превышает 1,5 ширины (L) шеврона (15) вдоль края (7) выпускного отверстия (6) холодного потока.
5. Газотурбинный двигатель по п.1, отличающийся тем, что расстояние (Е) приблизительно равно двойному значению ширины (L) одного шеврона (15).
6. Газотурбинный двигатель по п.1, в котором каждый шеврон (15) имеет по меньшей мере приблизительно форму трапеции с двумя боковыми сторонами (17, 18), сходящимися друг к другу и удаляющимися от края (7) выпускного отверстия (6) холодного потока, при этом малое основание трапеции, отстоящее от края (7) выпускного отверстия (6) холодного потока, содержит центральное углубление (19).
7. Газотурбинный двигатель по п.6, отличающийся тем, что малое основание трапеции выполнено волнистым с образованием двух боковых скругленных выступов (20, 21), отделенных углублением (19) тоже закругленной формы.
8. Газотурбинный двигатель по любому из пп.3-7, отличающийся тем, что каждая из боковых сторон (17, 18) шевронов (15) соединена с краем (7) выпускного отверстия (6) холодного потока скругленной вогнутой линией (22, 23).
RU2010149962/06A 2008-05-07 2009-04-30 Двухконтурный газотурбинный двигатель с низким уровнем шума для воздушного судна RU2449150C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0802540A FR2930972B1 (fr) 2008-05-07 2008-05-07 Turbomachine a double flux pour aeronef a emission de bruit reduite
FR0802540 2008-05-07

Publications (1)

Publication Number Publication Date
RU2449150C1 true RU2449150C1 (ru) 2012-04-27

Family

ID=39941857

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010149962/06A RU2449150C1 (ru) 2008-05-07 2009-04-30 Двухконтурный газотурбинный двигатель с низким уровнем шума для воздушного судна

Country Status (9)

Country Link
US (1) US20110047960A1 (ru)
EP (1) EP2297445A1 (ru)
JP (1) JP2011520064A (ru)
CN (1) CN102105670A (ru)
BR (1) BRPI0908325A2 (ru)
CA (1) CA2721227A1 (ru)
FR (1) FR2930972B1 (ru)
RU (1) RU2449150C1 (ru)
WO (1) WO2009138597A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2615309C1 (ru) * 2015-10-26 2017-04-04 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Шевронное сопло газотурбинного двигателя

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012025460A2 (pt) * 2010-04-09 2016-07-05 Ihi Corp bocal de fluxo de jato e motor a jato
JP5842211B2 (ja) * 2011-01-21 2016-01-13 国立研究開発法人宇宙航空研究開発機構 空力騒音低減装置
CN105485743B (zh) * 2016-01-15 2017-11-03 宁波方太厨具有限公司 一种具有降噪机构的吸油烟机
US10677264B2 (en) 2016-10-14 2020-06-09 General Electric Company Supersonic single-stage turbofan engine
CN113944565B (zh) * 2021-10-19 2022-06-28 中国科学院工程热物理研究所 一种用于改善振动特性的尾喷管结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB766985A (en) * 1952-07-25 1957-01-30 Geoffrey Michael Lilley Improvements in or relating to jet noise suppression means
RU2213240C2 (ru) * 1997-10-31 2003-09-27 Дженерал Электрик Компани Шевронное выхлопное сопло
FR2902837A1 (fr) * 2006-06-26 2007-12-28 Snecma Sa Capot pour tuyere de turbomachine muni de motifs triangulaires a doubles sommets pour reduire le bruit de jet

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3153319A (en) * 1952-07-25 1964-10-20 Young Alec David Jet noise suppression means
US4284170A (en) * 1979-10-22 1981-08-18 United Technologies Corporation Gas turbine noise suppressor
US4981368A (en) * 1988-07-27 1991-01-01 Vortab Corporation Static fluid flow mixing method
GB2289921A (en) * 1994-06-03 1995-12-06 A E Harris Limited Nozzle for turbofan aeroengines
US6314721B1 (en) * 1998-09-04 2001-11-13 United Technologies Corporation Tabbed nozzle for jet noise suppression
US6487848B2 (en) * 1998-11-06 2002-12-03 United Technologies Corporation Gas turbine engine jet noise suppressor
US6612106B2 (en) * 2000-05-05 2003-09-02 The Boeing Company Segmented mixing device having chevrons for exhaust noise reduction in jet engines
GB0105349D0 (en) * 2001-03-03 2001-04-18 Rolls Royce Plc Gas turbine engine exhaust nozzle
US7578132B2 (en) * 2001-03-03 2009-08-25 Rolls-Royce Plc Gas turbine engine exhaust nozzle
US6532729B2 (en) * 2001-05-31 2003-03-18 General Electric Company Shelf truncated chevron exhaust nozzle for reduction of exhaust noise and infrared (IR) signature
US6658839B2 (en) * 2002-02-28 2003-12-09 The Boeing Company Convergent/divergent segmented exhaust nozzle
US7802752B2 (en) * 2002-03-20 2010-09-28 The Regents Of The University Of California Jet engine noise suppressor
US6718752B2 (en) * 2002-05-29 2004-04-13 The Boeing Company Deployable segmented exhaust nozzle for a jet engine
US20040244357A1 (en) * 2003-06-05 2004-12-09 Sloan Mark L. Divergent chevron nozzle and method
FR2857416B1 (fr) * 2003-07-09 2007-05-25 Snecma Moteurs Dispositif de reduction du bruit de jet d'une turbomachine
US7093423B2 (en) * 2004-01-20 2006-08-22 General Electric Company Methods and apparatus for operating gas turbine engines
US7305817B2 (en) * 2004-02-09 2007-12-11 General Electric Company Sinuous chevron exhaust nozzle
US7246481B2 (en) * 2004-03-26 2007-07-24 General Electric Company Methods and apparatus for operating gas turbine engines
FR2873166B1 (fr) * 2004-07-13 2008-10-31 Snecma Moteurs Sa Tuyere de turbomachine a motifs a reduction de bruit de jet
US7305217B2 (en) * 2004-09-16 2007-12-04 Rod Kirkhart Low cost planar double balanced mixer
US7546727B2 (en) * 2004-11-12 2009-06-16 The Boeing Company Reduced noise jet engine
US7543452B2 (en) * 2005-08-10 2009-06-09 United Technologies Corporation Serrated nozzle trailing edge for exhaust noise suppression
FR2890696B1 (fr) * 2005-09-12 2010-09-17 Airbus France Turbomoteur a bruit de jet attenue
FR2902836B1 (fr) * 2006-06-26 2008-10-24 Snecma Sa Capot pour tuyere de turbomachine muni de motifs triangulaires a point d'inflexion pour reduire le bruit de jet
US7966824B2 (en) * 2006-08-09 2011-06-28 The Boeing Company Jet engine nozzle exit configurations and associated systems and methods
FR2920036B1 (fr) * 2007-08-14 2013-11-15 Airbus France Chevrons anti-bruit pour tuyere

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB766985A (en) * 1952-07-25 1957-01-30 Geoffrey Michael Lilley Improvements in or relating to jet noise suppression means
RU2213240C2 (ru) * 1997-10-31 2003-09-27 Дженерал Электрик Компани Шевронное выхлопное сопло
FR2902837A1 (fr) * 2006-06-26 2007-12-28 Snecma Sa Capot pour tuyere de turbomachine muni de motifs triangulaires a doubles sommets pour reduire le bruit de jet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2615309C1 (ru) * 2015-10-26 2017-04-04 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Шевронное сопло газотурбинного двигателя

Also Published As

Publication number Publication date
BRPI0908325A2 (pt) 2018-07-17
WO2009138597A1 (fr) 2009-11-19
JP2011520064A (ja) 2011-07-14
FR2930972A1 (fr) 2009-11-13
US20110047960A1 (en) 2011-03-03
CN102105670A (zh) 2011-06-22
CA2721227A1 (fr) 2009-11-19
EP2297445A1 (fr) 2011-03-23
FR2930972B1 (fr) 2012-11-30

Similar Documents

Publication Publication Date Title
RU2449150C1 (ru) Двухконтурный газотурбинный двигатель с низким уровнем шума для воздушного судна
US8210482B2 (en) Prismatic-shaped vortex generators
US5779437A (en) Cooling passages for airfoil leading edge
JP2007046598A (ja) ノズル及びガスタービンエンジン
JP4785511B2 (ja) タービン段
US8657576B2 (en) Rotor blade
US4685534A (en) Method and apparatus for control of fluids
US7549838B2 (en) Taking air away from the tips of the rotor wheels of a high pressure compressor in a turbojet
RU2466290C2 (ru) Противошумовой шеврон для сопла, а также сопло и турбореактивный двигатель, оснащенные таким шевроном
US8764380B2 (en) Rotor blade
JP2002180903A (ja) 短形状翼形部排気ノズル
US20160102681A1 (en) Fan assembly for vehicles
US6776582B2 (en) Turbine blade and turbine
EP3483395B1 (en) Inter-turbine ducts with flow control mechanisms
US10072511B2 (en) Engine nacelle
RU2451814C2 (ru) Турбореактивный двигатель с пониженным испусканием шума для летательного аппарата
JP2012508668A (ja) ダクトなしのプロペラを備えた航空機エンジンの空気取入口
ES2234500T3 (es) Turbinas para aparatos de propulsion a chorro marino.
US8726673B2 (en) Turbine engine bypass fan-bleed noise reduction
US3613827A (en) Device for attenuating noise emitted by the jet of a jet engine
US6415598B2 (en) Exhaust nozzle for by-pass gas turbine engines
EP3555429B1 (en) Exhaust system for a gas turbine engine
JP6652498B2 (ja) 燃焼チャンバに関するディフューザの方位角設定を含む航空機エンジン
WO1985000853A1 (en) Method and apparatus for fluid control and silencing of exhausting or exploding gases
JPH094402A (ja) 軸流タービンの翼列

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130501