RU2447342C2 - Способ изготовления гребешка лабиринтного уплотнения, термомеханическая деталь и газотурбинный двигатель, содержащий такой гребешок - Google Patents

Способ изготовления гребешка лабиринтного уплотнения, термомеханическая деталь и газотурбинный двигатель, содержащий такой гребешок Download PDF

Info

Publication number
RU2447342C2
RU2447342C2 RU2006140330/02A RU2006140330A RU2447342C2 RU 2447342 C2 RU2447342 C2 RU 2447342C2 RU 2006140330/02 A RU2006140330/02 A RU 2006140330/02A RU 2006140330 A RU2006140330 A RU 2006140330A RU 2447342 C2 RU2447342 C2 RU 2447342C2
Authority
RU
Russia
Prior art keywords
substrate
scallop
base
source
nozzle
Prior art date
Application number
RU2006140330/02A
Other languages
English (en)
Other versions
RU2006140330A (ru
Inventor
Клод МОН (FR)
Клод МОН
Жоэль ВИНЬО (FR)
Жоэль ВИНЬО
Original Assignee
Снекма
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Снекма filed Critical Снекма
Publication of RU2006140330A publication Critical patent/RU2006140330A/ru
Application granted granted Critical
Publication of RU2447342C2 publication Critical patent/RU2447342C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings
    • F16J15/4472Labyrinth packings with axial path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/445Free-space packings with means for adjusting the clearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings
    • F16J15/453Labyrinth packings characterised by the use of particular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/57Metering means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49885Assembling or joining with coating before or during assembling

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laser Beam Processing (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Powder Metallurgy (AREA)

Abstract

Способ изготовления кольцевого гребешка (10) для лабиринтного уплотнения характеризуется формированием выступающей части гребешка (10) путем последовательного нанесения слоев на основание (12). Осуществляют следующие этапы: а) подложку (20) выполняют в виде тела вращения вокруг продольной оси, с основанием (12) кольцевого гребешка (10), б) напылительное сопло (38) устанавливают с возможностью перемещения относительно подложки (20) и соединяют его с первым источником (35) первого порошкообразного материала, идентичного материалу подложки, и вторым источником (45) второго порошкообразного материала, в) используют лазерный источник, соединенный с оптической головкой, которую (34) установливают с возможностью перемещения по отношению к подложке (20) для фокусировки лазерного пучка на точке поверхности подложки (20), г) регулируют оптическую головку (34) и сопло (38) по одной и той же точке поверхности вершины основания (12) гребешка (10), д) активируют лазерный источник и источники (35, 45) порошкообразного материала, при этом создают ванну расплава, локализованную на уровне упомянутой точки, в которую напыляют порошкообразный материал, в результате получают локализованное утолщение, е) оптическую головку (34) и сопло (38) регулируют по другой точке поверхности вершины основания (12), смежной с локализованным утолщением, и повторяют этап д) для формирования слоя по существу на всей ширине вершины основания (12), ж) формируют, по меньшей мере, один участок выступающей части гребешка (10) путем последовательного нанесения все более узких слоев в продольном направлении на вершине основания (12). Каждый слой получают в результате выполнения этапов г)-е). В результате отпадает необходимость в выполнении механической обработки и получают гребешки с высокой износостойкостью. 3 н. и 10 з.п. ф-лы, 4 ил.

Description

Изобретение касается способа изготовления кольцевого гребешка на термомеханической подложке, в частности гребешка лабиринтного уплотнения, а также термомеханической детали, содержащей такой кольцевой гребешок, и газотурбинного двигателя, содержащего такую термомеханическую деталь.
Лабиринтное уплотнение, называемое также лабиринтной прокладкой, содержит вращающуюся деталь с ребрами (или гребешками) со статическим отверстием, покрытым мягким истирающимся материалом, или сотовую конструкцию, выдерживающую высокие температуры. При запуске двигателя гребешки прокладки слегка трутся об прокладку, вгрызаясь в нее, что приводит к образованию минимального зазора. Этот зазор меняется во время различных циклов полета в зависимости от расширения деталей и естественной мягкости подвижных частей.
Лабиринтные гребешки обеспечивают аэродинамическое уплотнение между воздушными камерами, испытывающими разное давление. Как правило, их располагают на роторной части напротив статорных частей. Они в основном выполнены в виде сплошных или сегментированных «пластин» кольцевой формы, которые могут быть направлены радиально внутрь или наружу.
В частности, когда гребешки имеют сплошную форму, они могут входить в контакт со статором в некоторых рабочих конфигурациях. Чтобы избежать их разрушения в этих ситуациях, на статорах выполняют покрытия, образующие поверхность раздела и называемые «истирающимися покрытиями». В этом случае обычные циклы проникновения ребер в истирающиеся покрытия представляют собой радиальное разрезание, связанное с осевым перемещением («проходом»).
Обычные истирающиеся материалы в действительности могут оказаться относительно абразивными, в частности по отношению к некоторым сплошным гребешкам, особенно если эти гребешки выполнены из сплава на основе титана, а также из стали или из сплава на основе никеля. Это, в частности, относится к истирающимся деталям, выполненным в виде сот из жаростойкого материала.
Чтобы избежать повреждения и даже разрушения ребер, на них путем термического напыления (при помощи плазменной горелки, кислородной высокоскоростной горелки HVOF и т.д.) наносят абразивное покрытие типа глинозема/двуоксида титана или карбида, например, на подложку из алюминиево-никелевого сплава для обеспечения его сцепления.
Нанесение покрытия путем термического напыления требует соблюдения относительных углов напыления между осью горелки и поверхностями предназначенных для нанесения покрытия деталей таким образом, чтобы попадание напыляемых частиц на обрабатываемую поверхность происходило под углом, максимально близким к прямому, чтобы получить приемлемое качество и сцепление покрытия. Эта технология требует также соблюдения минимального расстояния между напылительным инструментом и поверхностью. Действительно, горячая центральная зона ядра пламени горелки имеет температуру около несколько тысяч градусов Цельсия, поэтому его необходимо удерживать на достаточном удалении от детали. Кроме того, напыляемым частицам необходимо придавать достаточное ускорение, чтобы они сцеплялись с защищаемыми поверхностями.
Кроме того, транспортирующие или плазмообразующие газы, используемые для напыления, должны легко удаляться, не «сдувая» при этом напыляемый порошок при возникновении завихрений.
Как правило, гребешки направлены почти под прямым углом к цилиндрическим поверхностям роторов и часто находятся по соседству с корпусами дисков или с лабиринтами, на дне полостей или вблизи других ребер, если они расположены в ряд.
Очень часто встречаются случаи геометрической конструкции, которая либо не позволяет наносить покрытие неконтролируемым способом, либо невозможно нанесение покрытия путем термического напыления.
В результате этого абразивное покрытие наносится в основном только на конец (кромку) гребешка, а стенки гребешка в конечном счете оказываются плохо защищенными, что приводит к быстрому износу гребешка.
Технической задачей настоящего изобретения является устранение этого недостатка путем отказа от нанесения покрытия путем термического напыления и изготовления гребешков, которые не повреждаются при контакте с венцом из истирающегося материала.
Поставленная задача решена путем создания способа изготовления кольцевого гребешка на термомеханической подложке, в частности для лабиринтного уплотнения,
характеризующегося тем, что он сдержит следующие этапы
а) используют подложку, являющуюся телом вращения вокруг продольной оси и содержащую основание кольцевого гребешка,
б) используют, по меньшей мере, один источник порошкообразного материала и напылительное сопло, соединенное с упомянутым источником и установленное с возможностью перемещения по отношению к подложке,
в) используют лазерный источник, соединенный с оптической головкой, установленной с возможностью перемещения по отношению к подложке для фокусировки лазерного пучка на точке поверхности подложки,
г) регулируют оптическую головку и сопло по одной и той же точке поверхности вершины основания гребешка,
д) активируют лазерный источник и источник порошкообразного материала, при этом создают ванну расплава, локализованную на уровне упомянутой точки, в которую напыляют порошкообразный материал, в результате получают локализованное утолщение,
е) регулируют оптическую головку и сопло по другой точке поверхности вершины основания, смежной с локализованным утолщением, и повторяют этап д) для формирования слоя по существу на всей ширине вершины основания,
ж) формируют, по меньшей мере, один участок выступающей части гребешка путем последовательного нанесения все более узких слоев в продольном направлении на вершине основания, при этом каждый слой получают в результате выполнения этапов г)-е).
Из вышеизложенного следует, что настоящее изобретение позволит заменить нанесение абразивного покрытия на поверхность гребешка путем термического напыления полным формированием этого гребешка или, по меньшей мере, части высоты выступающей части или кромки этого гребешка при помощи лазерного напыления.
Лазерное напыление заключается в создании на детали очень локализованной ванны расплава воздействием лазерного пучка, который можно регулировать очень точно, и в напылении в эту ванну расплава порошка (металлического и/или керамического), который может быть абразивным. Таким образом, в отличие от термического напыления нет необходимости нагревать порошок, и его траекторию можно не связывать с траекторией лазерного пучка.
Лазерный пучок проходит от источника до мишени по оптическому пути. Оптический путь формируют либо в виде последовательно установленных зеркал, принимающих пучок и отражающих его в другом направлении, и оптических линз, которые заставляют его сходиться или расходиться или поддерживают его параллельность, либо в виде оптического волокна.
В обоих случаях оптический путь заканчивается системой линз, называемой «оптической головкой», которая сводит пучок в более или менее удаленной точке. Зоны, малодоступные для устройства с горелкой, используемого для термического напыления, можно обрабатывать при помощи устройства лазерного напыления, если нет препятствия между оптической головкой и точкой фокусирования лазерного пучка на детали.
В случае термического напыления необходимо, чтобы порошок поступал на обрабатываемую поверхность в требуемом направлении. Дело обстоит совсем по-другому для способа в соответствии с настоящим изобретением, поскольку лазерное напыление требует только создания ванны расплава, а порошок может направляться по самым разным траекториям относительно обрабатываемой поверхности.
Металлический порошок подается устройством дозировки порошка. Он поступает в трубку, конец которой содержит сопло, направляющее порошок на ванну расплава, создаваемую лазерным пучком. Эта трубка может быть гибкой и направляется жестким кронштейном-держателем или роботом, или любым другим устройством позиционирования, или она может быть жесткой и направленной в сторону обрабатываемой зоны детали.
Можно указать и другие отличия между способами термического напыления и лазерного напыления.
В случае термического напыления сопло подачи горячих газов должно находиться близко от обрабатываемой поверхности, тогда как в случае лазерного напыления оптическая головка может находиться относительно далеко от этой поверхности. В случае термического напыления порошок необходимо нагревать, чтобы он имел общую с горячими газами траекторию, в этом нет необходимости в случае лазерного напыления, в котором траекторию порошка можно не связывать с траекторией лазерного пучка.
Кроме того, в случае термического напыления осуществляют способ непрерывного нанесения покрытия, тогда как в случае лазерного напыления, учитывая гибкость управления лазерным пучком, напыление можно осуществлять непрерывно или циклично путем простой остановки лазерного пучка.
Кроме того, понятно, что решение в соответствии с настоящим изобретением позволяет отказаться от необходимости механической обработки кромки гребешка, которая является очень деликатным местом. В соответствии с настоящим изобретением формируют одновременно слой за слоем кромку гребешка и ее покрытие из достаточно абразивного материала.
Следует отметить, что способ позволяет осуществлять формирование гребешка по всей его высоте (в этом случае основание кольцевого гребешка представляет собой просто кольцевой участок наружной поверхности подложки, например ротора) или формирование гребешка только на части его высоты, образующей его конец или кромку (в этом случае основание кольцевого гребешка имеет кольцевой объем, расположенный на некоторой высоте и полученный в результате предварительной механической обработки).
На этапе д) активацию лазерного источника и источника порошкообразного материала осуществляют последовательно или почти одновременно, чтобы локализованная ванна расплава находилась в месте, на которое направляется лазерный пучок, когда порошок, подаваемый в это же место, достигает этой поверхности.
Предпочтительно этапы г)-е) осуществляют до тех пор, пока вся поверхность вершины основания не будет покрыта слоем, а на этапе ж) формируют выступающую часть гребешка путем последовательного нанесения все более узких слоев в продольном направлении на всей поверхности вершины основания, при этом каждый слой получают в результате осуществления этапов г)-е).
Предпочтительно формировать гребешок слой за слоем, выполняя в первую очередь новый слой на всей поверхности вершины гребешка перед тем, как продолжить это формирование радиально дальше наружу.
Тем не менее, можно предусмотреть и другие методы формирования, среди которых можно указать формирование слой за слоем углового сектора, затем формирование другого углового сектора или при помощи нескольких оптических головок и нескольких сопел, т.е. одновременное формирование нескольких угловых секторов гребешка.
Предпочтительно на этапе е) формируют поверхность вершины основания гребешка в продольном направлении, прежде чем поменять угловой сектор.
В этом случае каждый слой формируют линия за линией, перемещая вдоль этой линии установку оптической головки и сопла (или перемещая подложку по отношению к устройству лазерного напыления) параллельно продольному направлению, параллельному оси вращения, прежде чем произвести угловое смещение и начать новую линию, до завершения выполнения слоя.
Разумеется, можно выбрать и другие траектории перемещения для формирования каждого слоя, например, осуществляя один за другим выполнение кольцевых швов, которые будут слегка смещены в продольном направлении относительно друг друга.
Согласно другому предпочтительному варианту во время этапа е) лазерный источник и источник порошкообразного материала остаются активированными.
Таким образом, можно осуществлять непрерывное формирование гребешка путем формирования последовательных островков материала либо для полного формирования гребешка, либо циклами, каждый из которых соответствует изготовлению части (например, одного полного слоя гребешка). Альтернативно или в комбинации с этими различными возможностями можно также, в частности, в наиболее сложнодоступных и/или самых тонких зонах на уровне размеров осуществлять точечное нанесение материала, отключая лазерный источник и источник порошкообразного материала во время этапа е).
Объектом настоящего изобретения является также термомеханическая деталь, содержащая, по меньшей мере, один кольцевой гребешок, предназначенный для лабиринтного уплотнения, отличающаяся тем, что гребешок формируют описанным выше способом в соответствии с настоящим изобретением, при этом термомеханическая деталь образует упомянутую подложку.
Как следует из описанного выше способа в соответствии с настоящим изобретением, необходимо понимать, что гребешок изготавливают целиком (по всей его высоте) или только частично, а именно кольцевую концевую часть, образующую вершину.
В последнем случае радиально внутренняя часть гребешка образована основанием, предварительно выполненным в подложке путем механической обработки.
В частности, эта термомеханическая деталь является ротором газотурбинного двигателя.
Объектом настоящего изобретения является также газотурбинный двигатель, содержащий термомеханическую деталь вышеуказанного типа.
В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на прилагаемые чертежи, на которых:
Фиг.1 изображает вид в осевом половинном разрезе ротора турбореактивного двигателя с расположением фланца и лабиринтного уплотнения перед главными форсунками согласно изобретению;
Фиг.2 и 3 - схематичный частичный вид в осевом разрезе вращающейся термомеханической детали, показывающий изменение поперечного сечения и профиля гребешка во время осуществления способа согласно изобретению;
Фиг.4 - поперечный разрез вращающейся термомеханической детали, где показана боковая сторона гребешка после его изготовления согласно изобретению;
Поскольку настоящее изобретение касается уплотнительных гребешков вращающейся термомеханической детали турбореактивного двигателя, в частности ротора, то далее в описании указывается возможный, но не ограничительный вариант применения этой формы гребешка в соответствии с настоящим изобретением.
На фиг.1 показан случай, когда гребешки используют в лабиринтных уплотнениях и устанавливают их напротив элементов из истирающегося материала. Речь идет о вентиляционном контуре турбины высокого давления, находящейся за камерой 106 сгорания.
В частности, на чертеже показана турбина 108 с ротором, вращающимся вокруг оси Х-Х'.
Ротор турбины 108 содержит диск 40 турбины с лопатками 42, и фланец 44, установленный перед диском 40. Диск 40 и фланец 44 содержат, каждый, передний поводок 40а для диска 40 и 44а для фланца 44, предназначенный для их крепления на заднем конце 46 заднего конуса 48 компрессора высокого давления, приводимого во вращение ротором турбины 108.
Эта конструкция контура охлаждения содержит три последовательных разгрузочных лабиринта.
Первый разгрузочный лабиринт 60 выполнен на входе камеры 52, отделяющей фланец 44 от дна камеры, и на выходе камеры 54, отделяющей задний конус 48 компрессора высокого давления от внутреннего картера 50 камеры 106 сгорания. Первый разгрузочный лабиринт 60 содержит гребешки 48а, выполненные на заднем конусе 48, и венец 50а из истирающегося материала, установленный на конце фланца, неподвижно соединенного с внутренним картером 50.
Второй разгрузочный лабиринт 62 находится под форсунками 64 на выходе камеры 52. Второй разгрузочный лабиринт 62 образован гребешками 44b фланца 44 и венцом 64а из истирающегося материала, установленным на форсунках 64.
Третий разгрузочный лабиринт 66 находится над форсунками 64 и содержит три последовательных гребешка 44с, выполненных на изогнутом участке 44d фланца 44, и уплотнительный венец 68а из истирающегося материала, установленный на внутреннем картере 68.
Согласно изобретению все или части этих различных гребешков 48а, 44b и 44с не содержат покрытия, нанесенного путем термического напыления, а сформированы путем лазерного напыления.
На фиг.1 показан вариант использования настоящего изобретения в турбине высокого давления. Вместе с тем, необходимо понимать, что настоящее изобретение может применяться в других зонах газотурбинного двигателя, в частности в компрессоре высокого давления, в компрессоре низкого давления или в турбине низкого давления.
На фиг.1 гребешки расположены на подвижном роторе и направлены радиально наружу. Однако настоящее изобретение может применяться и для гребешков, направленных радиально в сторону оси вращения.
Далее в качестве примера следует описание варианта выполнения настоящего изобретения со ссылками на фиг.2-4.
На фиг.4 показана ось Х-Х', вокруг которой в радиальном направлении выполнен гребешок 10, содержащий окружной внутренний контур 10а с осью Х-Х' и окружной внешний контур 10b с осью Х-Х'.
В продольном сечении относительно оси Х-Х' внешний профиль гребешка 10 по существу имеет (фиг.3) форму перевернутого V или перевернутого U с ветвями U, имеющими наклон в направлении вершины гребешка, ограниченной внешним контуром 10b.
Таким образом, эта конструкция имеет такую же кольцевую форму, как и гребешок из предшествующего уровня техники, то есть имеет постоянную высоту по своей окружности с профилем по существу в виде перевернутого U или V.
Как было указано ранее, согласно известной технологии гребешок выполняют путем механической обработки непосредственно в подложке для придания ему вышеуказанной формы, затем на этот гребешок наносят покрытие путем термического напыления для повышения его сопротивления истиранию.
Согласно настоящему изобретению, наоборот, подложку 20 подвергают механической обработке только для выполнения основания 12, выступающего над верхней поверхностью подложки 20 не более чем на несколько миллиметров, чтобы начать затем формирование гребешка 10.
После этого для изготовления остальной части гребешка 10, то есть его конца или кромки 14, используют оборудование (показано не полностью), позволяющее осуществлять лазерное напыление.
Это оборудование содержит
систему для захвата подложки 20 и ее перемещения, в частности при помощи вращения или поступательного движения,
лазерный источник (СО2 или YAG) с системой передачи лазерного пучка 32 путем отражения на зеркалах или при помощи оптического волокна до оптической головки 34,
оптическую головку 34, которая имеет фокусное расстояние, соответствующее расстоянию между головкой 34 и предназначенной для нанесения покрытия поверхностью, при этом оптическая головка 34 неподвижно соединена с устройством позиционирования для расположения ее таким образом, чтобы фокус пучка мог сканировать все точки поперечного сечения обрабатываемой поверхности или формируемого объема,
по меньшей мере один источник 35 первого порошкообразного материала, содержащий питатель и дозатор порошка, а также трубку 36 подачи порошка к соплу 38.
В описываемом варианте используют также источник 45 второго порошкообразного материала, соединенный с соплом 38 при помощи соответствующей трубки 46.
Таким образом, предпочтительно применяют первый источник 35 первого порошкообразного материала и второй источник 45 второго порошкообразного материала, при этом первый источник и второй источник соединены с напылительным соплом 38.
В примере на фиг.2 и 3 оптическая головка 34 и сопло 38 образуют один узел, то есть оптическая головка 34 и напылительное сопло 38 неподвижно соединены друг с другом в одном напылительном узле, положение которого регулируют по отношению к подложке 20.
Однако сопло 38 может быть также расположено отдельно сбоку от лазерного пучка и установлено на устройстве позиционирования, которое заставляет его следовать движениям фокальной точки лазерного пучка.
На фиг.2 показано, что формирование кромки 14 гребешка 10 осуществляют слой за слоем вплоть до формирования свободного конца кромки 14, ограничивающего внешний контур 10b.
Для каждого слоя предпочтительно в первую очередь путем плавления второго порошкообразного материала 45 формируют два кольцевых шва 13а вдоль двух продольных боковин вершины основания 12 (или ранее сформированного слоя), затем путем добавления первого порошкообразного материала 35 в локализованную ванну расплава, созданную лазерным пучком, заполняют пространство в виде лотка, образованного между этими двумя кольцевыми швами, что позволяет сформировать зону 15а, которая в конечном счете образует сердцевину 15.
Таким образом, слой за слоем кольцевые швы образуют покрытие 13, а зоны 15а образуют сердцевину 15 гребешка 10, при этом второй слой образуется простым наложением друг на друга двух кольцевых швов 13а второго порошкообразного материала 45.
Предпочтительно первый порошкообразный материал 35 выбирают идентичным материалу, образующему подложку, при этом второй порошкообразный материал 45 является более твердым, чем первый материал.
Таким образом, получают покрытие 13, более твердое, чем сердцевина 15.
Предпочтительно каждый слой получают в результате двух следующих подэтапов:
на поверхности основания гребешка 10 формируют два кольцевых шва 13а из второго порошкообразного материала 45 за счет того, что на предыдущем этапе оптическую головку 34 и сопло 38 слегка смещают в угловом направлении на окружности относительно ранее сформированного локализованного утолщения, и
зону 15а, расположенную между двумя кольцевыми швами 13а, заполняют первым порошкообразным материалом 35.
Таким образом, каждый кольцевой шов 13а выполняют непрерывным лазерным напылением, вращая подложку 20 вокруг продольной оси Х-Х', не перемещая при этом подложку 20 в продольном направлении.
Заполнение лотка между двумя швами 13а первым порошкообразным материалом 35 можно осуществлять разными способами:
- либо путем углового смещения с постепенным формированием кольцевого шва, параллельного швам 13а, выполненным из второго материала 45, затем путем продольного смещения при каждом новом обороте для формирования нового кольцевого шва,
- либо путем продольного смещения (стрелка 16 на фиг.2) для заполнения зоны 15а по продольной линии между двумя швами 13а и путем углового смещения перед формированием новой продольной линии в обратном направлении для заполнения пространства между двумя швами 13а, формируя последовательные угловые сектора.
На фиг.2 показано завершение формирования нескольких кольцевых слоев для выполнения части кромки 14 гребешка 10, а на фиг.3 показан последний этап выполнения, во время которого формируют достаточно узкий конечный слой, чтобы соединить между собой два кольцевых шва 13а.
Таким образом, кольцевой гребешок 10 (фиг.3) образован основанием 12, над которым находится кромка 14, содержащая сердцевину 15, выполненную из того же материала, что и подложка 20, и покрытие 13, полностью закрывающее сердцевину 15 и выполненное из материала, отличающегося от материала сердцевины 15.
Необходимо отметить, что настоящее изобретение охватывает также случай, когда в подложке 20 не выполняют основания 12 путем механической обработки и гребешок 10 выполняют формированием по всей его высоте, как было описано выше, в этом случае основание 12 (на чертеже не показано) сводится к кольцевому участку наружной поверхности подложки 20.
Точно так же при помощи этого оборудования можно предусмотреть формирование кромки 14 гребешка 10, постепенно меняя состав материала, начиная от наружной поверхности, образующей покрытие 13, к сердцевине 15 гребешка 10, путем постепенного изменения пропорции между первым и вторым порошкообразными материалами 35 и 45.
Для этого одновременно активируют первый источник и второй источник 35, 45 порошкообразных материалов таким образом, чтобы сопло распыляло смесь двух порошкообразных материалов, следя при этом за пропорциями, чтобы покрытие 13 содержало больше второго порошкообразного материала 45 и чтобы покрытие 13 было более твердым, чем сердцевина 15.
В этом случае кольцевой гребешок 10 образован основанием 12, над которым находится кромка 14, состав которой постепенно меняется от сердцевины 15 до поверхности 13.
Кроме того, настоящее изобретение охватывает также случай, в котором используют только один источник порошкообразного материала для выполнения всей кромки 14 гребешка 10.
Понятно, что способ в соответствии с настоящим изобретением позволяет избежать, с одной стороны, сложной механической обработки и, с другой стороны, когда используют два разных материала для выполнения сердцевины и поверхности, избежать нанесения покрытия путем термического напыления, которое нельзя выполнить правильно в некоторых геометрических конфигурациях.
Среди материалов, которые можно применять, предпочтительно для сердцевины 15 используют металлический порошок того же состава, что и подложка 20, а именно титановый сплав или сплав на основе никеля, а для покрытия 13 предпочтительно используют твердые и абразивные материалы. В частности, для покрытия 13 выбирают металлы, обладающие стойкостью к горячему окислению, такие как сплав типа MCrAlY (при этом М является металлом, выбираемым из группы, в которую входят никель, кобальт, железо или смесь этих металлов) или сплав на основе кобальта, хрома и вольфрама, такой как Stellite (зарегистрированный товарный знак). Кроме того, можно использовать керамические материалы, такие как двуоксид титана (TiO2), глинозем (AlO2), двуоксид циркония (ZrO2) или смесь, полученную на основе одного из этих материалов.
Кроме того, на чертежах представлен кольцевой гребешок, имеющий радиальное направление наружу, однако настоящее изобретение можно также применять для кольцевого гребешка, имеющего радиальное направление внутрь.

Claims (13)

1. Способ изготовления кольцевого гребешка (10) для лабиринтного уплотнения, характеризующийся тем, что а) используют подложку (20), выполненную в виде тела вращения вокруг продольной оси, с основанием (12) кольцевого гребешка (10), б) используют напылительное сопло (38), установленное с возможностью перемещения относительно подложки (20), первый источник (35) первого порошкообразного материала, идентичного материалу подложки, и второй источник (45) второго порошкообразного материала, при этом первый источник (35) и второй источник (45) соединяют с напылительным соплом (38), в) используют лазерный источник, соединенный с оптической головкой (34), установленной с возможностью перемещения по отношению к подложке (20) для фокусировки лазерного пучка на точке поверхности подложки (20), г) регулируют оптическую головку (34) и сопло (38) по одной и той же точке поверхности вершины основания (12) гребешка (10), д) активируют лазерный источник и источники (35, 45) порошкообразного материала, при этом создают ванну расплава, локализованную на уровне упомянутой точки, в которую напыляют порошкообразный материал, в результате получают локализованное утолщение, е) оптическую головку (34) и сопло (38) регулируют по другой точке поверхности вершины основания (12), смежной с локализованным утолщением, и повторяют этап д) для формирования слоя, по существу, на всей ширине вершины основания (12), ж) формируют, по меньшей мере, один участок выступающей части гребешка (10) путем последовательного нанесения все более узких слоев в продольном направлении на вершине основания (12), при этом каждый слой получают в результате выполнения этапов г)-е).
2. Способ по п.1, отличающийся тем, что этапы г)-е) осуществляют, пока вся поверхность вершины основания (12) не будет покрыта слоем, и тем, что на этапе ж) формируют выступающую часть гребешка (10) путем последовательного нанесения все более узких слоев в продольном направлении на всей поверхности вершины основания (12), при этом каждый слой получают в результате осуществления этапов г)-е).
3. Способ по любому из пп.1 или 2, отличающийся тем, что на этапе е) проходят поверхность вершины основания (12) гребешка (10) в продольном направлении, прежде чем изменить угловой сектор.
4. Способ по п.1, отличающийся тем, что во время этапа е) лазерный источник и источники (35, 45) порошкообразного материала остаются активированными.
5. Способ по п.1, отличающийся тем, что во время этапа ж) каждый слой получают в результате двух следующих подэтапов: ж1) на поверхности основания (12) гребешка (10) формируют два кольцевых шва (13а) из второго порошкообразного материала (45) за счет того, что на предыдущем этапе оптическую головку (34) и сопло (38) смещают в угловом направлении по окружности относительно ранее сформированного локализованного утолщения, и ж2) зону (15а), расположенную между двумя кольцевыми швами (13а), заполняют первым порошкообразным материалом (35).
6. Способ по п.1, отличающийся тем, что на этапе д) активируют одновременно первый источник (35) и второй источник (45) порошкообразных материалов таким образом, чтобы напылять смесь порошкообразных материалов.
7. Способ по п.1, отличающийся тем, что оптическую головку (34) и сопло (38) неподвижно соединяют друг с другом в виде одного напылительного узла, положение которого регулируют относительно подложки (20).
8. Лабиринтное уплотнение, содержащее, по меньшей мере, один кольцевой гребешок (10), отличающееся тем, что упомянутый гребешок (10) получен способом по любому из пп.1-7.
9. Лабиринтное уплотнение по п.8, отличающееся тем, что кольцевой гребешок (10) образован основанием (12) на подложке (20), над которым находится кромка (14), содержащая сердцевину (15), выполненную из того же материала, что и подложка (20), и покрытие (13), полностью закрывающее сердцевину (15) и выполненное из материала, отличающегося от материала сердцевины (15).
10. Лабиринтное уплотнение по п.8, отличающееся тем, что кольцевой гребешок (10) образован основанием (12) на подложке (20), над которым находится кромка (14), состав материала которой постепенно меняется от сердцевины (15) к ее поверхности.
11. Лабиринтное уплотнение по любому из пп.8-10, отличающееся тем, что кольцевой гребешок (10) направлен радиально наружу.
12. Лабиринтное уплотнение по п.8, отличающееся тем, что оно предназначено для ротора газотурбинного двигателя.
13. Газотурбинный двигатель, содержащий лабиринтное уплотнение, выполненное по любому из пп.8-12.
RU2006140330/02A 2005-11-15 2006-11-15 Способ изготовления гребешка лабиринтного уплотнения, термомеханическая деталь и газотурбинный двигатель, содержащий такой гребешок RU2447342C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0511580A FR2893360A1 (fr) 2005-11-15 2005-11-15 Procede de realisation d'une lechette de labyrinthe d'etancheite, piece thermomecanique et turbomachine comprenant une telle lechette
FR0511580 2005-11-15

Publications (2)

Publication Number Publication Date
RU2006140330A RU2006140330A (ru) 2008-05-20
RU2447342C2 true RU2447342C2 (ru) 2012-04-10

Family

ID=36790848

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006140330/02A RU2447342C2 (ru) 2005-11-15 2006-11-15 Способ изготовления гребешка лабиринтного уплотнения, термомеханическая деталь и газотурбинный двигатель, содержащий такой гребешок

Country Status (6)

Country Link
US (1) US7836572B2 (ru)
EP (1) EP1785650B1 (ru)
CA (1) CA2567888C (ru)
DE (1) DE602006005580D1 (ru)
FR (1) FR2893360A1 (ru)
RU (1) RU2447342C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638488C1 (ru) * 2013-12-10 2017-12-13 Сименс Акциенгезелльшафт Способ колебательной сварки
RU178434U1 (ru) * 2017-05-25 2018-04-04 Общество с ограниченной ответственностью Научно-производственный центр "Лазеры и аппаратура ТМ" Устройство для управления положением лазерной головки относительно обрабатываемой поверхности
RU2714596C2 (ru) * 2017-05-25 2020-02-18 Общество с ограниченной ответственностью Научно-производственный центр "Лазеры и аппаратура ТМ" Устройство для управления положением лазерной головки относительно обрабатываемой поверхности

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884550B1 (fr) * 2005-04-15 2010-09-17 Snecma Moteurs Piece pour proteger le bord d'attaque d'une pale
FI119923B (fi) * 2005-09-08 2009-05-15 Kemppi Oy Menetelmä ja laitteisto lyhytkaarihitsausta varten
US8704120B2 (en) * 2008-07-03 2014-04-22 Esab Ab Device for handling powder for a welding apparatus
KR101097173B1 (ko) 2009-09-04 2011-12-22 신한다이아몬드공업 주식회사 절삭/연마 공구 및 그 제조방법
CN103480844A (zh) * 2013-09-18 2014-01-01 华南理工大学 一种3d打印机粉末预制装置
FR3011608B1 (fr) 2013-10-09 2016-05-27 Snecma Joint a labyrinthe et machine tournante comprenant un tel joint
US10124531B2 (en) 2013-12-30 2018-11-13 Ut-Battelle, Llc Rapid non-contact energy transfer for additive manufacturing driven high intensity electromagnetic fields
US9650537B2 (en) 2014-04-14 2017-05-16 Ut-Battelle, Llc Reactive polymer fused deposition manufacturing
JP6114718B2 (ja) * 2014-06-17 2017-04-12 川崎重工業株式会社 軸対称体および軸対称製品の製造方法
CN107771109B (zh) * 2015-06-19 2021-09-07 应用材料公司 在增材制造中的材料分配和压实
FR3050671B1 (fr) * 2016-04-28 2018-04-27 Safran Aircraft Engines Procede de realisation d'une piece de turbomachine comprenant au moins une protuberance revetue de materiau abrasif
FR3058755B1 (fr) * 2016-11-15 2020-09-25 Safran Aircraft Engines Turbine pour turbomachine
US10478893B1 (en) * 2017-01-13 2019-11-19 General Electric Company Additive manufacturing using a selective recoater
US10022795B1 (en) * 2017-01-13 2018-07-17 General Electric Company Large scale additive machine
US10022794B1 (en) * 2017-01-13 2018-07-17 General Electric Company Additive manufacturing using a mobile build volume
US9956612B1 (en) 2017-01-13 2018-05-01 General Electric Company Additive manufacturing using a mobile scan area

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2032513C1 (ru) * 1992-07-29 1995-04-10 Валерий Григорьевич Рудычев Способ лазерной наплавки инструмента
RU2058871C1 (ru) * 1991-06-11 1996-04-27 Акционерное общество открытого типа "Национальный институт авиационных технологий" Способ лазерной обработки деталей из жаропрочных материалов
RU2151897C1 (ru) * 1997-12-16 2000-06-27 Открытое акционерное общество "Авиадвигатель" Уплотнительное устройство газотурбинного двигателя
RU2168089C2 (ru) * 1999-02-22 2001-05-27 ОАО "Авиадвигатель" Лабиринтное уплотнение
RU2228243C2 (ru) * 1998-06-30 2004-05-10 Джиоти МАЗУМДЕР Способ и устройство для лазерной наплавки

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US554837A (en) * 1896-02-18 Calendar
US4323756A (en) * 1979-10-29 1982-04-06 United Technologies Corporation Method for fabricating articles by sequential layer deposition
US4743733A (en) * 1984-10-01 1988-05-10 General Electric Company Method and apparatus for repairing metal in an article
US4730093A (en) * 1984-10-01 1988-03-08 General Electric Company Method and apparatus for repairing metal in an article
US4657171A (en) * 1985-06-13 1987-04-14 General Electric Company Repair of a member having a projection
US4884820A (en) * 1987-05-19 1989-12-05 Union Carbide Corporation Wear resistant, abrasive laser-engraved ceramic or metallic carbide surfaces for rotary labyrinth seal members
US5038014A (en) * 1989-02-08 1991-08-06 General Electric Company Fabrication of components by layered deposition
US5149936A (en) * 1991-04-10 1992-09-22 Mechanical Technology Incorporated Multi-plane balancing process and apparatus using powder metal for controlled material addition
US5314003A (en) * 1991-12-24 1994-05-24 Microelectronics And Computer Technology Corporation Three-dimensional metal fabrication using a laser
US5554837A (en) * 1993-09-03 1996-09-10 Chromalloy Gas Turbine Corporation Interactive laser welding at elevated temperatures of superalloy articles
US7765022B2 (en) * 1998-06-30 2010-07-27 The P.O.M. Group Direct metal deposition apparatus utilizing rapid-response diode laser source
US20020170890A1 (en) * 2001-04-27 2002-11-21 Keicher David M. Precision spray processes for direct write electronic components
US6146476A (en) * 1999-02-08 2000-11-14 Alvord-Polk, Inc. Laser-clad composite cutting tool and method
US6396025B1 (en) * 1999-07-01 2002-05-28 Aeromet Corporation Powder feed nozzle for laser welding
US6811744B2 (en) * 1999-07-07 2004-11-02 Optomec Design Company Forming structures from CAD solid models
US6534745B1 (en) * 1999-09-27 2003-03-18 Mathew T. J. Lowney Nozzle particularly suited to direct metal deposition
DE19957771A1 (de) * 1999-12-01 2001-06-07 Rolls Royce Deutschland Reparaturverfahren für Labyrinth-Dichtungsstege an Turbinenscheiben
US7139633B2 (en) * 2002-08-29 2006-11-21 Jyoti Mazumder Method of fabricating composite tooling using closed-loop direct-metal deposition
DE10316966A1 (de) * 2003-04-12 2004-10-28 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zum Wiederaufbauen flächig ausgebildeter beschädigter Bauteile
US20050056628A1 (en) * 2003-09-16 2005-03-17 Yiping Hu Coaxial nozzle design for laser cladding/welding process
US7038162B2 (en) * 2003-11-13 2006-05-02 Honeywell International, Inc. Hand-held laser welding wand filler media delivery systems and methods
US7250081B2 (en) * 2003-12-04 2007-07-31 Honeywell International, Inc. Methods for repair of single crystal superalloys by laser welding and products thereof
ITTV20030155A1 (it) * 2003-12-05 2005-06-06 Lzh Laser Zentrum Hannover E V Metodo e apparecchiatura migliorati per la sinterizzazione di materiali inorganici e prodotti cosi' ottenuti.
GB0420578D0 (en) * 2004-09-16 2004-10-20 Rolls Royce Plc Forming structures by laser deposition
US7358457B2 (en) * 2006-02-22 2008-04-15 General Electric Company Nozzle for laser net shape manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2058871C1 (ru) * 1991-06-11 1996-04-27 Акционерное общество открытого типа "Национальный институт авиационных технологий" Способ лазерной обработки деталей из жаропрочных материалов
RU2032513C1 (ru) * 1992-07-29 1995-04-10 Валерий Григорьевич Рудычев Способ лазерной наплавки инструмента
RU2151897C1 (ru) * 1997-12-16 2000-06-27 Открытое акционерное общество "Авиадвигатель" Уплотнительное устройство газотурбинного двигателя
RU2228243C2 (ru) * 1998-06-30 2004-05-10 Джиоти МАЗУМДЕР Способ и устройство для лазерной наплавки
RU2168089C2 (ru) * 1999-02-22 2001-05-27 ОАО "Авиадвигатель" Лабиринтное уплотнение

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638488C1 (ru) * 2013-12-10 2017-12-13 Сименс Акциенгезелльшафт Способ колебательной сварки
RU178434U1 (ru) * 2017-05-25 2018-04-04 Общество с ограниченной ответственностью Научно-производственный центр "Лазеры и аппаратура ТМ" Устройство для управления положением лазерной головки относительно обрабатываемой поверхности
RU2714596C2 (ru) * 2017-05-25 2020-02-18 Общество с ограниченной ответственностью Научно-производственный центр "Лазеры и аппаратура ТМ" Устройство для управления положением лазерной головки относительно обрабатываемой поверхности

Also Published As

Publication number Publication date
CA2567888A1 (fr) 2007-05-15
RU2006140330A (ru) 2008-05-20
US7836572B2 (en) 2010-11-23
DE602006005580D1 (de) 2009-04-23
US20070253810A1 (en) 2007-11-01
CA2567888C (fr) 2014-02-18
EP1785650A1 (fr) 2007-05-16
FR2893360A1 (fr) 2007-05-18
EP1785650B1 (fr) 2009-03-11

Similar Documents

Publication Publication Date Title
RU2447342C2 (ru) Способ изготовления гребешка лабиринтного уплотнения, термомеханическая деталь и газотурбинный двигатель, содержащий такой гребешок
RU2451187C2 (ru) Деталь газотурбинного двигателя с кольцевым гребешком, способ изготовления кольцевого гребешка и газотурбинный двигатель
RU2454547C2 (ru) Деталь газотурбинного двигателя, газотурбинный двигатель, содержащий такую деталь, а также способ изготовления кольцевого гребешка лабиринтного уплотнения на такой детали
US7695248B2 (en) Method of making a rim situated at the free end of a blade, a blade obtained by the method, and a turbomachine fitted with the blade
JP5693149B2 (ja) 耐摩耗性及び耐酸化性のタービン翼
JP4162785B2 (ja) 溶射コーティングを施すための方法及びこの方法で形成されたガスタービンエンジンのブレード
JP2008111191A (ja) シール基材表面にアブレイダブル材料を堆積させる方法
CN103056604A (zh) 具有激光熔覆的部件以及制造方法
US7425115B2 (en) Thermal turbomachine
KR20090026273A (ko) 스틸 피스톤용 열 산화 보호면
US8974859B2 (en) Micro-channel coating deposition system and method for using the same
EP1985800A2 (en) Dimensional restoration of turbine blade knife edge seals
US20190195080A1 (en) Ceramic coating system and method
FR2893357A1 (fr) Lechette annulaire destinee a un labyrinthe d'etancheite et son procede de fabrication
RU2786555C1 (ru) Способ ремонта гребешков лабиринтных уплотнений дисков газотурбинного двигателя
RU2652280C2 (ru) Способ восстановления детали турбомашины
JPH07109162B2 (ja) 回転式ラビリンスシール部材用耐摩耗性、研削性レーザ彫刻セラミック乃至金属炭化物表面
CN114207176A (zh) 用于制造耐磨密封元件的方法和耐磨密封元件
JP2002206405A (ja) 蒸気タービン
JPH04288985A (ja) レーザ肉盛装置

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner