RU2443667C1 - Способ получения мономера стирола с повышенной энергетической эффективностью и инжекцией рециркулирующего газа в испаритель этилбензола - Google Patents

Способ получения мономера стирола с повышенной энергетической эффективностью и инжекцией рециркулирующего газа в испаритель этилбензола Download PDF

Info

Publication number
RU2443667C1
RU2443667C1 RU2011101358/04A RU2011101358A RU2443667C1 RU 2443667 C1 RU2443667 C1 RU 2443667C1 RU 2011101358/04 A RU2011101358/04 A RU 2011101358/04A RU 2011101358 A RU2011101358 A RU 2011101358A RU 2443667 C1 RU2443667 C1 RU 2443667C1
Authority
RU
Russia
Prior art keywords
ethylbenzene
gaseous
evaporator
carbon dioxide
styrene monomer
Prior art date
Application number
RU2011101358/04A
Other languages
English (en)
Inventor
Кевин Дж. ШВИНТ (US)
Кевин Дж. ШВИНТ
Ричард Дж. УИЛКОКС (US)
Ричард Дж. УИЛКОКС
Original Assignee
Ламмус Текнолоджи Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ламмус Текнолоджи Инк. filed Critical Ламмус Текнолоджи Инк.
Application granted granted Critical
Publication of RU2443667C1 publication Critical patent/RU2443667C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к вариантам способа получения мономера стирола из этилбензола, один из которых включает стадии: подачи жидкого этилбензола, как исходного материала, в испарительный аппарат, который может превращать жидкий этилбензол в газообразный этилбензол, при этом испарительный аппарат дает верхний погон, содержащий газообразный этилбензол; подачи газообразной смеси в указанный испарительный аппарат, при этом газообразная смесь включает некоторое количество газа, включающего диоксид углерода, достаточное для понижения температуры кипения этилбензола по меньшей мере на 5°С, где по меньшей мере часть газа рециркулируется с процессов каталитической дегидрогенизации или каталитической оксидегидрогенизации; нагревания испарителя, чтобы тем самым превратить жидкий этилбензол в газообразный этилбензол, при этом газообразный этилбензол извлекается в верхних погонах испарителя; и каталитической дегидрогенизации или оксидегидрогенизации этилбензола в испаряемых верхних погонах, чтобы тем самым каталитически получить мономер стирола. Настоящее изобретение предоставляет экономичный и энергетически эффективный способ получения стирола из этилбензола. 2 н. и 7 з.п. ф-лы, 4 пр., 1 фиг.

Description

Область, к которой относится изобретение
Изобретение относится к способу получения мономера стирола посредством дегидрогенизации этилбензола в присутствии рециркулирующего газа и, более конкретно, к способу понижения температуры кипения подаваемого этилбензола в производстве мономера стирола.
Область техники, к которой относится изобретение
Стирол является основным строительным блоком для получения широкого ряда материалов. Он используется для получения полистирола, акрилонитрилбутадиенового стирола, полиэфирных смол, синтетического каучука и многих других продуктов.
Получение стирола дегидрогенизацией этилбензола обычно проводится путем смешивания этилбензола с водяным паром и пропускания смеси через дегидрогенизирующий слой, содержащий катализатор. Пар используется как разбавляющий газ в системе для проведения реакции дегидрогенизации и для подачи тепла, необходимого для эндотермической реакции этилбензола для получения стирола. Смесь пар/вода также используется для понижения температуры кипения подаваемого этилбензола, или при некоторой азеотропической композиции (т.е. с минимальной температурой кипения), или при некоторой неазеотропической композиции (т.е. с пониженной температурой кипения). Смотри патенты США №4628136 и №4765398, при этом каждый приведен здесь в виде ссылки. Пары этилбензол/водяной пар смешиваются с разбавляющими пар/вода перед подачей в реакторы дегидрогенизации, поэтому вода, содержащаяся в них, является дополнительной к разбавляющему потоку, требующемуся в реакционной системе.
Понижение температуры кипения этилбензола позволяет использовать меньше тепла для испарения этилбензола, подаваемого в систему для проведения реакции дегидрогенизации. Несмотря на использование пар/вода для понижения температуры кипения подаваемого этилбензола, применение пара уменьшает общую энергетическую эффективность процесса. В качестве альтернативы компания Samsung Total Petrochemicals Co. (Корейская патентная публикация №20060092305) использовала инертный газ вместо всего или части водяного пара для понижения температуры кипения подаваемого этилбензола. Однако добавление инертных веществ в исходный материал, подаваемый в реактор, прибавляет требования к исходному материалу для процесса и к нагрузке на компрессор для выводимых газов и требования к потребляемой мощности. Инертный газ также может быть не полностью инертным и может неблагоприятно влиять на равновесную реакцию дегидрогенизации этилбензола или на активность катализатора.
Процесс, который экономично снижает температуру кипения этилбензола, подаваемого в процесс окислительной дегидрогенизации этилбензола, не сообщался. Однако существует насущная и неудовлетворенная потребность промышленности в экономичных и энергетически эффективных способах получения мономера стирола из такого исходного материала, как этилбензол.
Сущность изобретения
Настоящее изобретение относится к способу получения мономера стирола (т.е. стирола) посредством дегидрогенизации или окислительной дегидрогенизации (оксидегидрогенизации) этилбензола в присутствии рециркулирующего газа. Изобретение обеспечивает снижение температуры кипения подаваемого этилбензола посредством инжекции рециркулирующего газа вместо всего или некоторой части пар/вода, обычно используемого в общепринятых процессах получения мономера стирола. В одном аспекте рециркулирующий газ включает в себя преимущественно диоксид углерода.
В одном воплощении изобретение направлено на способ получения мономера стирола из этилбензола, включающий стадии введения жидкого исходного материала из этилбензола в испарительный аппарат (т.е. испаритель), способный превращать жидкий этилбензол в газообразный этилбензол, где испарительный аппарат дает верхний погон, включающий в себя газообразный этилбензол; подачу смеси в указанный испарительный аппарат, где смесь включает в себя некоторое количество рециркулирующего диоксида углерода, достаточное для понижения температуры кипения этилбензола по меньшей мере на 5°С; нагревание испарителя, чтобы тем самым превратить жидкий этилбензол в газообразный этилбензол, где газообразный этилбензол извлекается из верхних погонов испарителя; каталитическую дегидрогенизацию или оксидегидрогенизацию этилбензола в парообразных верхних погонах, чтобы тем самым каталитически получить мономер стирола.
Изобретение также направлено на способ получения мономера стирола из этилбензола, включающий в себя этапы введения исходного материала из жидкого этилбензола в испарительный аппарат, способный превращать жидкий этилбензол в газообразный этилбензол, где испарительный аппарат дает верхний погон, включающий в себя газообразный этилбензол, включающий в себя газообразный этилбензол; подачу смеси в указанный испарительный аппарат, где смесь включает в себя приблизительно от 2 до 5 молей рециркулирующего диоксида углерода на каждый моль этилбензола; нагревание испарителя, чтобы тем самым превратить жидкий этилбензол в газообразный этилбензол, где газообразный этилбензол извлекается в верхних погонах испарителя; и каталитическую оксидегидрогенизацию этилбензола в парообразных верхних погонах, чтобы тем самым каталитически получить мономер стирола.
Преимуществами использования рециркулирующего газа, включающего в себя диоксид углерода для понижения температуры кипения подаваемого этилбензола, являются (1) диоксид углерода, который является разбавителем и таким образом присущим реакционной системе оксидегидрогенизации (ОДГ), так как диоксид углерода обычно подается в отношении к этилбензолу приблизительно как 5:1 (мольное отношение) в процессе ОДГ; (2) значительное количество диоксида углерода присутствует в системе для разбавления этилбензола в испарителе, означающее, что не требуется дополнительная подача диоксида углерода (т.е. свежего); (3) диоксид углерода, барботированный в испаритель этилбензола, дополняет количество диоксида углерода, требующееся для разбавления реакционной системы, и не добавляется к требующемуся рециркулирующему газу из диоксида углерода; (4) диоксид углерода является основным компонентом рециркулирующего газа, вводимого в реакционную систему в процессе ОДГ; (5) диоксид углерода имеет очень низкую температуру кипения при нормальном давлении; и (6) диоксид углерода не является инертным и может использоваться в качестве «мягкого» окислителя в реакционной системе. Эти преимущества даются только в качестве неограничивающего примера, и дополнительные преимущества и выгоды будут вполне очевидными для специалистов в этой области при ознакомлении с приведенным здесь описанием.
Краткое описание чертежей
Фигура 1 является блок-схемой, показывающей одно воплощение настоящего изобретения, в котором жидкий этилбензол превращается в газообразный этилбензол и каталитически дегидрогенизируется в мономер стирола. Исходный материал в виде этилбензола смешивается с рециркулирующим газом, включающим в себя диоксид углерода, и возможно с парами воды или инертными газами в испарителе. Испаритель может превращать жидкий этилбензол в газообразный этилбензол, используя меньше тепловой энергии, чем в общеизвестных системах.
Подробное описание изобретения
Настоящее изобретение относится к способу получения мономера стирола посредством дегидрогенизации этилбензола в присутствии рециркулирующего газа, в основном диоксида углерода. Более конкретно, изобретение относится к способу понижения температуры кипения подаваемого жидкого этилбензола при получении мономера стирола.
Диоксид углерода может вводиться в испаритель этилбензола из рециркулирующего газа, из свежей подачи исходного материала или из их комбинации. Предпочтительно источником диоксида углерода является рециркулирующий газ. В предпочтительном воплощении рециркулирующий газ содержит приблизительно от 50 до 100 объемных % диоксида углерода, более предпочтительно приблизительно 90 объемных % диоксида углерода. В рециркулирующем газе могут присутствовать примеси. Некоторые примеры примесей могут включать в себя монооксид углерода, водород, метан, аргон, азот и следы ароматических и алифатических углеводородов.
Процесс окислительной дегидрогенизации на основе рециркулирующего диоксида углерода по настоящему изобретению отличается от процессов по известному уровню техники в следующих аспектах. Рециркулирующий газ, включающий диоксид углерода, барботируется в испаритель этилбензола вместо пара/воды или в дополнение к пару/воде. Предпочтительно смеси рециркулирующий газ/вода, смеси рециркулирующий газ/инертный газ и смеси рециркулирующий газ/инертный газ/вода могут барботироваться в испаритель этилбензола. Диоксид углерода является предпочтительным, так как он имеет лучшие теплофизические свойства (например, более низкую температуру кипения), чем вода для целей понижения температуры кипения этилбензоловых смесей. И свежая подача диоксида углерода не требуется. Может использоваться рециркулирующий диоксид углерода от процесса оксидегидрогенизации, что не увеличивает нагрузку на компрессор отходящих газов и расход мощности.
В одном воплощении настоящее изобретение направлено на процесс для получения мономера стирола из этилбензола, включающий в себя этапы подачи исходного материала в виде этилбензола в испарительный аппарат, который может превращать жидкий этилбензол в газообразный этилбензол, где испарительный аппарат образует верхний погон, включающий в себя газообразный этилбензол; подачи смеси в указанный испарительный аппарат, где смесь включает в себя рециркулирующий диоксид углерода, достаточный для понижения температуры кипения этилбензола по меньшей мере на 5°С; нагревания испарителя, чтобы тем самым превратить жидкий этилбензол в газообразный этилбензол, где газообразный этилбензол извлекается в верхних погонах испарителя; и каталитической дегидрогенизации или оксидегидрогенизации этилбензола в парообразных верхних погонах, чтобы тем самым каталитически получить мономер стирола.
Используемый здесь термин «этилбензоловые исходные материалы» относится к углеводородным смесям, содержащим этилбензол. Предпочтительно исходный материал содержит чистый этилбензол, рециркулированный этилбензол или их комбинацию.
Используемый здесь термин «испарительный аппарат» относится к испарителю этилбензола, используемому для превращения жидкого этилбензола в газообразный этилбензол. Предпочтительно газообразный этилбензол извлекается в верхних погонах, и сброс жидкого отстоя, включающего в себя тяжелые примеси, содержащиеся в подаваемом этилбензоле, вместе с некоторым количеством этилбензола, извлекается в нижних погонах.
Используемый здесь термин «каталитическая дегидрогенизация» относится к процессу для непрерывной гетерогенно катализируемой частичной дегидрогенизации углеводорода в газовой фазе.
Используемый здесь термин «каталитическая окислительная дегидрогенизация» или «каталитическая оксидегидрогенизация» относится к процессу для непрерывной гетерогенной каталитической частичной дегидрогенизации в газовой фазе и в присутствии диоксида углерода и/или молекулярного кислорода.
На Фигуре 1 показано одно воплощение настоящего изобретения, в котором получают мономер стирола посредством каталитической дегидрогенизации этилбензола. Этилбензольный исходный материал (6) подается в испаритель (10). Этилбензольный исходный материал может содержать чистый этилбензол (2), рециркулированный этилбензол (4) или их смеси. Рециркулированный газ (8) также подается в испаритель (10). Рециркулированный газ может объединяться с водяным паром (12), инертным газом (14) или с ними двумя. Испаритель (10) нагревается источником тепла (18) для превращения жидкого этилбензола в газообразный этилбензол. Остаточные тяжелые фракции и жидкий этилбензол извлекаются из отстоев (16) испарителя, и этилбензол, содержащийся в них, может рециркулироваться в этилбензольный исходный материал (4) после извлечения фракционированием. Испарившийся этилбензол/рециркулированный газ может быть извлечен из верхних погонов испарителя (22) и подан в систему (20) для дегидрогенизации. Испарившийся этилбензол/рециркулированный газ может объединяться, но не обязательно, с дополнительным рециркулирующим газом (24) и подаваться в аппарат (20) для дегидрогенизации.
Аппарат (20) для дегидрогенизации может быть любым типом аппарата для дегидрогенизации или оксидегидрогенизации, используемым для получения мономера стирола из этилбензола, в особенности таким аппаратом, в котором используется СО2 в качестве окислителя. Поток от испарителя этилбензола, обычно используемый в аппарате для дегидрогенизации или оксидегидрогенизации известного уровня техники, заменяется аппаратом по настоящему изобретению. Отходящий поток от аппарата (26) для дегидрогенизации может обрабатываться для получения отдельного стиролового продукта из рециркулирующего газа (30). Стироловый продукт подается по линии (32) для дальнейшей обработки. В некоторых воплощениях часть рециркулирующего газа может подаваться обратно в аппарат (20) для дегидрогенизации по линии (24). В других воплощениях часть рециркулирующего газа или весь он может подаваться по линии (34) обратно в испаритель (10) этилбензола.
В одном воплощении рециркулирующий газ (8) может подаваться от процесса для получения мономера стирола или от отдельного процесса (36). Например, рециркулирующий газ (8) может являться небольшой частью потока от верхних погонов скруббера для гудрона, которая отводится от нагревателя рециркулирующего газа в испарительный аппарат и барботируется в жидкий этилбензол. Полученная смесь этилбензол/рециркулирующий газ имеет температуру кипения, которая значительно ниже температуры кипения этилбензола.
В другом воплощении источником тепла (18) может быть конденсированный пар низкого давления (температура конденсации приблизительно от 100 до 110°С) или низкотемпературные потоки в процессе (например, верхние погоны от разделителя смеси этиленбензол/мономер стирола с температурой конденсации приблизительно 97-103°С, верхние погоны колонны для извлечения этилбензола с температурой конденсации приблизительно 108-123°С и т.д.). Эти источники тепла имеют более низкую температуру и более экономичные, чем использование пара среднего давления или высокого давления для испарения подаваемого этилбензола. Извлечение тепла из потоков в процессе (теплообмен в процессе) понижает общий расход коммунальных источников тепла (т.е. пара и охлаждающей воды), что приводит к значительной экономии расходов.
Предпочтительно добавление достаточного количества рециркулирующего газа в испаритель этилбензола понижает температуру кипения этилбензола ниже приблизительно 122°С приблизительно при 760 мм рт.ст. Наиболее предпочтительно добавление достаточного количества рециркулирующего газа в испаритель этилбензола понижает температуру кипения этибензола приблизительно ниже 105°С приблизительно при 760 мм рт.ст. Специалист в этой области понимает, что температура и давление изменяются обратно пропорционально. Когда давление в системе изменяется от 760 мм рт.ст., сравнимая величина температуры будет также изменяться. Могут использоваться и предусматриваться настоящим изобретением сравнимые величины температуры/давления, эквивалентные 89-110°С/760 мм рт.ст.
Предпочтительно диапазон рециркулирующего диоксида углерода на каждый моль этилбензола составляет приблизительно от 0,5 до 5 молей. Более предпочтительно диапазон рециркулирующего диоксида углерода, приходящийся на каждый моль этилбензола, составляет приблизительно от 1 до 2 молей. Наиболее предпочтительно, когда диапазон количества рециркулирующего диоксида углерода на каждый моль этилбензола составляет приблизительно 1,5 моля.
В другом воплощении дополнительный рециркулирующий газ (24) может содержать приблизительно 2,0 моля диоксида углерода на моль этилбензола и может извлекаться ниже по потоку, например, из оксидирующего аппарата второй ступени или его эквивалента. Комбинированный дополнительный рециркулирующий газ (24) и смесь испарившегося этилбензола/рециркулирующего газа (22) предпочтительно комбинируются в окислительной дегидрогенизации при заданном мольном отношении между диоксидом углерода/этилбензолом приблизительно 3,5.
В другом воплощении из-за разделения рециркулирующего газа между нагревателем рециркулирующего газа и испарителем этилбензола, можно предпочтительно разделять отходящий из реактора поток между нагревателем рециркулирующего газа и нагревателем дополнительно подаваемого этилбензола для лучшего сохранения тепла. Отходящий из реактора поток может быть разделен между двумя нагревателями пропорционально разделению рециркулирующего газа между испарителем подаваемого этилбензола и нагревателем рециркулирующего газа.
Окислительная дегидрогенизация этилбензола для получения мономера стирола может проводиться в присутствии катализатора. Диоксид углерода может ингибировать реакцию с катализаторами известного процесса для получения мономера стирола. Выбранный катализатор может быть любым катализатором для окислительной дегидрогенизации этилбензола, толерантным к диоксиду углерода/монооксиду углерода. Предпочтительно катализатор выбирается из группы, состоящей из каталитических ванадия и железа, платины, содержащей катализатор, или катализатора в виде оксида железа на подложке.
Специалист в этой области поймет, что в процесс, описанный выше, могут быть внесены многочисленные модификации и изменения, не отступая от объема настоящего изобретения. Поэтому предшествующее описание предпочтительных воплощений и нижеследующие примеры предназначены для описания изобретения в примерном, а не ограничивающем смысле.
Заявители специально ввели полное содержание всех процитированных ссылок в это описание. Кроме того, когда количество, концентрация или другая величина или параметр даются в виде диапазона, предпочтительного диапазона или перечня более высоких предпочтительных величин и более низких предпочтительных величин, то это следует понимать как специальное раскрытие всех диапазонов, образованных любой парой любых верхних пределов диапазонов и любых нижних пределов или предпочтительных величин независимо от того, раскрываются ли по отдельности описанные диапазоны. Там, где в описании указан диапазон числовых величин, если не заявлено иначе, этот диапазон должен включать в себя свои крайние точки, и все целые числа и дробные значения в пределах диапазона. Не предполагается, что объем изобретения будет ограничиваться конкретными величинами, которые указаны при определении диапазона.
ПРИМЕРЫ
Пример 1: При использовании настоящего изобретения температура кипения при типичном давлении в реакционной системе 760 мм рт.ст. может контролироваться при 122°С барботированием в испаритель приблизительно 0,5 моля рециркулирующего газа (диоксида углерода) на каждый моль этилбензола. Для сравнения температура кипения чистого этилбензола составляет 136°С.
Пример 2: При использовании настоящего изобретения температура кипения при типичном давлении в реакционной системе 760 мм рт.ст. может контролироваться при 105°С посредством барботирования в испаритель рециркулирующего газа приблизительно 1,5 моля рециркулирующего газа (диоксида углерода) на каждый моль этилбензола. Для сравнения температура кипения чистого этилбензола составляет 136°С.
Пример 3: При использовании настоящего изобретения температура кипения при типичном давлении в реакционной системе 760 мм рт.ст. может контролироваться при 95°С посредством барботирования в испаритель приблизительно 2,5 моля рециркулирующего газа (диоксида углерода) на каждый моль этилбензола. Для сравнения температура кипения чистого этилбензола составляет 136°С.
Пример 4: При использовании настоящего изобретения температура кипения при типичном давлении в реакционной системе 760 мм рт.ст. может контролироваться при 88°С посредством барботирования в испаритель приблизительно 3,5 моля рециркулирующего газа (диоксида углерода) на каждый моль этилбензола. Для сравнения температура кипения чистого этилбензола составляет 136°С.

Claims (9)

1. Способ получения мономера стирола из этилбензола, включающий стадии:
подачи жидкого этилбензола, как исходного материала, в испарительный аппарат, который может превращать жидкий этилбензол в газообразный этилбензол, при этом испарительный аппарат дает верхний погон, содержащий газообразный этилбензол;
подачи газообразной смеси в указанный испарительный аппарат, при этом газообразная смесь включает некоторое количество газа, включающего диоксид углерода, достаточное для понижения температуры кипения этилбензола по меньшей мере на 5°С, где по меньшей мере часть газа рециркулируется с процессов каталитической дегидрогенизации или каталитической оксидегидрогенизации;
нагревания испарителя, чтобы тем самым превратить жидкий этилбензол в газообразный этилбензол, при этом газообразный этилбензол извлекается в верхних погонах испарителя; и
каталитической дегидрогенизации или оксидегидрогенизации этилбензола в испаряемых верхних погонах, чтобы тем самым каталитически получить мономер стирола.
2. Способ по п.1, в котором рециркулирующий газ содержит по меньшей мере 90% объемных диоксида углерода.
3. Способ по п.1, в котором газообразная смесь дополнительно содержит монооксид углерода, водород, метан, аргон, азот и следы ароматических и алифатических углеводородов.
4. Способ по п.1, в котором газообразная смесь включает некоторое количество рециркулирующего диоксида углерода, достаточное для понижения температуры кипения этилбензола ниже 105°С при 760 мм рт.ст.
5. Способ по п.1, в котором газообразная смесь включает некоторое количество рециркулирующего диоксида углерода, достаточное для понижения температуры кипения этилбензола ниже 95°С при 760 мм рт.ст.
6. Способ получения мономера стирола из этилбензола, включающий стадии:
подачи исходного материала в виде жидкого этилбензола в испарительный аппарат, который может превратить жидкий этилбензол в газообразный этилбензол, при этом испарительный аппарат образует верхний погон, включающий газообразный этилбензол;
подачи газообразной смеси в указанный испарительный аппарат, при этом газообразная смесь включает от 0,5 до 5 молей диоксида углерода на каждый моль этилбензола, где по меньшей мере часть газа рециркулируется с процессов каталитической дегидрогенизации или каталитической оксидегидрогенизации;
нагревания испарителя, чтобы тем самым превратить жидкий этилбензол в газообразный этилбензол, при этом газообразный этилбензол извлекается в верхних погонах испарителя; и
каталитической дегидрогенизации или оксидегидрогенизации этилбензола в испаряемых верхних погонах, чтобы тем самым каталитически получить мономер стирола.
7. Способ по п.6, в котором газообразная смесь включает 1-2 моля рециркулирующего диоксида углерода на каждый моль этилбензола.
8. Способ по п.6, в котором газообразная смесь включает 1,5 моля рециркулирующего диоксида углерода на каждый моль этилбензола.
9. Способ по п.6, в котором смесь дополнительно содержит монооксид углерода, водород, метан, аргон, азот и следы ароматических и алифатических углеводородов.
RU2011101358/04A 2008-06-14 2009-06-12 Способ получения мономера стирола с повышенной энергетической эффективностью и инжекцией рециркулирующего газа в испаритель этилбензола RU2443667C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/139,456 US7910784B2 (en) 2008-06-14 2008-06-14 Process for the production of styrene monomer by improving energy efficiency and injecting a recycle gas into the EB vaporizer
US12/139,456 2008-06-14

Publications (1)

Publication Number Publication Date
RU2443667C1 true RU2443667C1 (ru) 2012-02-27

Family

ID=41415400

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011101358/04A RU2443667C1 (ru) 2008-06-14 2009-06-12 Способ получения мономера стирола с повышенной энергетической эффективностью и инжекцией рециркулирующего газа в испаритель этилбензола

Country Status (14)

Country Link
US (1) US7910784B2 (ru)
EP (1) EP2303811A4 (ru)
JP (1) JP2011524370A (ru)
KR (1) KR101241504B1 (ru)
CN (1) CN102056871A (ru)
AR (1) AR074152A1 (ru)
BR (1) BRPI0914853A2 (ru)
CA (1) CA2726533C (ru)
CL (1) CL2009001403A1 (ru)
MX (1) MX2010013718A (ru)
RU (1) RU2443667C1 (ru)
TW (1) TW201010966A (ru)
WO (1) WO2009152438A1 (ru)
ZA (1) ZA201008779B (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130922B1 (ko) * 2010-01-06 2012-03-28 삼성토탈 주식회사 복수의 단열반응기들이 직렬 연결된 스티렌 제조 반응시스템에서의 생산성 및 공정안정성 개선 방법
KR101997814B1 (ko) * 2015-12-22 2019-07-08 주식회사 엘지화학 스타이렌과 알파메틸스타이렌의 동시 제조 방법 및 장치
KR101888261B1 (ko) 2015-12-22 2018-08-13 주식회사 엘지화학 에너지가 절감된 스타이렌과 알파메틸스타이렌의 동시 제조 방법 및 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904484A (en) * 1972-09-07 1975-09-09 Badger Co Ethylbenzene-styrene separation
US4628136A (en) * 1985-12-17 1986-12-09 Lummus Crest, Inc. Dehydrogenation process for production of styrene from ethylbenzene comprising low temperature heat recovery and modification of the ethylbenzene-steam feed therewith
US5053572A (en) * 1989-05-11 1991-10-01 Amoco Corporation Multistage ethylbenzene dehydrogenation process with split-flow hydrocarbon feed
US5723707A (en) * 1993-01-04 1998-03-03 Chevron Chemical Company Dehydrogenation processes, equipment and catalyst loads therefor
US6958427B2 (en) * 2002-03-04 2005-10-25 Korea Research Institute Of Chemical Technology Method for catalytic dehydrogenation of hydrocarbons using carbon dioxide as a soft oxidant
RU2279310C2 (ru) * 2001-12-20 2006-07-10 СНАМПРОДЖЕТТИ С.п.А. Каталитическая композиция для дегидрирования алкилароматических углеводородов (варианты), способ ее приготовления (варианты) и способ дегидрирования алкилароматических углеводородов с ее использованием

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765398A (en) * 1987-05-06 1988-08-23 Lummus Crest, Inc. Vaporization of liquids
JPH0639437B2 (ja) * 1989-09-21 1994-05-25 出光石油化学株式会社 スチレンの製造方法
JP3032816B2 (ja) * 1997-08-13 2000-04-17 工業技術院長 スチレンモノマーの製造方法
JP4154877B2 (ja) * 2000-08-18 2008-09-24 三菱化学株式会社 スチレンの製造方法
JP2002097162A (ja) * 2000-09-19 2002-04-02 Idemitsu Petrochem Co Ltd スチレンの製造方法および製造装置
JP3950952B2 (ja) * 2001-03-08 2007-08-01 独立行政法人産業技術総合研究所 スチレンモノマーの製造方法
MY135793A (en) * 2002-07-12 2008-06-30 Basf Ag Method for the production of butadiene from n-butane
KR100665759B1 (ko) 2005-02-17 2007-01-09 삼성토탈 주식회사 개선된 에너지 효율을 갖는 스티렌의 제조방법
CA2645218C (en) 2006-03-23 2014-10-07 Anna Lee Tonkovich Process for making styrene using microchannel process technology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904484A (en) * 1972-09-07 1975-09-09 Badger Co Ethylbenzene-styrene separation
US4628136A (en) * 1985-12-17 1986-12-09 Lummus Crest, Inc. Dehydrogenation process for production of styrene from ethylbenzene comprising low temperature heat recovery and modification of the ethylbenzene-steam feed therewith
US5053572A (en) * 1989-05-11 1991-10-01 Amoco Corporation Multistage ethylbenzene dehydrogenation process with split-flow hydrocarbon feed
US5723707A (en) * 1993-01-04 1998-03-03 Chevron Chemical Company Dehydrogenation processes, equipment and catalyst loads therefor
RU2279310C2 (ru) * 2001-12-20 2006-07-10 СНАМПРОДЖЕТТИ С.п.А. Каталитическая композиция для дегидрирования алкилароматических углеводородов (варианты), способ ее приготовления (варианты) и способ дегидрирования алкилароматических углеводородов с ее использованием
US6958427B2 (en) * 2002-03-04 2005-10-25 Korea Research Institute Of Chemical Technology Method for catalytic dehydrogenation of hydrocarbons using carbon dioxide as a soft oxidant

Also Published As

Publication number Publication date
ZA201008779B (en) 2012-01-25
CA2726533A1 (en) 2009-12-17
TW201010966A (en) 2010-03-16
KR20110031279A (ko) 2011-03-25
CL2009001403A1 (es) 2010-01-04
CA2726533C (en) 2013-07-30
AR074152A1 (es) 2010-12-29
KR101241504B1 (ko) 2013-03-11
US20090312590A1 (en) 2009-12-17
BRPI0914853A2 (pt) 2015-10-27
EP2303811A4 (en) 2014-04-30
US7910784B2 (en) 2011-03-22
WO2009152438A1 (en) 2009-12-17
EP2303811A1 (en) 2011-04-06
JP2011524370A (ja) 2011-09-01
MX2010013718A (es) 2011-04-11
CN102056871A (zh) 2011-05-11

Similar Documents

Publication Publication Date Title
Qian et al. Formaldehyde synthesis from methanol over silver catalysts
US4739124A (en) Method for oxygen addition to oxidative reheat zone of ethane dehydrogenation process
RU2446137C1 (ru) Способ получения стирольного мономера окислительным дегидрированием этилбензола с использованием co2 в качестве мягкого окислителя
KR20030072541A (ko) 이산화탄소 산화제를 사용한 알킬방향족 탄화수소의탈수소화 방법
KR870001314B1 (ko) 탄화수소 접촉 탈수소화 공정
RU2443667C1 (ru) Способ получения мономера стирола с повышенной энергетической эффективностью и инжекцией рециркулирующего газа в испаритель этилбензола
CA2753127C (en) Hydrocarbon dehydrogenation process
US9227854B2 (en) Process for purification of an aqueous phase containing polyaromatics
KR20000029147A (ko) 불활성가스의 몰 흐름을 최소화하기 위한 방법
US4778941A (en) Eduction of intermediate effluent in dehydrogenation process having oxidative reheat
US5043500A (en) Use of steam eductor to supply oxygen for oxidative reheating in dehydrogenation of C3 + hydrocarbons
CN108349847B (zh) 同时制备苯乙烯和α-甲基苯乙烯的节能方法和装置
JP2011524370A5 (ru)
CN101384536B (zh) 预脱水塔在乙烷氧化成醋酸/乙烯的方法中的用途
US20080039671A1 (en) Process for chemical conversions in membrane reactors and recovery of purified product
JPH0347140A (ja) 分割流れの炭化水素供給を有する多段階エチルベンゼン脱水素方法
US20200140367A1 (en) Conversion of polystyrene to benzoic acid
WO2019014172A1 (en) CONVERSION OF POLYSTYRENE TO BENZOIC ACID

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140613