RU2437004C1 - Гидродинамический подшипник скольжения - Google Patents

Гидродинамический подшипник скольжения Download PDF

Info

Publication number
RU2437004C1
RU2437004C1 RU2010127654/11A RU2010127654A RU2437004C1 RU 2437004 C1 RU2437004 C1 RU 2437004C1 RU 2010127654/11 A RU2010127654/11 A RU 2010127654/11A RU 2010127654 A RU2010127654 A RU 2010127654A RU 2437004 C1 RU2437004 C1 RU 2437004C1
Authority
RU
Russia
Prior art keywords
working surface
pockets
grooves
hydrodynamic
sliding bearing
Prior art date
Application number
RU2010127654/11A
Other languages
English (en)
Inventor
Кирилл Николаевич Войнов (RU)
Кирилл Николаевич Войнов
Владимир Сергеевич Майоров (RU)
Владимир Сергеевич Майоров
Original Assignee
Федеральное государственное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" filed Critical Федеральное государственное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения"
Priority to RU2010127654/11A priority Critical patent/RU2437004C1/ru
Application granted granted Critical
Publication of RU2437004C1 publication Critical patent/RU2437004C1/ru

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

Изобретение относится к машиностроению и может быть использовано в устройствах, где имеют место высокие окружные скорости и нагрузки, в частности в дизельных двигателях в качестве опор коленчатого вала, шатунных вкладышей, опор вала турбокомпрессора, в буксовых узлах вагонов и в других механических системах. Гидродинамический подшипник скольжения содержит вкладыш (1) с антифрикционным покрытием (2), поверхность которого в наиболее нагруженной части содержит разделенные участками рабочей поверхности (4) масляные карманы, уменьшающиеся по глубине со стороны входа смазочного материала в зону трения. Карманы выполнены в виде поперечных канавок (3) с плавным переходом на рабочую поверхность (4), размер которых по длине больше, чем по ширине. Технический результат - повышение надежности подшипника за счет уменьшения износа. 6 з.п. ф-лы, 8 ил.

Description

Изобретение относится к машиностроению и может быть использовано в устройствах, где имеют место высокие окружные скорости и нагрузки, в частности в дизельных двигателях в качестве опор коленчатого вала, шатунных вкладышей, опор вала турбокомпрессора, в буксовых узлах вагонов и в других механических системах.
Известен гидродинамический подшипник скольжения (RU №2108497, F16C 17/02, опубл. 10.04.1998), содержащий цапфу вала и втулку с антифрикционным покрытием и кольцевой канавкой, в котором на рабочей поверхности цапфы вала выполнено не менее трех лысок с плавными скосами по направлению вращения вала, ширина которых менее ширины втулки.
Недостатком данной конструкции является то, что данная конструкция подшипника не обеспечивает стабильность смазывания из-за неизбежных смещений вала в противоположную сторону от места входа смазочного материала в зону трения, что приводит к износу подшипника.
Наиболее близким техническим решением к заявляемому является гидродинамический подшипник (RU №2166136, F16C 17/00, F16C 33/02, F16C 33/10, опубл. 27.04.2001 - прототип), содержащий масляные карманы, выполненные на одной из рабочих поверхностей, образующих гидродинамический смазочный слой. При этом все карманы размещены только в тех местах, где давление в смазочном слое увеличивается, а карманы, начиная с подающего, из которого смазка поступает в зону трения, разделены между собой перегородками, имеющими заостренные вершины, заканчивающиеся уплотняющими кромками.
Недостатком данной конструкции является возможность появления сухого трения из-за разрыва масляного слоя, вызванного смещением оси вала относительно оси внутренней поверхности вкладыша в противоположную сторону от места входа смазочного материала в зону трения, неизбежно возникающего под действием нагрузки, что приводит к износу подшипника.
Задача изобретения - повышение надежности гидродинамического подшипника скольжения за счет снижения износа.
Технический результат достигается тем, что в гидродинамическом подшипнике скольжения поверхность вкладыша в наиболее нагруженной части содержит разделенные участками рабочей поверхности масляные карманы, уменьшающиеся по глубине со стороны входа смазочного материала в зону трения, карманы выполнены в виде поперечных канавок с плавным переходом на рабочую поверхность, размер которых по длине больше, чем по ширине.
Карманы могут быть выполнены постоянной ширины.
Карманы могут быть выполнены сужающимися к выходу на рабочую поверхность.
Все карманы могут иметь выход на рабочую поверхность в одном направлении.
Если необходимо обеспечить реверсивность работы подшипника, соседние карманы выполняются с выходом на рабочую поверхность в противоположном направлении.
Все карманы могут быть выполнены одинаковой длины.
Также возможен вариант выполнения карманов разной длины.
Изобретение иллюстрируется чертежами, на которых изображены:
на фиг.1 - вариант исполнения подшипника скольжения с канавками постоянной ширины, одинаковой длины, с выходом на рабочую поверхность в одном направлении;
на фиг.2 - вариант исполнения подшипника скольжения с сужающимися канавками одинаковой длины, с выходом на рабочую поверхность в одном направлении;
на фиг.3 - вариант исполнения подшипника скольжения с канавками постоянной ширины, одинаковой длины, имеющими выход на рабочую поверхность в противоположном направлении;
на фиг.4 - вариант исполнения подшипника скольжения с сужающимися канавками одинаковой длины, имеющими выход на рабочую поверхность в противоположном направлении;
на фиг.5 - вариант исполнения подшипника скольжения с канавками постоянной ширины, разной длины, с выходом на рабочую поверхность в одном направлении;
на фиг.6 - вариант исполнения подшипника скольжения с сужающимися канавками разной длины, с выходом на рабочую поверхность в одном направлении;
на фиг.7 - вариант исполнения подшипника скольжения с канавками постоянной ширины, разной длины, имеющими выход на рабочую поверхность в противоположном направлении;
на фиг.8 - вариант исполнения подшипника скольжения с сужающимися канавками разной длины, имеющими выход на рабочую поверхность в противоположном направлении;
Гидродинамический подшипник скольжения (фиг.1) содержит вкладыш 1 с антифрикционным покрытием 2 или полностью изготовленный из антифрикционного материала, с выполненными на его поверхности масляными карманами в виде поперечных канавок 3 постоянной ширины и одинаковой длины, с плавными выходами на рабочую поверхность 4, с которой вводится в сопряжение цапфа вала 5. Все канавки 3 имеют выход на рабочую поверхность 4 в одном направлении.
На фиг.2 показан вариант исполнения гидродинамического подшипника скольжения, в котором канавки 3 также имеют одинаковую длину и направление выхода на рабочую поверхность 4, однако выполнены сужающимися к выходу на рабочую поверхность 4.
На фиг.3 показан вариант исполнения гидродинамического подшипника скольжения, в котором канавки 3 выполнены постоянной ширины и одинаковой длины, при этом соседние канавки 3 выполнены с выходом на рабочую поверхность 4 в противоположном направлении.
На фиг.4 показан вариант исполнения гидродинамического подшипника скольжения, в котором канавки 3 имеют одинаковую длину, однако выполнены сужающимися, при этом соседние канавки 3 выполнены с выходом на рабочую поверхность 4 в противоположном направлении.
На фиг.5 показан вариант исполнения гидродинамического подшипника скольжения, в котором канавки 3 имеют постоянную ширину и одинаковое направление выхода на рабочую поверхность 4, но при этом канавки 3 выполнены разной длины.
На фиг.6 показан вариант исполнения гидродинамического подшипника скольжения, в котором канавки 3 имеют разную длину и одинаковое направление выхода на рабочую поверхность 4, однако выполнены сужающимися к выходу на рабочую поверхность 4.
На фиг.7 показан вариант исполнения гидродинамического подшипника скольжения, в котором канавки 3 имеют постоянную ширину, однако выполнены разной длины, при этом соседние канавки 3 выполнены с выходом на рабочую поверхность 4 в противоположном направлении.
На фиг.8 показан вариант исполнения гидродинамического подшипника скольжения, в котором канавки 3 имеют разную длину и выполнены сужающимися к выходу на рабочую поверхность 4, при этом соседние канавки 3 выполнены с выходом на рабочую поверхность 4 в противоположном направлении.
Гидродинамический подшипник скольжения (фиг.1) работает следующим образом. При вращении вала 5 смазка затягивается в зазор между поверхностью цапфы вала 5 и вкладыша 1 силами жидкостного трения, образуя гидродинамическое давление. При этом на тех участках, где выполнены наклонные канавки 3, толщина слоя смазки увеличивается по сравнению с толщиной слоя смазки на рабочей поверхности 4, что улучшает подвод смазочного материала к области повышенного давления. Это приводит к перераспределению возникающего в смазочном слое гидродинамического давления, и препятствует смещению оси вала 5 относительно оси внутренней поверхности вкладыша 1, обеспечивая вертикальное, без перекосов, всплытие вала 5, тем самым исключая возможность появления сухого трения и повышенного износа, что подтверждается результатами компьютерного моделирования и испытаниями на лабораторном стенде.
Показанный на фиг.2 гидродинамический подшипник скольжения работает аналогично показанному на фиг.1, однако сужение канавок 3 в области выхода на рабочую поверхность 4 приводит к ускорению потока смазочного материала внутри канавки, что улучшает поступление смазочного материала к области повышенного давления.
Показанный на фиг.3 гидродинамический подшипник скольжения работает аналогично показанному на фиг.1, однако благодаря тому, что соседние канавки 3 выполнены с выходом на рабочую поверхность 4 в противоположном направлении, данный подшипник может работать реверсивно.
Показанный на фиг.4 гидродинамический подшипник скольжения работает аналогично показанному на фиг.3, однако сужение канавок 3 в области выхода на рабочую поверхность 4 приводит к тому, что поток смазочного материала внутри канавок 3, направление выхода которых на рабочую поверхность 4 совпадает с направлением вращения вала 5, ускоряется, улучшая поступление смазочного материала к области повышенного давления. При этом в канавках 3, имеющих противоположное направление выхода на рабочую поверхность 4, благодаря сужению поток замедляется, уменьшая утечку смазочного материала из области повышенного давления, которая происходит через данные канавки 3.
Показанный на фиг.5, 6, 7, 8 гидродинамический подшипник скольжения работает аналогично показанному на фиг.1, 2, 3, 4 соответственно. Дополнительно следует отметить, что выполнение канавок 3 разной длины влияет на характеристики потока смазочного материала между поверхностями вкладыша 1 и вала 5 в осевом направлении. В частности, выполнение канавок 3 разной длины позволяет добиться лучшего распределения смазочного материала по длине подшипника.
Таким образом, достигается повышение надежности гидродинамического подшипника скольжения за счет уменьшения износа благодаря обеспечению непрерывного сохранения в зоне трения смазочного слоя.

Claims (7)

1. Гидродинамический подшипник скольжения, в котором поверхность вкладыша в наиболее нагруженной части содержит разделенные участками рабочей поверхности масляные карманы, уменьшающиеся по глубине со стороны входа смазочного материала в зону трения, отличающийся тем, что карманы выполнены в виде поперечных канавок с плавным переходом на рабочую поверхность, размер которых по длине больше, чем по ширине.
2. Гидродинамический подшипник скольжения по п.1, отличающийся тем, что карманы выполнены постоянной ширины.
3. Гидродинамический подшипник скольжения по п.1, отличающийся тем, что карманы выполнены сужающимися к выходу на рабочую поверхность.
4. Гидродинамический подшипник скольжения по п.1, отличающийся тем, что все карманы имеют выход на рабочую поверхность в одном направлении.
5. Гидродинамический подшипник скольжения по п.1, отличающийся тем, что соседние карманы имеют выход на рабочую поверхность в противоположном направлении.
6. Гидродинамический подшипник скольжения по любому из пп.2-5, отличающийся тем, что карманы выполнены одинаковой длины.
7. Гидродинамический подшипник скольжения по любому из пп.2-5, отличающийся тем, что карманы выполнены разной длины.
RU2010127654/11A 2010-07-05 2010-07-05 Гидродинамический подшипник скольжения RU2437004C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010127654/11A RU2437004C1 (ru) 2010-07-05 2010-07-05 Гидродинамический подшипник скольжения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010127654/11A RU2437004C1 (ru) 2010-07-05 2010-07-05 Гидродинамический подшипник скольжения

Publications (1)

Publication Number Publication Date
RU2437004C1 true RU2437004C1 (ru) 2011-12-20

Family

ID=45404391

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010127654/11A RU2437004C1 (ru) 2010-07-05 2010-07-05 Гидродинамический подшипник скольжения

Country Status (1)

Country Link
RU (1) RU2437004C1 (ru)

Similar Documents

Publication Publication Date Title
CN102748390B (zh) 流体动力轴向轴承
Wos et al. The effect of both surfaces textured on improvement of tribological properties of sliding elements
CN101696728B (zh) 一种具有跨尺度表面织构特征的液体润滑端面密封结构
EP2998596B1 (en) Low vibration floating metal bearing
KR102030174B1 (ko) 혼합식 동압력 기체 저널 베어링
Ding et al. Geometric influence on friction and wear performance of cast iron with a micro-dimpled surface
EA035430B1 (ru) Газодинамический радиальный подшипник канавочного типа
US10060470B2 (en) Thrust bearing and rotary machine
JP2019203559A (ja) 半割軸受およびすべり軸受
CN103534496A (zh) 特别用于风力涡轮机中的滚动轴承的垫片
US10024358B2 (en) Crank-drive with bearings having micro-ramp structures of asymmetric form
US8235599B2 (en) Hydrodynamic tapered roller bearings and gas turbine engine systems involving such bearings
US20170009885A1 (en) Piston ring configured to reduce friction
RU2437004C1 (ru) Гидродинамический подшипник скольжения
JP2019138367A (ja) 内燃機関のクランク軸用主軸受
CN104813047A (zh) 曲轴推力轴承及包括该曲轴推力轴承的发动机
Marey An experimental investigation of hydrodynamic journal bearing with different oil grades
KR101278644B1 (ko) 내연기관의 크랭크샤프트용 슬라이드베어링
CN103089691A (zh) 一种离心压缩机用轴承、离心压缩机及空调系统
RU162455U1 (ru) Самоустанавливающийся коренной подшипник
Chen et al. Review and prospects for the development of EHL of finite line contacts
RU2467217C1 (ru) Гидростатический подшипник
RU161107U1 (ru) Самоустанавливающийся коренной подшипник
Tala-Ighil et al. The effect of oil viscosity on the performances of a textured journal bearing
JP7100004B2 (ja) 半割軸受およびすべり軸受

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120706