RU2435241C1 - Способ обработки радиоактивно зараженных металлических и графитовых отходов уран-графитовых ядерных реакторов - Google Patents

Способ обработки радиоактивно зараженных металлических и графитовых отходов уран-графитовых ядерных реакторов Download PDF

Info

Publication number
RU2435241C1
RU2435241C1 RU2010120975/07A RU2010120975A RU2435241C1 RU 2435241 C1 RU2435241 C1 RU 2435241C1 RU 2010120975/07 A RU2010120975/07 A RU 2010120975/07A RU 2010120975 A RU2010120975 A RU 2010120975A RU 2435241 C1 RU2435241 C1 RU 2435241C1
Authority
RU
Russia
Prior art keywords
graphite
wastes
metal
flux
radioactive
Prior art date
Application number
RU2010120975/07A
Other languages
English (en)
Inventor
Владимир Александрович Чемезов (RU)
Владимир Александрович Чемезов
Рауиль Сайфуллович Каримов (RU)
Рауиль Сайфуллович Каримов
Original Assignee
Открытое акционерное общество "Свердловский научно-исследовательский институт химического машиностроения" (ОАО "СвердНИИхиммаш")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Свердловский научно-исследовательский институт химического машиностроения" (ОАО "СвердНИИхиммаш") filed Critical Открытое акционерное общество "Свердловский научно-исследовательский институт химического машиностроения" (ОАО "СвердНИИхиммаш")
Priority to RU2010120975/07A priority Critical patent/RU2435241C1/ru
Application granted granted Critical
Publication of RU2435241C1 publication Critical patent/RU2435241C1/ru

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к области обращения с радиоактивно заряженными материалами, а именно с радиоактивно загрязненными металлическими и графитовыми отходами, и предназначено для использования на атомных электростанциях, на предприятиях радиохимического производства и пунктах захоронения радиоактивных отходов. Способ обработки радиоактивно зараженных металлических и графитовых отходов уран-графитовых ядерных реакторов включает загрузку радиоактивно зараженных металлических отходов и флюса в печь, расплавление металлических отходов, удаление расплава и образовавшегося шлакофлюса из печи. До загрузки радиоактивно зараженных металлических отходов в печь загружают слой радиоактивно зараженного графита и зажигают его в окислительной среде генерируемой плазмотроном печи плазмой, после чего отключают плазмотрон и осуществляют загрузку в печь фрагментированных радиоактивно зараженных металлических отходов и флюса сверху вниз поочередно и послойно. Изобретение позволяет свести до минимума объем вторичных радиоактивных отходов, сократить энергетические затраты, исключить возможность возникновения аварийной ситуации. 1 ил.

Description

Изобретение относится к области обращения с радиоактивно зараженными материалами, а именно с радиоактивно загрязненными металлическими и графитовыми отходами.
Изобретение может быть использовано на атомных электростанциях, на предприятиях радиохимического производства и пунктах захоронения (хранения) радиоактивных отходов с целью дезактивации демонтированных радиоактивно загрязненных узлов уран-графитовых ядерных реакторов.
Проблема обращения с радиоактивно зараженными оборудованием и материалами уран-графитовых реакторов, особенно с металлами и графитом, актуальна, так как в России и странах мирового сообщества ряд реакторов данного типа либо выработал штатный ресурс и остановлен, либо близок к выработке ресурса.
В ядерной энергетике России имеются восемнадцать действующих энергоблоков с реактором РБМК, четыре энергоблока с реакторами ЭГП-6 и два остановленных реактора АМБ-100 и АМБ-200 Белоярской атомной электростанции. Кроме того, в России остановлены 13 промышленных уран-графитовых реакторов. Следовательно, в обозримом будущем (даже при условии продления срока службы энергоблоков) необходимо иметь надежные способы обращения с большими массами облученных металлов и графита для получения уже дезактивированных продуктов.
Более того, одной из немаловажных задач при осуществлении обработки радиоактивно зараженных металлов и графита является обеспечение малых объемов образующихся при этом вторичных отходов, подлежащих захоронению (или хранению). А этим обусловливается и сокращение производственных площадей для мест захоронения (или хранения) вторичных отходов, и сокращение капитальных и эксплуатационных затрат.
Рассмотрим, как решаются указанные задачи в известных из уровня техники технических решениях, аналогичных заявляемому способу.
При проведении заявителем патентных исследований были выявлены технические решения, относящиеся к обработке радиоактивно зараженных металлических и графитовых отходов.
Известен способ удаления радиоактивного материала с металлического изделия (см. патент Великобритании №2266002, кл. G21F 9/28, 1992), в соответствии с которым «металлическое изделие помещают в печь и расплавляют. Радиоактивные примеси переходят в шлак, а расплав удаляют из печи. Перед загрузкой в печь к загрязненному металлическому изделию добавляют нерадиоактивный материал для снижения уровня радиоактивного загрязнения до приемлемой величины».
Данный способ имеет весьма значительный недостаток - это добавление нерадиоактивного материала к загрязненному металлическому изделию для снижения уровня радиоактивного загрязнения. А это значит, что радиоактивным станет и добавленный материал. Задача по уменьшению объемов получаемых после обработки вторичных радиоактивных отходов известным способом не решена. Отсюда и увеличение площади захоронения (хранения) вторичных отходов, и рост капитальных и эксплуатационных затрат.
Известен способ переработки высокоактивных графитсодержащих отходов путем отделения графита от радионуклидов (см. авт. свид. СССР №1718277, кл. G21F 9/32, 1989), включающий окисление и доокисление графитсодержащих отходов, при этом окисление и доокисление твердых графитсодержащих отходов проводят в режиме беспламенного горения при температуре 620-680°C, доокисленные отходящие газы последовательно подвергают операциям десублимации и сублимации, отделенный в результате сублимации углекислый газ абсорбируют водным раствором гидроокиси кальция, а аэрозоль, содержащий высокоактивные радионуклиды, подпитывают газообразным кислородом и направляют в голову процесса, на стадию окисления.
Анализ формулы данного изобретения показывает, что способ очень сложен в реализации: много разных операций, необходимость соблюдения строго заданного температурного режима для обеспечения беспламенного горения, осуществление прямо противоположных процессов «сублимация-десублимация», абсорбция газа раствором, подпитывание газообразным кислородом и возврат в процесс окисления (в голову процесса) аэрозоля, содержащего высокоактивные радионуклиды. Более того, использование жидкого абсорбента, во-первых, создает проблему переработки жидких радиоактивных отходов, а во-вторых, увеличивает (а не минимизирует) объемы радиоактивных отходов, подлежащих захоронению. Но самый главный недостаток этого способа в том, что при горении графита происходит интенсивное тепловыделение, приводящее к опасному разрушению стенки аппарата, в котором осуществляется процесс.
Наиболее близким аналогом заявляемого способа является способ дезактивации радиоактивных отходов металлов (см. авт. свид. СССР №1389565, кл. G21F 9/30, 1986), принятый в качестве прототипа. Способ «включает плавление и перегрев радиоактивных отходов меди в присутствии рафинирующих флюсов, в качестве которых используют мета-полифосфаты щелочных металлов в количестве 1-10% от загрузки металла, а перегрев ведут в пределах 1083-1400°C».
В данном известном техническом решении действительно может быть достигнута дезактивация радиоактивных отходов меди за счет выхода радионуклидов из расплавленного металла и дальнейшей фиксации их в шлаке, а образовавшийся шлакофлюс «можно непосредственно без переработки захоранивать в сухих могильниках».
Однако при осуществлении такого способа велики энергозатраты на создание индукционного электрического поля, способного обеспечить очень высокие температуры - от 1083 до 1400°С для расплавления металла, но кроме этого необходимо поддерживать этот температурный режим в течение довольно длительного времени, чтобы все образующиеся шлаки - окалина, окислы, технологические отложения и радионуклиды перешли во флюс.
Из приведенного анализа известных способов напрашивается вывод, что они не могут быть применены для обработки радиоактивно зараженных металлических и графитовых отходов уран-графитовых ядерных реакторов из-за больших затрат и увеличения объемов вторичных отходов.
В заявляемом способе такие недостатки отсутствуют, более того, именно совместная обработка радиоактивно зараженных металлических и графитовых отходов позволяет минимизировать объемы вторичных отходов, снизить энергозатраты, капитальные и эксплуатационные затраты на переработку и избежать аварийной ситуации.
Подтверждение тому - приведенное ниже описание заявляемого способа.
Заявляемый способ, как и прототип, включает загрузку радиоактивно зараженных металлических отходов и флюса в печь, расплавление металла, удаление расплава и образовавшегося шлакофлюса из печи.
Заявляемый способ отличается тем, что до загрузки радиоактивно зараженных металлических отходов в печь загружают слой радиоактивно зараженного графита и зажигают его в окислительной среде генерируемой плазмотроном печи плазмой, после чего отключают плазмотрон и осуществляют загрузку в печь фрагментированных радиоактивно зараженных металлических отходов и флюса сверху вниз поочередно и послойно.
Заявляемое техническое решение соответствует всем условиям патентоспособности изобретения, так как:
в качестве изобретения заявляется процесс осуществления действий над материальными объектами (радиоактивно зараженными металлами, радиоактивно зараженным графитом и флюсом) с помощью материальных средств (печи, имеющей все конструктивные элементы, реализующие способ);
способ является новым, так как совокупность существенных признаков его не известна из уровня техники. При проведении заявителем патентных исследований не обнаружены технические решения, тождественные заявляемому по совокупности существенных признаков, что подтверждается и приведенными выше описаниями аналогов;
способ промышленно применим, так как он может быть использован в промышленности. Сам способ и каждый из признаков его воспроизводимы; вся совокупность признаков и каждый отдельно взятый признак формулы способа не противоречат использованию способа в производстве, что подтверждается приведенным ниже описанием осуществления заявляемого способа;
способ имеет изобретательский уровень, так как для специалиста он явным образом не следует из уровня техники. При осуществлении заявляемого способа достигаются необыкновенные технические результаты: радиоактивно зараженный графит самоочищается от радиоактивности, снимая при этом радиоактивность и с металлических отходов. Вторичным радиоактивным отходом остается только образовавшийся из флюса, окалины, окислов, технологических отложений и радионуклидов шлакофлюс, объем которого намного меньше, чем объем поступивших на обработку исходных продуктов.
Для осуществления способа необходимо использование шахтной печи, изображение которой представлено на прилагаемом к заявочной документации чертеже - схематичное изображение общего вида печи в разрезе. Печь должна быть изготовлена в соответствии с требованиями ядерно-безопасного исполнения. Печь содержит корпус 1, верхняя часть которого оснащена патрубком 2 загрузки флюса, патрубком 3 загрузки фрагментированных радиоактивно зараженных металлических отходов, патрубком 4 загрузки радиоактивно зараженного графита и патрубком 5 для отвода газа(ов). Нижняя часть корпуса 1 снабжена плазмотроном 6, патрубком 7 для ввода окислительной среды, например воздуха или смеси кислорода и азота, патрубком 8 отвода чистого расплава металла и патрубком 9 отвода образовавшегося шлакофлюса.
Осуществляют заявляемый способ следующим образом. Первым сверху вниз внутрь корпуса 1 через патрубок 4 загружают слой 10 радиоактивно зараженного графита из демонтированного уран-графитового ядерного реактора. Затем расположенный в донной части печи слой 10 радиоактивно зараженного графита зажигают с помощью струи плазмы, генерируемой плазмотроном 6, установленным в нижней части корпуса в непосредственной близости к графиту. Одновременно с зажиганием в печь через патрубок 7 подают окислительную среду, в качестве которой используют воздух или смесь кислорода и азота в заданном соотношении их в смеси. Радиоактивно зараженный графит воспламеняется и горит. Благодаря выделяющемуся при горении радиоактивно зараженного графита экзотермическому теплу пространство в печи нагревают до температуры от 1200 до 1400°C. Тогда в корпус 1 через патрубок 3 загружают сверху вниз слой 11 фрагментированных радиоактивно зараженных металлических отходов (фрагментированные детали и узлы демонтированного уран-графитового ядерного реактора) непосредственно на слой 10 горящего графита, а через патрубок 2 - слой 12 флюса непосредственно на слой 11 металлических отходов.
Радиоактивно зараженный графит сгорает, а радиоактивно зараженные металлические отходы и флюс при указанной температуре расплавляются. При этом из графита и расплавленных металлических отходов выделяются радионуклиды, окалина, окислы, технологические осаждения, которые за счет физической адсорбции и хемосорбции оседают во флюсе. Кроме того, за счет действия закона равновесия Нернста активность с жидкой поверхности расплавленных металлов экстрагируется флюсом. В результате образуется шлакофлюс в расплавленном виде и очищенный от радиоактивности расплав металлов. Отходящий аэрозольсодержащий газ также проходит через слой 12 флюса, очищаясь во флюсе от радиоактивных аэрозолей, и, пройдя через патрубок 5, удаляется из печи на дальнейшую переработку. Расплав металлов дозированно удаляют из печи по патрубку 8 в изложницу и отправляют, при необходимости, на переплавку. Также дозированно удаляют расплав шлакофлюса из печи через патрубок 9 и далее в транспортном контейнере отправляют на отверждение и последующее захоронение в специальных могильниках.
Таким образом, предлагаемый для патентной защиты способ обработки радиоактивно зараженных металлических и графитовых отходов по сравнению с известными из уровня техники решениями эффективен во многих аспектах:
1) сведен до минимума объем вторичных радиоактивных отходов благодаря тому, что введенный в процессе обработки радиоактивно зараженный графит полностью сгорает и в качестве вторичного отхода выступает только шлакофлюс;
2) сокращены энергетические затраты, так как радиоактивно зараженный участник процесса обработки - графит одновременно является энергоносителем и с его помощью осуществляется необходимая обработка радиоактивно зараженных металлических отходов;
3) исключена возможность возникновения аварийной ситуации, связанной с термическим перегревом и последующим разрушением стенки аппарата, так как потребителями всех излишков тепла являются участвующие в процессе радиоактивно зараженные металлические отходы и флюс, тем более что в расплавленном флюсе процесс смачивания-растворения радионуклидов, окислов, окалины и аэрозолей из газов происходит намного эффективнее.
Следует отметить и такой положительный момент. По заявляемому способу процесс обработки радиоактивно зараженных металлических и графитовых отходов может быть непрерывно действующим, так как температура в аппарате не может снизиться мгновенно и тепла, образующегося при переработке первого «сэндвича» из графита, металлов и флюса, будет достаточно для зажигания радиоактивно зараженного графита из загруженных в печь на обработку последующих таких же «сэндвичей».

Claims (1)

  1. Способ обработки радиоактивно зараженных металлических и графитовых отходов уран-графитовых ядерных реакторов, включающий загрузку радиоактивно зараженных металлических отходов и флюса в печь, расплавление металла, удаление расплава металла и образовавшегося шлакофлюса из печи, отличающийся тем, что до загрузки радиоактивно зараженных металлических отходов в печь загружают слой радиоактивно зараженного графита и зажигают его в окислительной среде генерируемой плазмотроном печи плазмой, после чего отключают плазмотрон и осуществляют загрузку в печь фрагментированных радиоактивно зараженных металлических отходов и флюса сверху вниз поочередно и послойно.
RU2010120975/07A 2010-05-24 2010-05-24 Способ обработки радиоактивно зараженных металлических и графитовых отходов уран-графитовых ядерных реакторов RU2435241C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010120975/07A RU2435241C1 (ru) 2010-05-24 2010-05-24 Способ обработки радиоактивно зараженных металлических и графитовых отходов уран-графитовых ядерных реакторов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010120975/07A RU2435241C1 (ru) 2010-05-24 2010-05-24 Способ обработки радиоактивно зараженных металлических и графитовых отходов уран-графитовых ядерных реакторов

Publications (1)

Publication Number Publication Date
RU2435241C1 true RU2435241C1 (ru) 2011-11-27

Family

ID=45318310

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010120975/07A RU2435241C1 (ru) 2010-05-24 2010-05-24 Способ обработки радиоактивно зараженных металлических и графитовых отходов уран-графитовых ядерных реакторов

Country Status (1)

Country Link
RU (1) RU2435241C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020106181A1 (ru) 2018-11-21 2020-05-28 Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" Способ дезактивации элемента конструкции ядерного реактора
CN112700902A (zh) * 2020-11-20 2021-04-23 中核北方核燃料元件有限公司 一种废石墨坩埚的处理方法
CN112700902B (zh) * 2020-11-20 2024-06-07 中核北方核燃料元件有限公司 一种废石墨坩埚的处理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020106181A1 (ru) 2018-11-21 2020-05-28 Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" Способ дезактивации элемента конструкции ядерного реактора
KR20210094460A (ko) 2018-11-21 2021-07-29 조인트 스탁 컴퍼니 “로제네르고아톰” 핵 원자로 구조 요소에 대한 오염 제거 방법
CN112700902A (zh) * 2020-11-20 2021-04-23 中核北方核燃料元件有限公司 一种废石墨坩埚的处理方法
CN112700902B (zh) * 2020-11-20 2024-06-07 中核北方核燃料元件有限公司 一种废石墨坩埚的处理方法

Similar Documents

Publication Publication Date Title
JP6487438B2 (ja) 有機および金属廃棄物を焼却、溶融、およびガラス化するための方法および装置
JP6284092B2 (ja) Riセシウムの分離除去方法、及びその装置
FI80832B (fi) Avgasrening.
US5732365A (en) Method of treating mixed waste in a molten bath
Prado et al. Use of plasma reactor to viabilise the volumetric reduction of radioactive wastes
RU2435241C1 (ru) Способ обработки радиоактивно зараженных металлических и графитовых отходов уран-графитовых ядерных реакторов
RU2580818C1 (ru) Способ переработки облученного реакторного графита
RU2546981C1 (ru) Способ обработки облученного реакторного графита
JP2008200544A (ja) 廃棄物の溶融処理方法
US8062616B2 (en) Method for treating spent pot liner
JP5816962B2 (ja) 放射性セシウム汚染物の処理方法
RU2711292C1 (ru) Способ дезактивации элемента конструкции ядерного реактора
Lemont et al. The plasma technology: one way to improve the nuclear wastes processing
JP2006297233A (ja) プラズマ溶融分解炉及びプラズマ溶融分解方法
JP3844327B2 (ja) 放射性黒鉛の処理方法及び装置
JP2889558B1 (ja) 焼却溶融方法および焼却溶融装置
JPH0752006B2 (ja) 都市ごみ焼却灰の処理方法
RU2390862C2 (ru) Способ обработки беспламенным горением радиоактивных углеродосодержащих веществ
JP6834165B2 (ja) 放射性セシウム含有無機物の処理方法
Watanabe Recent Development of Waste Treatment by Reactive Thermal Plasmas in Japan
EA040021B1 (ru) Способ дезактивации элемента конструкции ядерного реактора
JP2005164320A (ja) 放射性不燃性固体廃棄物の溶融処理方法
JP2005177731A (ja) 排ガス中のダイオキシンの処理方法
RU2051431C1 (ru) Устройство для переработки твердых радиоактивных отходов
JP2011174628A (ja) 廃イオン交換樹脂の焼却処理方法