RU2434074C1 - Способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов вт6 и вт16 - Google Patents
Способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов вт6 и вт16 Download PDFInfo
- Publication number
- RU2434074C1 RU2434074C1 RU2010112138/02A RU2010112138A RU2434074C1 RU 2434074 C1 RU2434074 C1 RU 2434074C1 RU 2010112138/02 A RU2010112138/02 A RU 2010112138/02A RU 2010112138 A RU2010112138 A RU 2010112138A RU 2434074 C1 RU2434074 C1 RU 2434074C1
- Authority
- RU
- Russia
- Prior art keywords
- plasma
- nitriding
- titanium alloys
- self
- arc discharge
- Prior art date
Links
Images
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов ВТ6 и ВТ16, и может быть использовано для повышения эксплуатационных характеристик медицинского инструмента. Заявлен способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов ВТ6 и ВТ16. Способ включает азотирование с использованием в качестве плазмообразующей смеси азот-аргон. Азотирование выполняют при температуре 450°С с использованием ионной и электронной компоненты плазмы. Технический результат - повышение эксплуатационных характеристик 1 з.п. ф-лы, 2 ил.
Description
Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов ВТ6 и ВТ16, и может быть использовано для повышения эксплуатационных характеристик медицинского инструмента.
Известен способ ионного азотирования в плазме дугового разряда титановых сплавов при температуре 500-600°с в смеси газов азот-аргон [1]. С помощью данного метода можно эффективно проводить процесс азотирования титановых сплавов ВТ6 и ВТ20. Указанный способ азотирования не позволяет проводить процесс для титановых сплавов в наноструктурном (НС) и/или субмикрокристаллическом (СМК) состояниях, так как при указанных температурах процесса в титановых сплавах в НС и СМК состоянии начнется процесс рекристаллизации. Еще одним недостатком ионного азотирования в плазме дугового разряда является тот факт, что при проведении процесса в данном типе разряда возможно попадание продуктов эрозии катода на поверхность обрабатываемых изделий.
Наиболее близким по своим признакам, принятым за прототип, является способ низкотемпературного азотирования титана и его сплавов в плазме несамостоятельного дугового разряда низкого давления [2]. Процесс азотирования титановых сплавов ВТ1-0 в состоянии поставки, ВТ6 в состоянии поставки, ВТ6 СМК, ВТ16 в состоянии поставки, ВТ16 СМК, ВТ16 закаленный проводился в следующем режиме: вакуумная камера откачивалась до давления р=2·10-2 Па, затем через катодную полость подавался рабочий газ (Ar, N2). После этого подавалось напряжение ~70 В на разрядный промежуток. В результате чего происходило зажигание диффузионной дуги низкого давления с накаленным катодом. В качестве плазмообразующей смеси использовались смеси газов аргон-азот в процентном соотношении (5:95, 12,5:87,5, 25:75). Азотирование выполняли при температуре ~420°С в течение 1 часа. Но этот способ не может быть применен для азотирования титановых сплавов ВТ6 и ВТ16 в различных структурных состояниях в силу того, что используемая температура 420°С и состав газовой смеси при проведении процесса азотирования могут существенно снизить эффективность обработки. Это приведет к формированию тонких модифицированных слоев, которые не обеспечат достаточный уровень технологических характеристик, таких как твердость, износостойкость и коррозионная стойкость. Указанные режимы азотирования титановых сплавов проводятся в течение 1 часа, увеличение длительности процесса может привести к началу рекристаллизации ВТ6 и ВТ16 в СМК и НС состояниях.
Задачей предлагаемого изобретения является повышение эксплуатационных характеристик изделий из титановых сплавов ВТ6 и ВТ16 в различных структурных состояниях, а именно в крупнозернистом, СМК и НС.
Поставленная задача решается тем, что использован способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов ВТ6 и ВТ16 в различных структурных состояниях, включающий азотирование титановых сплавов ВТ6 и ВТ16 в крупнозернистом, субмикрокристаллическом и наноструктурном состояниях, используя в качестве плазмообразующей смеси азот-аргон, причем азотирование выполняется при температуре 450°С и используется ионная и электронная компонента плазмы. Время азотирования и количество аргона в плазмообразующей смеси зависит от требуемой толщины и структурно-фазового состава модифицированного слоя.
Предлагаемый способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов ВТ6 и ВТ16 позволяет улучшить качество и свойства поверхности изделий из них, при этом сохранить структуру в объеме материала, предварительно сформированную с помощью методов интенсивной пластической деформации. Также стоит отметить, что предлагаемый способ позволяет варьировать время азотирования в зависимости от требуемой толщины модифицированных слоев. Такой результат был получен за счет проведения процесса при температуре 450°С в газовой среде азот-аргон с процентным содержанием аргона от 5 до 95% и использовании элионного режима.
Проведение процесса азотирования по прототипу при температуре 420°С в плазмообразующей среде газовой смеси азот-аргон с содержанием аргона от 5 до 25% приведет к снижению скорости диффузии азота в материал. Температура 450°С является наиболее приемлемой, так как, с одной стороны, не происходит рекристаллизация, а с другой стороны, скорость диффузии азота будет выше чем при 420°С. Соответственно характеристики модифицированных слоев будут лучше, при этом предварительно сформированная структура в объеме материала НС или СМК состояния сохранятся.
На фиг.1 изображена схема экспериментов по низкотемпературному азотированию в плазме несамостоятельного дугового разряда низкого давления: 1 - плазмогенераторы ПИНК; 2 - вакуумная камера; 3 - технологическая оснастка; 4 - образцы; В/Н - источник отрицательного напряжения смещения; ИП-1 и ИП-2 - источники питания плазмогенераторов; ИП-Э - источник питания электронного режима. На фиг.2 изображена морфология поверхности ВТ6 в крупнозернистом состоянии после азотирования.
Азотирование выполняли на ионно-плазменной установке типа ННВ-6.6-И1 (фиг.1). На дверце и верхней стенке вакуумной камеры 2, размерами 600×600×600 мм, располагаются газоразрядные плазмогенераторы ПИНК 1 на основе несамостоятельного дугового разряда низкого давления. Откачка вакуумного объема осуществлялась диффузионным паромасляным насосом Н - 250. Вакуумная камера откачивалась до предельного остаточного давления 3÷5×10-5 Торр (0.4÷0.65×10-3 Па). Азотирование осуществлялось в элионном режиме работы установки. Принцип работы схемы элионного азотирования заключается в следующем - в зависимости от режима работы нагрев и поддержание температуры образцов осуществляется электронной и ионной компонентой плазмы. В ионном режиме (фиг.1) стенки вакуумной камеры 2 являются анодом, а на расположенный в центре камеры манипулятор с оснасткой 3 подается от отдельного источника питания (В/Н) отрицательное напряжение смещения, осуществляя, таким образом, очистку, нагрев и проведение процесса азотирования образцов 4 за счет ионной компоненты плазмы. В электронном режиме анодом является манипулятор с оснасткой 3, в этом случае нагрев осуществляется электронной компонентой плазмы, питание разряда происходит от отдельного источника (ИП-Э).
Пример 1. В качестве материала исследования был выбран титановый сплав ВТ6 в крупнозернистом состоянии, с размером зерна 7-9 мкм. Процесс проводили при температуре 450°С в смеси газов азот-аргон с процентным соотношением 60% N2 - 40% Ar. Время азотирования составляло 40 минут. В результате обработки титанового сплава ВТ6 в крупнозернистом состоянии по данному режиму низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления удалось повысить поверхностную микротвердость на 95%, при этом на поверхности формируются частицы нитрида титана глобулярной формы размерами от 20 до 100 нм, что также способствует повышению микротвердости поверхности (фиг.2).
Пример 2. В качестве материала исследования был выбран титановый сплав ВТ16 в СМК состоянии. Проведения процесса азотирования в течение 60 минут в смеси азот-аргон с процентным соотношением 75% N2 - 25% Ar позволило повысить поверхностную микротвердость на 72%.
Таким образом, предлагаемый способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления позволяет проводить процесс для титановых сплавов ВТ6 и ВТ16 как в крупнозернистом состоянии, так и в НС и/или СМК состояниях.
Список литературы
1. А.А.Ильин, С.В.Скворцова, Е.А.Лукина, В.Н.Карпов, О.А.Поляков. Низкотемпературное ионное азотирование имплантатов их титанового сплава ВТ20 в различных структурных состояниях // Металлы, №2, 2005, с.38-44.
2. Д.С.Вершинин, Т.Н.Вершинина, Ю.Р.Колобов, М.Ю.Смолякова, О.А.Дручинина. Низкотемпературное азотирование титана и его сплавов в плазме несамостоятельного дугового разряда низкого давления // Сб. трудов 8-ой Международной конференции «Взаимодействие излучений с твердым телом», Минск, Беларусь, 23-25 сентября, 2009, стр.160-162.
Claims (2)
1. Способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов ВТ6 и ВТ16, включающий азотирование с использованием в качестве плазмообразующей смеси азот-аргон, отличающийся тем, что азотирование выполняют при температуре 450°С с использованием ионной и электронной компоненты плазмы.
2. Способ по п.1, отличающийся тем, что время азотирования и количество аргона в плазмообразующей смеси зависит от требуемой толщины и структуры модифицированного слоя.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010112138/02A RU2434074C1 (ru) | 2010-03-29 | 2010-03-29 | Способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов вт6 и вт16 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010112138/02A RU2434074C1 (ru) | 2010-03-29 | 2010-03-29 | Способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов вт6 и вт16 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2010112138A RU2010112138A (ru) | 2011-10-10 |
RU2434074C1 true RU2434074C1 (ru) | 2011-11-20 |
Family
ID=44804606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010112138/02A RU2434074C1 (ru) | 2010-03-29 | 2010-03-29 | Способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов вт6 и вт16 |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2434074C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2611003C1 (ru) * | 2015-11-02 | 2017-02-17 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" | Способ ионного азотирования титановых сплавов |
RU2625518C2 (ru) * | 2015-11-02 | 2017-07-14 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" | Способ азотирования титановых сплавов в тлеющем разряде |
RU2775988C1 (ru) * | 2021-07-16 | 2022-07-12 | Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук" | Способ азотирования покрытий из оксида титана на твердой подложке |
-
2010
- 2010-03-29 RU RU2010112138/02A patent/RU2434074C1/ru not_active IP Right Cessation
Non-Patent Citations (2)
Title |
---|
БАБАД-ЗАХРЯПИН А.А. и др. Химико-термическая обработка в тлеющем разряде. - М.: Атомиздат, 1975, с.62-74. * |
ВЕРШИНИН Д.С. и др. Низкотемпературное азотирование титана и его сплавов в плазме несамостоятельного дугового низкого давления, 8-я Международная конференция «Взаимодействие излучений с твердым телом», Минск, 23-25.09.2009. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2611003C1 (ru) * | 2015-11-02 | 2017-02-17 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" | Способ ионного азотирования титановых сплавов |
RU2625518C2 (ru) * | 2015-11-02 | 2017-07-14 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" | Способ азотирования титановых сплавов в тлеющем разряде |
RU2775988C1 (ru) * | 2021-07-16 | 2022-07-12 | Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук" | Способ азотирования покрытий из оксида титана на твердой подложке |
RU2785576C1 (ru) * | 2022-05-17 | 2022-12-08 | Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук" | Способ азотирования покрытий из оксида титана на твердой подложке |
Also Published As
Publication number | Publication date |
---|---|
RU2010112138A (ru) | 2011-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5458927A (en) | Process for the formation of wear- and scuff-resistant carbon coatings | |
US5334264A (en) | Titanium plasma nitriding intensified by thermionic emission source | |
CN109797363B (zh) | 一种弧光电子源辅助离子氮化工艺 | |
EP2262919B1 (en) | Treatment of metal components | |
JPS60211061A (ja) | アルミニウム材のイオン窒化方法 | |
Roliński | Plasma-assisted nitriding and nitrocarburizing of steel and other ferrous alloys | |
RU2434074C1 (ru) | Способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов вт6 и вт16 | |
RU2686975C1 (ru) | Способ ионно-плазменного азотирования изделий из титана или титанового сплава | |
US20210246023A1 (en) | Vanadium nitride film, and member coated with vanadium nitride film and method for manufacturing the same | |
Nam et al. | A study on plasma-assisted bonding of steels | |
RU2434075C1 (ru) | Способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления технически чистого титана вт1-0 | |
KR20130128733A (ko) | 이온주입 및 박막 증착 장치 및 이를 이용한 이온주입 및 박막 증착 방법 | |
JP2001192861A (ja) | 表面処理方法及び表面処理装置 | |
Roliński et al. | Controlling plasma nitriding of ferrous alloys | |
CN110760788A (zh) | 铸造钛合金表面硬度的改性处理方法 | |
Taran et al. | Recent developments of plasma-based technologies for medicine and industry | |
JP2006206959A (ja) | アルミニウム合金の窒化方法 | |
KR100594998B1 (ko) | 티타늄계 금속의 질화 방법 | |
RU2611003C1 (ru) | Способ ионного азотирования титановых сплавов | |
JP2005048252A (ja) | 潤滑性と離型性を有する炭素膜被覆物品及びその表面処理方法 | |
EP2369028B1 (en) | Method for nitriding metal alloys and device for carrying out said method | |
US7261914B2 (en) | Method and apparatus for forming a nitride layer on a biomedical device | |
RU2664106C2 (ru) | Способ низкотемпературного ионного азотирования стальных деталей | |
JP2009191344A (ja) | 立方晶窒化硼素含有皮膜の形成方法 | |
JP3572240B2 (ja) | 導電部材の物理的表面改質方法および表面改質装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20170330 |