RU2433549C2 - Передача пилотного сигнала ретрансляционными станциями в многоскачковой ретрансляционной системе связи - Google Patents

Передача пилотного сигнала ретрансляционными станциями в многоскачковой ретрансляционной системе связи Download PDF

Info

Publication number
RU2433549C2
RU2433549C2 RU2009138233/09A RU2009138233A RU2433549C2 RU 2433549 C2 RU2433549 C2 RU 2433549C2 RU 2009138233/09 A RU2009138233/09 A RU 2009138233/09A RU 2009138233 A RU2009138233 A RU 2009138233A RU 2433549 C2 RU2433549 C2 RU 2433549C2
Authority
RU
Russia
Prior art keywords
station
pilot signal
pilot
relay
data
Prior art date
Application number
RU2009138233/09A
Other languages
English (en)
Other versions
RU2009138233A (ru
Inventor
Пранав ДАЯЛ (US)
Пранав ДАЯЛ
Тинфан ЦЗИ (US)
Тинфан ЦЗИ
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU2009138233A publication Critical patent/RU2009138233A/ru
Application granted granted Critical
Publication of RU2433549C2 publication Critical patent/RU2433549C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15557Selecting relay station operation mode, e.g. between amplify and forward mode, decode and forward mode or FDD - and TDD mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0028Variable division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

Изобретение относится к технике связи. Технический результат состоит в повышении эффективности ретрансляции. Для этого в способе поддержки многоскачковой ретрансляции в системе беспроводной связи ретрансляционная станция принимает данные и первый пилот-сигнал от предшествующей станции, например базовой станции или другой ретрансляционной станции. Ретрансляционная станция извлекает оценку канала на основе первого пилот-сигнала и выполняет детектирование данных на основе оценки канала. Ретрансляционная станция повторно отправляет данные и отправляет второй пилот-сигнал последующей станции, например абонентской станции или другой ретрансляционной станции. Каждый пилот-сигнал можно отправить в соответствии с форматом пилот-сигнала, выбранным для данного пилот-сигнала. Первый и второй пилот-сигналы могут быть отправлены, используя одинаковые или разные форматы пилот-сигнала. Ретрансляционная станция может принять информацию о канале от второй станции и может отправить информацию о канале первой станции и/или выбрать оценку для передачи данных для второй станции на основе информации о канале. 4 н. и 11 з.п. ф-лы, 1 табл., 16 ил.

Description

Настоящая заявка испрашивает приоритет предварительной заявки США №60/895,390, озаглавленной "PILOT TRANSMISSION BY RELAYS IN A MULTIHOP RELAY SYSTEM", поданной 16 марта 2007 года, права на которую переуступлены правообладателю настоящей заявки и которая включена посредством ссылки в настоящий документ во всей своей полноте.
Уровень техники
I. Область техники, к которой относится изобретение
Настоящее раскрытие относится, в целом, к связи, и более конкретно, к способам поддержки многоскачковой ретрансляции в системе беспроводной связи.
II. Уровень техники
Системы беспроводной связи широко применяются, чтобы обеспечивать различные услуги связи, такие как голосовые, видео, пакетные данные, обмен сообщениями, радиовещание и т.д.
Эти беспроводные системы могут быть системами коллективного доступа, способными к поддержке множества пользователей при совместном использовании доступных системных ресурсов. Примеры систем такого коллективного доступа включают в себя системы множественного доступа с кодовым разделением (CDMA), системы множественного доступа с временным разделением (TDMA), системы множественного доступа с частотным разделением (FDMA), системы ортогонального FDMA (OFDMA) и системы FDMA с единственной несущей (SC-FDMA). Беспроводные системы утвердились как растущее направление в области передачи данных. Текущие тенденции и требования обязывают предоставлять мультимедийные услуги, такие как голосовые, видео, интерактивные игры и т.д. с гарантированным качеством обслуживания (QoS). Высокая способность передачи данных желательна, чтобы поддерживать высокое качество мультимедийных услуг.
Система радиосвязи может поддерживать многоскачковую ретрансляцию, чтобы увеличить зону действия и/или производительность. С многоскачковой ретрансляцией базовая станция может передавать данные к абонентской станции через одну или более ретрансляционных станций. Каждая ретрансляционная станция может принимать данные от предшествующей станции (например, базовой станции или другой ретрансляционной станции) и может ретранслировать данные последующей станции (например, абонентской станции или другой ретрансляционной станции). Пересылка от одной станции к другой станции рассматривается как скачок. Желательно для каждой ретрансляционной станции ретранслировать данные настолько эффективно, насколько это возможно, и способом, который понятен абонентской станции.
Сущность изобретения
Здесь описываются способы поддержки многоскачковой ретрансляции в системе беспроводной связи. В одном аспекте, ретрансляционная станция принимает данные и первый пилот-сигнал от предшествующей станции, например базовой станции или другой ретрансляционной станции. Ретрансляционная станция повторно передает данные и передает второй пилот-сигнал последующей станции, например абонентской станции или другой ретрансляционной станции. Пилот-сигнал - это передача, известная заранее и передающей, и приемной станциям. Первый пилот-сигнал позволяет ретрансляционной станции восстановить данные, переданные предшествующей станцией. Второй пилот-сигнал позволяет последующей станции восстановить данные, переданные ретрансляционной станцией. Каждый пилот-сигнал может быть отправлен в соответствии с форматом пилот-сигнала, выбранным для этого пилот-сигнала.
В одной реализации ретрансляционная станция может принимать данные и первый пилот-сигнал от первой станции (например, базовой станции). Ретрансляционная станция может получить оценку канала на основе первого пилот-сигнала и затем выполнять детектирование данных на основе оценки канала. Ретрансляционная станция может повторно передать данные и передать второй пилот-сигнал второй станции (например, абонентской станции). Ретрансляционная станция может принимать информацию о канале от второй станции и может пересылать канальную информацию на первую станцию. Альтернативно или дополнительно, ретрансляционная станция может выбрать скорость для передачи данных на вторую станцию, основываясь на информации о канале.
В одной реализации абонентская станция может принимать данные и пилот-сигнал от ретрансляционной станции. Абонентская станция может получить оценку канала, основываясь на пилот-сигнале, и затем выполнить детектирование данных на основе оценки канала. Абонентская станция может определять информацию канала, основываясь на пилот-сигнале, и отослать информацию канала на ретрансляционную станцию.
Ниже описываются различные аспекты и особенности раскрытия в дополнительных деталях.
Краткое описание чертежей
Фиг.1 показывает систему радиосвязи, поддерживающую многоскачковую ретрансляцию.
Фиг.2 показывает структуру кадра без многоскачковой ретрансляции.
Фиг.3 показывает структуру поднесущей для полного использования поднесущих (FUSC).
Фиг.4 показывает структуру поднесущей для частичного использования поднесущих (PUSC).
Фиг.5 показывает структуру поднесущей для диапазона адаптивной модуляции и кодирования (AMC).
Фиг.6 показывает структуру кадра многоскачковой ретрансляции в прозрачном режиме.
Фиг.7 показывает структуру кадра многоскачковой ретрансляции в непрозрачном режиме.
Фиг.8 и 9 показывают две структуры кадра для трех скачков в непрозрачном режиме.
Фиг.10 показывает схему передачи данных и пилотного сигнала при двухскачковой ретрансляции.
Фиг.11 показывает схему передачи данных и пилотного сигнала при трехскачковой ретрансляции.
Фиг.12 показывает процесс поддержки многоскачковой ретрансляции ретрансляционной станцией.
Фиг.13 показывает устройство для поддержки многоскачковой ретрансляции.
Фиг.14 показывает процесс приема данных с многоскачковой ретрансляцией.
Фиг.15 показывает устройство приема данных с многоскачковой ретрансляцией.
Фиг.16 показывает блок-схему базовой станции, ретрансляционной станции и абонентской станции.
Подробное описание
Способы, описанные здесь, могут использоваться для различных систем радиосвязи, таких как: CDMA, TDMA, FDMA, OFDMA и SC-FDMA систем. Термины «система» и «сеть» часто взаимозаменяемы. Система CDMA может реализовывать радиотехнологии такие, как cdma2000, UTRA и т.д. Система OFDMA может реализовывать такие радиотехнологии, как UMB, E-UTRA, IEEE 802.11 (который также упоминается как Wi-Fi), IEEE 802.16 (который также упоминается как WiMAX), IEEE 802.20, Flash-OFDM® и т.д. Эти разнообразные радиотехнологии и стандарты известны в технике. Термины «радиотехнология», «технология радиодоступа» и «радиоинтерфейс» часто используются взаимозаменяемо.
Для ясности, определенные аспекты технологий описаны ниже для WiMAX, который описан в IEEE 802.16, озаглавленном «Раздел 16: Радиоинтерфейс для стационарных и мобильных систем широкополосного беспроводного доступа», Октябрь 1, 2004; IEEE 802.16e, озаглавленном «Раздел 16: для стационарных и мобильных систем широкополосного беспроводного доступа, Поправка 2: Физический уровень и уровень управления доступом к среде передачи для комбинированного стационарного и мобильного режима работы в лицензированных диапазонах», 28 февраля 2006 г. и в IEEE 802.16j, озаглавленном «Раздел 16: Радиоинтерфейс для стационарных и мобильных систем широкополосного беспроводного доступа. Спецификация многоскачковой ретрансляции», 24 декабря 2007 г. Эти документы общедоступны. Способы также могут быть использованы для IEEE 802.16m, который является новым радиоинтерфейсом, разработанным для WiMAX. IEEE 802.16j предусматривает многоскачковые ретрансляционные станции и предназначается для увеличения производительности IEEE 802.16-стандартов при внедрении ретрансляционных станций. Некоторые цели IEEE 802.16j заключаются в увеличении зоны покрытия, увеличении пропускной способности и емкости системы, сохранении ресурса батарей абонентских станций и минимизации сложности ретрансляционных станций.
Фиг.1 показывает систему 100 радиосвязи, которая поддерживает многоскачковую ретрансляцию. Для простоты, Фиг.1 показывает только одну базовую станцию (BS) 110, три ретрансляционных станции (RS) 120, 122 и 124 и две абонентских станции (SS) 130 и 132. В общем, система может включать в себя любое число базовых станций и любое число ретрансляционных станций, которые поддерживают связь с любым числом абонентских станций. Базовая станция - это станция, которая поддерживает связь с абонентскими станциями. Базовая станция может выполнять такие функции, как обеспечение связи, управление и контроль ретрансляционных станций и абонентских станций. Базовая станция может также называться узлом B, расширенным узлом B, точкой доступа и т.д. Ретрансляционная станция - это станция, которая обеспечивает связь с другими ретрансляционными станциями и/или абонентскими станциями. Ретрансляционная станция может также обеспечивать управление и контроль подчиненных ретрансляционных станций и/или абонентских станций. Радиоинтерфейс между ретрансляционной станцией и абонентской станцией может быть идентичным радиоинтерфейсу между базовой станцией и абонентской станцией. Базовая станция может быть связана с базовой сетью через линию ретрансляции (не показана на Фиг.1) для поддержки различных служб. Ретрансляционная станция может быть или может не быть подсоединенной непосредственно к линии обратной связи и может иметь функциональные ограничения при поддержке многоскачковой связи через ретрансляционную станцию.
Абонентские станции могут быть рассредоточены по системе, и каждая абонентская станция может быть стационарной или подвижной. Абонентская станция может также называться подвижной станцией, терминалом, терминалом доступа, пользовательским оборудованием, абонентской установкой, станцией и т.д. Абонентская станция может быть сотовым телефоном, личным цифровым помощником (PDA), радиоустройством, радиомодемом, портативным устройством, ноутбуком, радиотелефоном и т.д. Абонентская станция может связываться с базовой станцией и/или ретрансляционной станцией через нисходящую линию связи (DL) или восходящую линию связи (UL). Нисходящая линия связи (прямая линия связи) относится к линии связи от базовой станции или ретрансляционной станции к абонентской станции. Восходящая линия связи (обратная линия связи) относится к линии связи от абонентской станции к базовой станции или ретрансляционной станции.
В примере, показанном на Фиг.1, базовая станция 110 может связываться с абонентской станцией 130 через ретрансляционную станцию 120. Базовая станция 110 может передавать данные для абонентской станции 130 по нисходящей линии связи. Ретрансляционная станция 120 может принимать данные от базовой станции 110 и может ретранслировать данные по нисходящему каналу к абонентской станции 130. Базовая станция 110 и абонентская станция 130 также могут осуществлять связь непосредственно друг с другом.
Базовая станция 110 может также связываться с абонентской станцией 132 через ретрансляционные станции 122 и 124. Базовая станция может передавать данные для абонентской станции 132 по нисходящей линии связи. Ретрансляционная станция 122 может принимать данные от базовой станции 110 и может ретранслировать данные на ретрансляционную станцию 124. Ретрансляционная станция 124 может принимать данные от ретрансляционной станции 122 и может ретранслировать данные по нисходящей линии связи к абонентской станции 132. Базовая станция 110 может не иметь возможности связываться непосредственно с абонентской станцией 132 и может опираться на одну или более ретрансляционных станций для связи с абонентской станцией 132.
Фиг.1 показывает пример двухскачковой передачи между базовой станцией 110 и абонентской станцией 130. Фиг.1 также показывает пример трехскачковой передачи между базовой станцией 110 и абонентской станцией 132. В целом, базовая станция и абонентская станция могут связываться посредством любого числа скачков.
IEEE 802.16 использует мультиплексирование с ортогональным частотным разделением (OFDM) для нисходящей линии связи и восходящей линии связи. OFDM разделяет ширину полосы частот системы на множество (NFFT) ортогональных поднесущих, которые также могут называться тонами, элементарными посылками и т.д. Каждая поднесущая может быть промодулирована данными или пилот-сигналом. Количество поднесущих зависит от ширины полосы системы, а также от интервала между смежными поднесущими. Например, NFFT может быть равным 128, 256, 512, 1024 или 2048. Только подмножество NFFT совокупности поднесущих может быть используемым для пересылки данных и пилот-сигнала, а оставшиеся поднесущие могут быть поднесущими защиты, чтобы позволить системе соответствовать требованиям спектрального маскирования. Поднесущая данных является поднесущей, используемой для данных, а пилотная поднесущая является поднесущей, используемой для пилот-сигнала. Символ OFDM может передаваться в каждом периоде символа OFDM (или просто периоде символа) и может включать в себя используемые поднесущие данных для посылки данных, поднесущие пилот-сигнала для посылки пилот-сигнала и поднесущие защиты, не используемые для передачи данных или пилот-сигнала.
Фиг.2 показывает пример структуры кадра 200 без многоскачковой ретрансляции для режима дуплексной связи с временным разделением (TDD) для IEEE 802.16. График времени передачи может разделяться на блоки кадров. Каждый кадр может охватывать предопределенный временной промежуток, например 5 миллисекунд, и может быть разделен на подкадр нисходящей линии связи и подкадр восходящей линии связи. Подкадры нисходящей линии связи и восходящей линии связи могут быть разделены временным интервалом передачи (TTG) и временным интервалом приема (RTG).
Можно определить множество физических подканалов. Каждый физический подканал может включать в себя набор поднесущих, которые могут быть смежными или распределенными по полосе пропускания системы. Множество логических подканалов также может быть определено и отображено на физические подканалы на основе известного отображения. Логические подканалы могут упростить распределение ресурсов.
Как показано на Фиг.2, подкадр нисходящей линии связи может включать в себя преамбулу, заголовок кадра управления (FCH), карту нисходящей линии связи (DL-MAP), карту восходящей линии связи (UL-MAP) и пакеты нисходящей линии связи (DL). Преамбула может нести в себе известную передачу, которая может использоваться абонентскими станциями для детектирования кадра и синхронизации. FCH может переносить параметры, используемые для приема DL-MAP, UL-MAP и пакетов нисходящей линии связи. DL-MAP может переносить DL-MAP-сообщение, которое может включать в себя элементы (IE) для различных типов управляющей информации (например, распределения ресурсов) для доступа к нисходящей линии связи. UL-MAP может переносить UL-MAP-сообщение, которое может включать в себя IE для различных типов управляющей информации для доступа к восходящей линии связи. Пакеты нисходящей линии связи могут переносить данные для обслуживаемых абонентских станций. Подкадр восходящей линии связи может включать в себя пакеты восходящей линии связи, которые могут переносить данные от абонентских станций, запланированных для пересылки по восходящей линии связи.
В целом, подкадры нисходящей линии связи и восходящей линии связи могут перекрывать любую часть кадра. На примере, показанном на Фиг.2, кадр включает в себя 43 символа OFDM, подкадр нисходящей линии связи включает в себя 27 символов OFDM, а подкадр восходящей линии связи включает в себя 16 символов OFDM. Кадр, подкадр нисходящей линии связи и подкадр восходящей линии связи могут иметь также и другие продолжительности, которые могут быть постоянными или настраиваемыми.
IEEE 802.16 поддерживает FUSC, PUSC и диапазон AMC для передачи данных на нисходящей линии связи. Для FUSC каждый подканал включает в себя набор поднесущих со всей полосы пропускания системы. Для FUSC поднесущие упорядочиваются в группы и каждый подканал включает в себя набор поднесущих, со всей единственной группы. Для диапазона АМС каждый подканал включает в себя набор смежных поднесущих. Подкадр нисходящей линии связи может включать в себя ноль или более зон FUSC, ноль или более зон PUSC и ноль или более зон диапазонов АМС. Каждая зона включает в себя все поднесущие NFFT в одном или более символов канала OFDM.
Фиг.3 показывает структуру поднесущей для FUSC. В каждом символе OFDM поднесущие пилот-сигнала располагаются однородно среди имеющихся в распоряжении поднесущих и разнесены на 12 поднесущих. Поднесущие пилот-сигнала в четно пронумерованных символах OFDM разнесены на шесть поднесущих от поднесущих пилот-сигнала в нечетно пронумерованных символах OFDM. Каждый символ OFDM также включает в себя набор постоянных поднесущих пилот-сигнала (например, поднесущие 39, 261, ..., 1701). Из оставшихся поднесущих большинство используется для данных и некоторые используются как поднесущие защиты. Для OFDM, подканал включает в себя 48 поднесущих данных, распределенных по ширине полосы системы.
Фиг.4 показывает структуру поднесущей для PUSC. Доступные поднесущие упорядочены в кластеры, причем каждый кластер включает в себя 14 последовательных поднесущих. В каждом четно пронумерованном символе OFDM пятая и девятая поднесущая в каждом кластере являются поднесущими пилот-сигнала, а остальные 12 поднесущих являются поднесущими данных. В каждом нечетно пронумерованном символе OFDM первая и одиннадцатая поднесущие каждого кластера являются поднесущими пилот-сигнала, а остальные 12 поднесущих являются поднесущими данных. Кластеры упорядочены в группы, причем каждая группа включает в себя 24 кластера. Для PUSC, подканал включает в себя 24 поднесущих данных, распределенных по одной группе.
Фиг.5 показывает структуру поднесущей для диапазона АМС. Доступные поднесущие упорядочены в ячейки, причем каждая ячейка включает в себя 9 последовательных поднесущих. Центральная поднесущая в каждой ячейке является поднесущей пилот-сигнала, а остальные 8 поднесущих являются поднесущими данных. Для диапазона АМС подканал может включать в себя одну ячейку в 6 последовательных символах OFDM, две ячейки в трех последовательных символах OFDM или три ячейки в двух последовательных символах OFDM.
Абонентской станции можно назначить один или более сегментов (слотов) для передачи данных по нисходящей линии связи. Сегмент является минимальным блоком распределения данных. Для нисходящей линии связи FUSC сегмент - это один подканал (с 48 поднесущими данных) в одном символе OFDM. Для нисходящей линии связи PUSC сегмент - это один подканал (с 24 поднесущими данных) в двух символах OFDM. Для диапазона АМС, интервал времени - это 8, 16 или 24 поднесущих данных в 6, 3 или 2 символах OFDM соответственно.
Фиг.3, 4 и 5 показывают три формата пилот-сигнала, которые могут использоваться для посылки пилот-сигнала. Также могут быть определены и другие форматы пилот-сигнала. Например, для диапазона АМС поднесущие пилот-сигнала могут быть разнесены по символам OFDM вместо того, чтобы находиться в том же самом местоположении, как показано на Фиг.5. Если используется множество передающих антенн для передачи, то в этом случае могут использоваться одинаковые или различные форматы пилот-сигнала для множества передающих антенн. Сегменты, подканалы и пилотные сигналы для FUSC, PUSC и диапазона АМС описываются в вышеупомянутых документах IEEE 802.16.
Базовая станция может передавать данные непосредственно абонентской станции, используя структуру 200 кадра на Фиг.2. Абонентская станция может выполнить обнаружение кадра и синхронизацию, основываясь на преамбуле, и получить параметры из FCH. Абонентская станция может затем обработать DL-MAP, чтобы получить DL-MAP сообщение, которое может указывать пакет нисходящей линии связи в сегментах, назначенных абонентской станции. Тогда абонентская станция сможет обработать пакет нисходящей линии связи, чтобы восстановить данные, переданные абонентской станции. Чтобы восстановить данные, абонентская станция может прежде всего получить оценку канала для поднесущих частот данных в пакете нисходящей линии связи, основанную на пилот-сигнале, переданном на поднесущих пилот-сигнала. Местоположение поднесущих данных и пилот-сигнала может зависеть от того, были ли данные переданы, используя FUSC, PUSC или диапазон АМС. Абонентская станция может затем выполнить обнаружение поднесущих данных, основываясь на оценке канала. Поднесущие пилот-сигнала, таким образом, несут важную информацию, используемую абонентской станцией, чтобы восстановить данные.
Как показано на Фиг.1, базовая станция может передавать данные к абонентской станции через одну или более ретрансляционных станций. Система может поддерживать прозрачный режим и непрозрачный режим. Таблица 1 перечисляет некоторые характеристики прозрачного и непрозрачного режимов, которые подробно описываются в вышеупомянутом документе IEEE 802.16.
Таблица 1
Режим Описание
Прозрачный режим Базовая станция планирует передачу на нисходящей линии связи, генерирует сообщения назначения и координирует повторную передачу ретрансляционными станциями.
Ретрансляционная станция ретранслирует данные, принятые от базовой станции, но не передает преамбулу, FCH или МАР.
Абонентская станция принимает сообщения назначения от базовой станции и принимает данные от ретрансляционной станции.
Непрозрачный режим Базовая станция планирует передачу для первого скачка.
Ретрансляционная станция может запланировать повторную передачу для последующего скачка и генерировать сообщения назначения. Ретрансляционная станция ретранслирует данные, полученные от базовой станции, и передает преамбулу, FCH и МАР.
Абонентская станция принимает сообщения назначения и данные от ретрансляционной станции.
Фиг.6 показывает структуру кадра для многоскачковой ретрансляции в прозрачном режиме. Верхняя часть Фиг.6 показывает кадр 610 для базовой станции, а нижняя часть Фиг.6 показывает кадр 620 для ретрансляционной станции. Ниже описываются только подкадры нисходящей линии связи кадров 610 и 620.
Для кадра 610 подкадр нисходящей линии связи может быть разделен на зону 612 доступа нисходящей линии связи и добавочную прозрачную зону 614. Каждая зона может включать в себя любое количество символов OFDM, которые могут конфигурироваться и определяться базовой станцией. В примере, показанном на Фиг.6, зона 612 доступа нисходящей линии связи включает в себя символы OFDM от к до к+10 и добавочную прозрачную зону 614, которая включает в себя символы OFDM от к+11 до к+17. Базовая станция может передавать преамбулу, FCH, DL-МАР, UL-MAP, R-MAP и пакеты нисходящей линии связи в зоне 612 доступа нисходящей линии связи, например, подобно способу, описанному выше для фиг.2. R-MAP может переносить R-MAP сообщение, которое может передать назначенное размещение для ретрансляционной станции в добавочной прозрачной зоне 614. Базовая станция может передавать или может не передавать сообщение во время добавочной прозрачной зоны 614.
Для кадра 620 подкадр нисходящей линии связи также может также быть разделен на зону 622 доступа нисходящей линии связи и факультативную прозрачную зону 624, которые согласованы по времени с зоной 612 доступа нисходящей линии связи и факультативной прозрачной зоной 614 кадра 610. Зона 622 доступа нисходящей линии связи и факультативная прозрачная зона 624 разделяются интервалом перехода прием/передача (R-RTG), который задается целым числом символов OFDM. Ретрансляционная станция может получить преамбулу, FCH, DL-МАР, UL-MAP, R-MAP и пакеты нисходящей линии связи от базовой станции во время зоны 622 доступа нисходящей линии связи. Ретрансляционная станция может игнорировать пакет №6 нисходящей линии связи, который перекрывает R-RTG и может быть предназначен для абонентской станции. Ретрансляционная станция может ретранслировать некоторые или все данные, полученные от базовой станции в факультативной прозрачной зоне 624, как указано в R-MAP сообщении.
В прозрачном режиме базовая станция может передать сообщение DL-МАР, которое передает пакет нисходящей линии связи, предназначенный для каждой обслуживаемой абонентской станции. Каждая абонентская станция может принять сообщение DL-МАР от базовой станции и может обработать предназначенный пакет нисходящей линии связи, который может быть передан базовой станцией или ретрансляционной станцией. Абонентская станция может, таким образом, принимать преамбулу, FCH и DL-MAP сообщение от базовой станции, но может и принимать данные от ретрансляционной станции. Ретрансляционная станция может принимать данные от базовой станции и ретранслировать данные, как указано базовой станцией.
Фиг.7 показывает структуру кадра для многоскачковой ретрансляции в непрозрачном режиме. Верхняя часть Фиг.7 показывает кадр 710 для базовой станции и нижняя часть Фиг.7 показывает кадр 720 для ретрансляционной станции. Ниже описываются только подкадры нисходящей линии связи кадров 710 и 720.
Для кадра 710 подкадр нисходящей линии связи может быть разделен на зону 712 доступа нисходящей линии связи и зону 714 ретрансляции нисходящей линии связи. Каждая зона может включать в себя любое количество символов OFDM, которые могут конфигурироваться и определяться базовой станцией. Базовая станция может передавать преамбулу, FCH, DL-МАР, UL-MAP, R-MAP и пакеты нисходящей линии связи в зоне 712 доступа нисходящей линии связи непосредственно абонентским станциям. Базовая станция может передавать FCH ретрансляции (R-FCH), R-MAP и пакеты нисходящей линии связи в зоне 714 ретрансляции нисходящей линии связи, к ретрансляционной станции.
Для кадра 720 подкадр нисходящей линии связи также может быть разделен на зону 722 доступа нисходящей линии связи и зону 724 ретрансляции нисходящей линии связи, которые согласованы по времени с зоной 712 доступа нисходящей линии связи и зоной 714 ретрансляции нисходящей линии связи. Ретрансляционная станция может принимать R-FCH, R-MAP и пакеты нисходящей линии связи от базовой станции во время зоны 724 ретрансляции нисходящей линии связи. Ретрансляционная станция может передавать преамбулу, FCH, DL-MAP, UL-map и пакеты нисходящей линии связи для некоторых или всех данных, принятых от базовой станции в зоне 722 доступа нисходящей линии связи, из следующего кадра. Существует, таким образом, задержка в один кадр для данных, ретранслируемых ретрансляционной станцией.
В непрозрачном режиме базовая станция может послать R-MAP сообщение, которое может передать пакет нисходящей линии связи для каждой ретрансляционной станции в зоне 714 ретрансляции нисходящей линии связи. Ретрансляционная станция может принимать данные от базовой станции, как указано R-MAP сообщением. Ретрансляционная станция может передать преамбулу, FCH, DL-МАР, UL-MAP, и пакеты нисходящей линии связи, содержащие данные, принятые от базовой станции в зоне доступа нисходящей линии связи для абонентских станций. DL-MAP сообщение может передавать пакет нисходящей линии связи, назначенный ретрансляционной станцией каждой абонентской станции. Каждая абонентская станция может принять преамбулу, FSH, DL-MAP сообщение и данные от ретрансляционной станции и может не требовать приема от базовой станции.
Фиг.8 показывает структуру кадра для трех скачков в непрозрачном режиме. Верхняя часть Фиг.8 показывает кадр 810 для базовой станции, середина показывает кадр 820 для первой ретрансляционной станции (RS1) и нижняя часть Фиг.8 показывает кадр 830 для второй ретрансляционной станции (RS2).
Для кадра 810 подкадр нисходящей линии связи может быть разделен на зону 812 доступа нисходящей линии связи и зону 816 ретрансляции нисходящей линии связи. Каждая зона может включать в себя любое количество символов OFDM. Базовая станция может передавать преамбулу, FCH, DL-MAP, UL-map и пакеты нисходящей линии связи в зоне 812 доступа нисходящей линии связи непосредственно на абонентские станции. Базовая станция может передавать R-FCH, R-MAP и пакеты нисходящей линии связи в зоне 816 ретрансляции нисходящей линии связи на первую ретрансляционную станцию.
Для кадра 820 подкадр нисходящей линии связи может быть разделен на зону 820 доступа нисходящей линии связи и зоны 820 и 826 ретрансляции нисходящей линии связи. Зона 822 доступа нисходящей линии связи и зона 824 ретрансляции нисходящей линии связи согласованы по времени с зоной 812 доступа нисходящей линии связи кадра 810. Зона 826 ретрансляции нисходящей линии связи согласованы по времени с зоной 816 ретрансляции нисходящей линии связи кадра 810. Первая ретрансляционная станция может принимать R-FCH, R-MAP и пакеты нисходящей линии связи от базовой станции во время зоны 826 ретрансляции. Первая ретрансляционная станция может передавать преамбулу, DL-MAP, UL-map и пакеты нисходящей линии связи для части данных, принятых из базовой станции, к абонентским станциям в зоне 822 доступа нисходящей линии связи следующего кадра. Данные, отосланные первой ретрансляционной станцией в зоне 822 доступа нисходящей линии связи, могут предназначаться для абонентских станций, которые не нуждаются во второй ретрансляционной станции. Первая ретрансляционная станция может также ретранслировать часть данных, принятых от базовой станции ко второй ретрансляционной станции в зоне 824 ретрансляции нисходящей линии связи следующего кадра.
Для кадра 830 подкадр нисходящей линии связи может быть разделен на зону 832 доступа нисходящей линии связи и зону 834 ретрансляции нисходящей линии связи. Зона 832 доступа нисходящей линии связи и зона 834 ретрансляции нисходящей линии связи согласованы по времени с зоной 822 доступа нисходящей линии связи и зоной 824 ретрансляции нисходящей линии связи кадра 820. Вторая ретрансляционная станция может принимать данные от первой ретрансляционной станции в зоне 834 ретрансляции нисходящей линии связи. Вторая ретрансляционная станция может передавать преамбулу, DL-MAP, UL-MAP и пакеты нисходящей линии связи для данных, принятых от первой ретрансляционной станции, к абонентским станциям в зоне 832 доступа нисходящей линии связи следующего кадра.
Фиг.9 показывает другую структуру кадра для трех скачков в непрозрачном режиме. Верхняя часть Фиг.9 показывает кадр 910 для базовой станции, средняя часть показывает кадр 920 для первой ретрансляционной станции, и нижняя часть Фиг.9 показывает кадр 930 для второй ретрансляционной станции.
Подкадр нисходящей линии связи кадра 910 может быть разделен на зону 912 доступа нисходящей линии связи и зону 916 ретрансляции нисходящей линии связи. Базовая станция может передавать служебные сигналы и данные в зонах 912 и 916, как описано выше для зон 812 и 816 в Фиг.8. Подкадр нисходящей линии связи кадра 920 может быть разбит на зону 922 доступа нисходящей линии связи и зоны 924 и 926 ретрансляции нисходящей линии связи. Первая ретрансляционная станция может принимать данные в зоне 926 и может передавать служебные сигналы и данные в зонах 922 и 924, как описывалось выше для зон 822, 824 и 826 в Фиг.8.
Для кадра 930 подкадр нисходящей линии связи может быть разделен на зону 932 доступа нисходящей линии связи и зоны 934 и 936 ретрансляции нисходящей линии связи. Вторая ретрансляционная станция может принимать данные от первой ретрансляционной станции в зоне 934 ретрансляции нисходящей линии связи. Вторая ретрансляционная станция может передавать преамбулу, FCH, DL-МАР, UL-MAP и пакеты нисходящей линии связи для данных, принятых от первой ретрансляционной станции, к абонентским станциям в зонах 932 и 936 из следующего кадра.
Фиг.8 и 9 показывают две структуры кадра, которые поддерживают три скачка через две ретрансляционные станции. Для этих структур кадра существует задержка в один кадр для данных, ретранслируемых первой ретрансляционной станцией, и задержка в один кадр для данных, ретранслируемых второй ретрансляционной станцией. Более чем два скачка могут поддерживаться другой структурой кадра. Более чем три скачка также могут поддерживаться, например, большим числом зон ретрансляции нисходящей линии связи. В общем, могут существовать отдельные зоны связи от базовой станции к абонентской станции (BS-SS), связи от ретрансляционной станции к ретрансляционной станции (RS-RS) и связи между ретрансляционной станцией и абонентской станцией (RS-SS).
Для BS-SS связи абонентская станция может принимать пилот-сигнал, переданный базовой станцией, и может использовать этот пилот-сигнал для выполнения оценки канала и сообщения характеристик канала. Однако когда ретрансляционная станция передает сигнал абонентской станции, базовая станция не отправляет пилот-сигнал. Ретрансляционная станция может самостоятельно генерировать пилот-сигнал для абонентской станции.
В одном аспекте для RS-RS или RS-SS связи ретрансляционная станция может принимать данные и первый пилот-сигнал от предшествующей станции и может ретранслировать данные и передавать второй пилот-сигнал к последующей станции. Первый пилот-сигнал позволяет ретрансляционной станции восстановить данные от предшествующей станции. Второй пилот-сигнал позволяет последующей станции восстановить ретранслируемые данные от ретрансляционной станции. Первый и второй пилот-сигналы могут передаваться теми же самыми или различными способами, в зависимости от различных факторов, таких как число скачков между базовой станцией и абонентской станцией, порядок ретрансляционных станций в многоскачковой ретрансляционной связи и т.д. Каждый пилот-сигнал может быть передан в соответствии с форматом пилот-сигнала, который указывает, как должен передаваться пилот-сигнал. Формат пилот-сигнала может рассматриваться как структура пилот-сигнала, схема пилот-сигнала и т.д.
Фиг.10 показывает схему передачи данных и пилот-сигнала в 2-скачковой ретрансляционной связи. Базовая станция 110 может передавать данные и пилот-сигнал на ретрансляционную станцию 120, например, в зоне 612 доступа нисходящей линии связи на Фиг.6 или зоне 714 ретрансляции нисходящей линии связи на Фиг.7. Базовая станция 110 может передавать пилот-сигнал, используя любой из форматов пилот-сигнала, показанных на Фиг.3, 4 и 5 или используя какие-либо другие форматы для пакетов нисходящей линии связи, отосланных на ретрансляционную станцию 120. Поскольку данные и пилот-сигнал в этих пакетах нисходящей линии связи предназначаются для ретрансляционной станции 120, а не для абонентской станции 130, пилот-сигнал может передаваться, используя формат пилот-сигнала, не поддерживаемый абонентской станцией 130.
Ретрансляционная станция может ретранслировать данные и может передавать пилот-сигнал абонентской станции 130, например, в добавочной прозрачной зоне 624 на Фиг.6 или зоне 722 доступа нисходящей линии связи на Фиг.7. Ретрансляционная станция 120 может передавать пилот-сигнал, используя формат пилот-сигнала, поддерживаемый абонентской станцией 130, например, используя формат пилот-сигнала, показанный на Фиг.3, 4 или 5, в зависимости от того, ретранслируются ли данные, используя FUSC, PUSC или диапазон АМС соответственно. Это позволяет абонентской станции 130 принимать ретранслированные данные и пилот-сигнал от ретрансляционной станции 120 тем же способом, как если бы данные и пилот-сигнал были переданы базовой станцией 110. Абонентской станции 110 нет необходимости знать, приходят ли данные и пилот-сигнал от базовой станции 110 или ретрансляционной станции 120.
Фиг.11 показывает схему передачи данных и пилот-сигнала в трехскачковой ретрансляционной связи. Базовая станция 110 может передавать данные и пилот-сигнал на ретрансляционную станцию 122, например, в зоне 816 ретрансляции нисходящей линии связи на Фиг.8 или в зоне 916 ретрансляции нисходящей линии связи на Фиг.9. Базовая станция может передавать пилот-сигнал, используя любой формат пилот-сигнала. Ретрансляционная станция 122 может ретранслировать данные и может передать пилот-сигнал ретрансляционной станции 124, например, в зоне 824 ретрансляции нисходящей линии связи на Фиг.8 или в зоне 924 ретрансляции нисходящей линии связи на Фиг.9. Ретрансляционная станция 122 может также передать пилот-сигнал, используя любой формат пилот-сигнала. Ретрансляционная станция 124 может ретранслировать данные и может передать пилот-сигнал абонентской станции 132, например, в зоне 824 ретрансляции нисходящей линии связи на Фиг.8 или в зоне 932 доступа нисходящей линии связи на Фиг.9. Ретрансляционная станция 124 может передать пилот-сигнал, используя формат пилот-сигнала, поддерживаемый абонентской станцией 130.
Как показано на Фиг.10 и 11, предшествующая станция (например, базовая станция или ретрансляционная станция) может передавать пилот-сигнал последующей станции, используя любой формат пилот-сигнала. Ретрансляционная станция для последнего скачка может передавать пилот-сигнал, используя формат пилот-сигнала, поддерживаемый абонентской станцией, и тем же способом, как и базовая станция. Последняя ретрансляционная станция может копировать способ, которым базовая станция передала бы пилот-сигнал, если базовая станция была бы передающей. Пилот-сигнал в последнем скачке может зависеть от того, пересылаются ли данные с использованием FUSC, PUSC или диапазона АМС.
Пилот-сигнал, отправленный базовой станцией для BS-RS связи, может быть таким же, как пилот-сигнал, отправленный базовой станцией для BS-SS связи, или может быть настроен для BS-RS связи и совершенно отличен от пилот-сигнала для BS-SS связи. Пилот-сигнал, отправленный ретрансляционной станцией для RS-RS связи, может быть таким же, как пилот-сигнал, отправленный базовой станцией для BS-SS связи, или может быть настроен для RS-RS связи и совершенно отличен от пилот-сигнала для BS-SS связи. Пилот-сигнал, отправленный ретрансляционной станцией для RS-SS связи, может быть таким же, как пилот-сигнал, отправленный базовой станцией для BS-SS связи.
Пилот-сигнал, отправленный предшествующей станцией (например, базовой или ретрансляционной станцией) последующей ретрансляционной станции, может основываться на формате пилот-сигнала, определенном при беспроводном согласовании между двумя станциями. Предшествующая станция или последующая ретрансляционная станция могут передать сигнал, сообщение или какую-либо другую информацию, чтобы передать формат пилот-сигнала для использования пилот-сигналом.
Различные форматы пилот-сигнала могут использоваться для пилот-сигнала, переданного предшествующей станцией на последующую ретрансляционную станцию. Пилот-сигнал может быть глобальным и может посылаться на поднесущих пилот-сигнала, распределенных по ширине полосы системы. Пилот-сигнал может также быть локальным и может посылаться на поднесущих пилот-сигнала, распределенных по части ширины полосы системы. Локальный пилот-сигнал может поддерживать повторное использование частоты более чем один раз.
Число поднесущих пилот-сигнала и расположение поднесущих пилот-сигнала в каждом символе OFDM могут быть выбраны так, чтобы обеспечивать хорошую производительность. Предшествующая станция и последующая ретрансляционная станция могут следить за надлежащими условиями канала. Отсюда, меньшего количества поднесущих пилот-сигнала может быть достаточно, чтобы достичь хорошей производительности. Число поднесущих пилот-сигнала и расположение поднесущих пилот-сигнала может быть статичным для всей совокупности символов OFDM или может динамически меняться от символа к символу OFDM.
В одном варианте реализации предшествующая станция может отослать информацию, указывающую на формат пилот-сигнала, используемый для пилот-сигнала, передаваемого на последующую ретрансляционную станцию. Последующая ретрансляционная станция может затем принимать пилот-сигнал в соответствии с форматом пилот-сигнала, указанным предшествующей станцией. В другом варианте реализации предшествующая станция может отослать данные и пилот-сигнал в соответствии с режимом FUSC, PUSC или диапазона АМС. Последующая ретрансляционная станция может определить формат пилот-сигнала на основе режима передачи, используемого для данных.
Последующая станция (например, абонентская станция или последующая ретрансляционная станция) может использовать пилот-сигнал, принятый от предшествующей станции (например, ретрансляционной станции или базовой станции), чтобы выполнить оценивание канала и получить оценку канала. Последующая станция может использовать оценку канала, чтобы выполнять детектирование/декодирование данных, принятых от предшествующей станции. Последующая станция может также получать информацию о канале, основываясь на пилот-сигнале. Информация о канале может содержать отношение «сигнал/помеха+шум» (CINR), набор модулирующих кодов (MSC), индикатор качества канала (CQI) и т.д. Информация о канале может быть использована предшествующей станцией или последующей станцией для выбора оценки, чтобы выбрать оценку при передаче данных от предшествующей станции к последующей станции.
Фиг.12 показывает реализацию процесса 1200, выполняемого ретрансляционной станцией, чтобы поддержать многоскачковую ретрансляционную связь. Ретрансляционная станция может принимать данные и первый пилот-сигнал от первой станции (этап 1212). Ретрансляционная станция может извлечь оценку канала на основе первого пилот-сигнала (этап 1214) и затем может выполнить детектирование данных, принятых от первой станции, на основе оценки канала (этап 1216). Ретрансляционная станция может повторно передать данные и передать второй пилот-сигнал второй станции (этап 1218). Ретрансляционная станция может принять информацию о канале от второй станции, с информацией о канале извлеченной второй станцией, основанной на втором пилот-сигнале (этап 1220). Ретрансляционная станция может переслать информацию о канале первой станции и/или может выбрать оценку для передачи данных ко второй станции, основанной на информации о канале (этап 1222).
Для ретрансляционной станции 120 на Фиг.1 первая станция может быть базовой станцией, а вторая станция - абонентской станцией. Для ретрансляционной станции 122 первая станция может быть базовой станцией, а второй станцией может быть другая ретрансляционная станция. Для ретрансляционной станции 124 первой станцией может быть другая ретрансляционная станция и второй станцией может быть абонентская станция. Первая и вторая станции могут также быть предшествующей и последующей ретрансляционными станциями соответственно.
Каждый пилот-сигнал может быть передан по меньшей мере одной поднесущей пилот-сигнала, в по меньшей мере одном символе OFDM. Расположение по меньшей мере одной пилотной поднесущей может быть определено, основываясь на формате пилот-сигнала для пилот-сигнала. В одном варианте реализации ретрансляционная станция может принимать первый пилот-сигнал в соответствии с форматом первого пилот-сигнала и может отправлять второй пилот-сигнал в соответствии с форматом второго пилот-сигнала, который отличается от формата первого пилот-сигнала. В другом варианте реализации ретрансляционная станция может принимать первый пилот-сигнал в соответствии с форматом пилот-сигнала и может отправлять второй пилот-сигнал в соответствии с тем же самым форматом пилот-сигнала, который применялся для первого пилот-сигнала. В одном варианте реализации ретрансляционная станция может принимать информацию от первой станции, указывающую на формат пилот-сигнала для первого пилот-сигнала. Ретрансляционная станция затем может принимать первый пилот-сигнал в соответствии с форматом пилот-сигнала. В одном варианте реализации ретрансляционная станция может принимать информацию от первой станции, указывающую на формат пилот-сигнала для второго пилот-сигнала. Ретрансляционная станция затем может отправлять второй пилот-сигнал в соответствии с форматом пилот-сигнала.
В одном варианте реализации ретрансляционная станция может повторно передавать данные в соответствии с режимом передачи, выбранным среди множества режимов передачи (например, FUSC, PUSC и диапазон АМС) Каждый режим передачи может быть связан с различным форматом пилот-сигнала. Ретрансляционная станция может отправлять второй пилот-сигнал в соответствии с форматом пилот-сигнала, связанным с выбранным режимом передачи.
Фиг.13 показывает вариант реализации устройства 1300 для поддержки многоскачковой ретрансляции. Устройство 1300 включает в себя средство для приема данных и первого пилот-сигнала от первой станции (модуль 1312), средство получения оценки канала на основе первого пилот-сигнала (модуль 1314), средство для выполнения детектирования данных, принятых от первой станции, основываясь на оценке канала (модуль 1316), средство для повторной отправки данных и отправки второго пилот-сигнала на вторую станцию (модуль 1318), средство для приема информации о канале от второй станции (модуль 1320) и средство для пересылки информации о канале первой станции и/или выбора коэффициента для передачи данных второй станции на основе информации о канале (модуль 1322).
Фиг.14 показывает вариант реализации процесса 1400, выполняемого абонентской станцией для приема данных с многоскачковой ретрансляцией. Абонентская станция может принимать данные и пилот-сигнал от ретрансляционной станции вместе с данными, отосланными базовой станцией на абонентскую станцию и повторно переданными ретрансляционной станцией, и пилот-сигналом, передаваемым непосредственно от ретрансляционной станции к абонентской станции (этап 1412). Абонентская станция может выполнить детектирование данных, принятых от ретрансляционной станции, на основе пилот-сигнала (этап 1414).
В одном варианте реализации (например, в прозрачном режиме), абонентская станция может принимать информацию, указывающую на формат пилот-сигнала, от базовой станции. В другом варианте реализации (например, непрозрачном режиме), абонентская станция может принимать информацию, указывающую на формат пилот-сигнала, от ретрансляционной станции. В обоих вариантах реализации абонентская станция может принимать пилот-сигнал от ретрансляционной станции в соответствии с форматом пилот-сигнала. В одном варианте реализации, который подходит для обоих, прозрачного и непрозрачного режимов, абонентская станция может принимать информацию, указывающую на режим передачи, выбранный из множества режимов передач, связанную с различным форматом пилот-сигнала. Абонентская станция может затем принимать пилот-сигнал от ретрансляционной станции в соответствии с форматом пилот-сигнала, связанным с выбранным режимом передачи.
Для этапа 1414 абонентская станция может получать оценку канала на основе пилот-сигнала, принятого от ретрансляционной станции. Абонентская станция может затем выполнить детектирование данных, принятых от ретрансляционной станции, основываясь на оценке канала. Абонентская станция может также определить информацию о канале на основе пилот-сигнала (этап 1416) и может отослать информацию о канале ретрансляционной станции (этап 1418).
Фиг.15 показывает вариант реализации устройства 1500 для приема данных с многоскачковой ретрансляцией. Устройство 1500 включает в себя средство для приема данных и пилот-сигнала от ретрансляционной станции, причем данные передаются с базовой станции к абонентской станции и повторно передаются ретрансляционной станцией, и пилот-сигнал передается непосредственно от ретрансляционной станции к абонентской станции (модуль 1512), средство для выполнения детектирования данных, принятых от ретрансляционной станции на основе пилот-сигнала (модуль 1514), средство для определения информации о канале на основе пилот-сигнала (модуль 1516) и средство для отправки информации о канале к ретрансляционной станции (модуль 1518).
Модули на Фиг.13 и 15 могут содержать процессоры, электронные устройства, аппаратные средства, электронные компоненты, логические схемы, запоминающие устройства и т.д., или любую их комбинацию.
Для ясности, большая часть вышеописанного предназначена для передачи данных по нисходящей линии связи от базовой станции до абонентской станции через одну или более ретрансляционных станций. Способы, описанные здесь, могут также использоваться для передачи данных по восходящей линии связи от абонентской станции до базовой станции через одну или более ретрансляционных станций. Абонентская станция может передавать данные и первый пилот-сигнал, используя формат пилот-сигнала, поддерживаемый абонентской станцией. Ретрансляционная станция может принимать данные и первый пилот-сигнал от абонентской станции и может ретранслировать данные и отправлять второй пилот-сигнал на другую ретрансляционную станцию или на базовую станцию. Второй пилот-сигнал может быть отправлен в любом формате, поддерживаемым ретрансляционной станцией и принимающей станцией.
Фиг.16 показывает блок-схему варианта реализации базовой станции 110, ретрансляционной станции 120 и абонентской станции 130 на Фиг.1. На базовой станции 110 процессор 1610 передачи передает данные для абонентской станции 130 и других абонентских станций, обрабатывает (например, кодирует, уплотняет и модулирует) данные и формирует символы данных. Процессор 1610 передачи также обрабатывает служебную информацию (например, МАР-сообщения) и пилот-сигнал, чтобы получить служебные символы и символы пилот-сигнала соответственно (например, для OFDM), и обеспечивает выходные сигналы. Передатчик (TMTR) предварительно обрабатывает (например, выполняет аналоговое преобразование, усиливает, фильтрует и повышает частоту) выходные сигналы и формирует сигнал нисходящей линии связи, который передается через антенну 1614.
В ретрансляционной станции 120 антенна 1634 принимает сигнал нисходящей линии связи от базовой станции 110 и доставляет принятый сигнал к приемнику (RCVR) 1636. Приемник 1636 предварительно обрабатывает (например, фильтрует, усиливает, понижает частоту и оцифровывает) принятый сигнал и обеспечивает выборки. Процессор 1638 приема обрабатывает выборки (например, для OFDM), чтобы получить принятые символы, обрабатывает принятые символы пилот-сигнала, чтобы получить оценку канала и выполняет детектирование принятых данных и служебных символов вместе с оценкой канала, чтобы получить детектированные символы. Процессор 1638 приема далее обрабатывает (например, демодулирует, восстанавливает и декодирует) детектированные символы для восстановления данных и служебной информации, отправленной базовой станцией 110. Процессор 1630 передачи обрабатывает данные, принятые от базовой станции 110, служебную информацию и пилот-сигнал, чтобы сформировать данные, служебные символы и символы пилот-сигнала соответственно. Процессор 1630 передачи далее обрабатывает эти символы (например, для OFDM), чтобы сформировать выходные сигналы. Передатчик 1631 предварительно обрабатывает выходные сигналы и формирует сигнал нисходящей линии связи ретранслятора, который передается через антенну 1634.
На абонентской станции 130 сигнал нисходящей линии связи ретранслятора от ретрансляционной станции 120 принимается антенной 1650, предварительно обрабатывается приемником 1652 и обрабатывается процессором 1654 приема для восстановления данных, повторно переданных ретрансляционной станцией 120. Сигнал нисходящей линии связи от базовой станции 110 также принимается антенной 1650, предварительно обрабатывается приемником 1652 и обрабатывается процессором 1654 приема для восстановления служебных данных, отправленных базовой станцией 110 в прозрачном режиме. Данные, сигнальная информация (например, информация о канале) и пилот-сигнал для отправки по восходящей линии связи обрабатываются процессором 1656 передачи и предварительно обрабатываются передатчиком 1658, чтобы сформировать сигнал восходящей линии связи, который передается через антенну 1650.
Ретрансляционная станция 120 принимает и обрабатывает сигнал восходящей линии связи от абонентской станции 130, чтобы восстановить данные и сигнальную информацию, отправленные абонентской станцией. Ретрансляционная станция 120 обрабатывает данные, сигнальную информацию и пилот-сигнал для формирования ретранслируемого сигнала восходящей линии связи, который передается на базовую станцию 110. На базовой станции 110 ретранслируемый сигнал восходящей линии связи от ретрансляционной станции 120 принимается антенной 1614, предварительно обрабатывается приемником 1616 и обрабатывается процессором 1618 приема для восстановления данных и сигнальной информации, отправленной ретрансляционной станцией 120.
Контроллеры/процессоры 1620, 1640 и 1660 управляют работой различных модулей внутри базовой станции 110, ретрансляционной станции 120 и абонентской станции 130 соответственно. Контроллер/процессор 1640 может выполнять или непосредственно процесс 1200 на Фиг.12, и/или другие процессы для способов, описанных здесь. Контроллер/процессор 1660 может выполнять непосредственно процесс 1400 на Фиг.14 и/или другие процессы для способов, описанных здесь. Запоминающие устройства 1622, 1642 и 1662 запоминают данные и программные коды для базовой станции 110, ретрансляционной станции 120 и абонентской станции 130 соответственно.
Способы, описанные здесь, могут быть осуществлены различным способом. Например, эти способы могут быть реализованы аппаратными средствами, программно-аппаратными средствами, программными средствами или их комбинацией. Для аппаратной реализации устройства обработки, применяемые при осуществлении способов, могут быть реализованы в одной или более из специализированных интегральных схем (ASIC), процессоров цифровой обработки сигналов (DSP), цифровых устройств обработки сигналов (DSPD), программируемых логических устройств (PLD), матриц логических элементов, программируемых при эксплуатации (FPGA), процессоров, контроллеров, микроконтроллеров, микропроцессоров, электронных устройств, других электронных компонентов, предназначенных для выполнения функций, описанных здесь, компьютера или их комбинации.
Для реализации посредством программно-аппаратного и/или программного обеспечения способы могут быть реализованы с помощью кода (например, процедур, функций, модулей, команд и т.д.), который выполняет функции, описанные здесь. В общем, любой считываемый компьютером/процессором носитель, материально воплощающий код программно-аппаратного и/или программного обеспечения, может использоваться при осуществлении способов, описанных здесь. Например, программно-аппаратное и/или программное обеспечение кода может сохраняться в запоминающем устройстве (например, 1622, 1642 или 1662 на Фиг.16) и выполняться процессором (например, процессором 1620, 1640 или 1660). Запоминающее устройство может находиться внутри процессора или вне процессора. Программно-аппаратное и/или программное обеспечение кода может также быть сохранено в считываемом компьютером/процессором носителе, таком как оперативное запоминающее устройство (RAM), постоянно запоминающее устройство (ROM), энергонезависимое ОЗУ (NVRAM), программируемое ПЗУ (PROM), электрически стираемое ПЗУ (EEPROM), FLASH-память, флоппи-диск, компакт-диск (CD), универсальный цифровой диск (DVD), магнитное или оптическое устройство хранения данных и т.д. Код может быть выполняемым одним или более компьютерами/процессорами и может заставлять компьютер/процессор(ы) выполнять определенные аспекты функциональных возможностей, описанных здесь.
Предшествующее описание раскрытия предоставляется, чтобы позволить специалисту в данной области техники создать или применить раскрытие. Различные изменения в раскрытии будут легко видны специалисту в данной области техники, и основные принципы, обозначенные здесь, могут быть применены к другим вариантам, не отклоняясь от сущности и объема раскрытия. Таким образом, раскрытие не предполагает ограничиваться примерами и вариантами реализации, описанными здесь, но должно соответствовать самому широкому объему, совместимому с раскрытыми принципами и новыми признаками.

Claims (15)

1. Устройство беспроводной связи, содержащее: по меньшей мере один процессор, сконфигурированный для приема данных и первого пилот-сигнала от первой станции и для повторной отправки данных и отправки второго пилот-сигнала второй станции; и запоминающее устройство, связанное с по меньшей мере одним процессором.
2. Устройство по п.1, в котором по меньшей мере один процессор конфигурирован для приема от первой станции информации, указывающей на формат пилот-сигнала для первого пилот-сигнала, и для приема первого пилот-сигнала в соответствии с форматом пилот-сигнала.
3. Устройство по п.1, в котором по меньшей мере один процессор конфигурирован для приема от первой станции информации, указывающей на формат пилот-сигнала для второго пилот-сигнала, и для отправки второго пилот-сигнала в соответствии с форматом пилот-сигнала.
4. Устройство по п.1, в котором по меньшей мере один процессор конфигурирован для повторной отправки данных, в соответствии с режимом передачи, выбранным из множества режимов передачи, причем каждый режим передачи связан с различным форматом пилот-сигнала, и для отправки второго пилот-сигнала в соответствии с форматом пилот-сигнала, связанным с выбранным режимом передачи.
5. Устройство по п.1, в котором множество режимов передачи содержит полное использование поднесущих (FUSC), частичное использование поднесущих (PUSC) и адаптивную модуляцию и кодирование (АМС) полосы частот.
6. Способ беспроводной связи, содержащий: прием данных и первого пилот-сигнала от первой станции; и повторную отправку данных и отправку второго пилот-сигнала к второй станции.
7. Способ по п.6, в котором повторная отправка данных и отправка второго пилот-сигнала содержат повторную отправку данных в соответствии с режимом передачи, выбранным из множества режимов передач, причем каждый режим передачи связан с другим форматом пилот-сигнала, и отправку второго пилот-сигнала в соответствии с форматом пилот-сигнала, связанным с выбранным режимом передачи.
8. Устройство беспроводной связи, содержащее: по меньшей мере один процессор, конфигурированный для приема данных и пилот-сигнала от ретрансляционной станции, причем данные отправлены базовой станцией к абонентской станции и повторно отправлены ретрансляционной станцией, а пилот-сигнал отправлен непосредственно ретрансляционной станцией к абонентской станции, и для выполнения детектирования для данных, принятых от ретрансляционной станции, на основе пилот-сигнала; и запоминающее устройство, связанное с по меньшей мере одним процессором.
9. Устройство по п.8, в котором по меньшей мере один процессор конфигурирован для приема информации, указывающей формат пилот-сигнала, от базовой станции и для приема пилот-сигнала от ретрансляционной станции в соответствии с форматом пилот-сигнала.
10. Устройство по п.8, в котором по меньшей мере один процессор конфигурирован для приема информации, указывающей формат пилот-сигнала, от ретрансляционной станции и для приема пилот-сигнала от ретрансляционной станции в соответствии с форматом пилот-сигнала.
11. Устройство по п.8, в котором по меньшей мере один процессор конфигурирован для приема информации, указывающей режим передачи, выбранный из множества режимов передачи, причем каждый режим передачи связан с разным форматом пилот-сигнала, и для приема пилот-сигнала от ретрансляционной станции в соответствии с форматом пилот-сигнала, связанным с выбранным режимом передачи.
12. Способ беспроводной связи, содержащий: прием данных и пилот-сигнала от ретрансляционной станции, причем данные отправлены от базовой станции к абонентской станции и повторно отправлены ретрансляционной станцией, пилот-сигнал отправлен непосредственно от ретрансляционной станции к абонентской станции; и выполнение детектирования для данных, принятых от ретрансляционной станции, на основе пилот-сигнала.
13. Способ по п.12, дополнительно содержащий: прием информации, указывающей на формат пилот-сигнала, от базовой станции, при этом прием пилот-сигнала от ретрансляционной станции содержит прием пилот-сигнала от ретрансляционной станции в соответствии с форматом пилот-сигнала.
14. Способ по п.12, дополнительно содержащий: прием информации, указывающей на формат пилот-сигнала, от ретрансляционной станции, при этом прием пилот-сигнала от ретрансляционной станции содержит прием пилот-сигнала от ретрансляционной станции в соответствии с форматом пилот-сигнала.
15. Способ по п.12, дополнительно содержащий: прием информации, указывающей на режим передачи, выбранный из множества режимов передачи, причем каждый режим передачи связан с разным форматом пилот-сигнала, и при этом прием пилот-сигнала от ретрансляционной станции содержит прием пилот-сигнала от ретрансляционной станции в соответствии с форматом пилот-сигнала, связанным с выбранным режимом передачи.
RU2009138233/09A 2007-03-16 2008-03-14 Передача пилотного сигнала ретрансляционными станциями в многоскачковой ретрансляционной системе связи RU2433549C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US89539007P 2007-03-16 2007-03-16
US60/895,390 2007-03-16
US12/042,864 US8670704B2 (en) 2007-03-16 2008-03-05 Pilot transmission by relay stations in a multihop relay communication system
US12/042,864 2008-03-05

Publications (2)

Publication Number Publication Date
RU2009138233A RU2009138233A (ru) 2011-04-27
RU2433549C2 true RU2433549C2 (ru) 2011-11-10

Family

ID=39763184

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009138233/09A RU2433549C2 (ru) 2007-03-16 2008-03-14 Передача пилотного сигнала ретрансляционными станциями в многоскачковой ретрансляционной системе связи

Country Status (10)

Country Link
US (1) US8670704B2 (ru)
EP (6) EP2135413A2 (ru)
JP (2) JP5518492B2 (ru)
KR (2) KR101341037B1 (ru)
CN (2) CN101636931B (ru)
BR (1) BRPI0808918B1 (ru)
CA (3) CA2987839C (ru)
RU (1) RU2433549C2 (ru)
TW (2) TWI426728B (ru)
WO (1) WO2008115827A2 (ru)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8130780B2 (en) * 2007-06-15 2012-03-06 Futurewei Technologies, Inc. Method and apparatus for assigning resources in a wireless system with multiple regions
KR20080112124A (ko) * 2007-06-19 2008-12-24 삼성전자주식회사 통신 시스템에서 서브채널 형성 장치 및 방법
US20090003257A1 (en) * 2007-06-27 2009-01-01 Motorola, Inc. Apriori proactive retransmissions
US20090075589A1 (en) * 2007-09-13 2009-03-19 Azure Communications Inc. Broadband range extension relay for wireless networks
KR20090043927A (ko) * 2007-10-30 2009-05-07 삼성전자주식회사 통신 시스템에서 데이터 복원 정보 송수신 장치 및 방법
KR101443630B1 (ko) * 2007-11-09 2014-09-23 엘지전자 주식회사 기본 신호 할당 단위 설정 방법 및 이를 이용한 신호 전송방법
WO2009084925A1 (en) * 2008-01-03 2009-07-09 Lg Electronics Inc. Frame for flexibly supporting heterogeneous modes and tdd/fdd modes, and method for transmitting signals using the same
KR101481592B1 (ko) * 2008-04-04 2015-01-12 엘지전자 주식회사 무선 통신 시스템에서의 중계기를 통한 신호 전송 방법
IL190659A0 (en) * 2008-04-07 2008-12-29 Mariana Goldhamer Wireless communication network with relay stations
US8514765B1 (en) * 2008-05-09 2013-08-20 Research In Motion Limited Dynamic zoning changes in multi-hop relaying systems
US8355734B2 (en) * 2008-08-07 2013-01-15 Apple Inc. Wireless system
KR101563032B1 (ko) * 2008-08-12 2015-10-23 노오텔 네트웍스 리미티드 무선 통신 네트워크에서의 다운링크 투명 중계를 가능하게 하는 방법
US8259560B2 (en) * 2008-08-29 2012-09-04 Harris Corporation Communication system allocating pilot sub-carriers and related methods
WO2010031438A1 (en) * 2008-09-19 2010-03-25 Nokia Siemens Networks Oy Network element and method of operating a network element
KR20130079608A (ko) 2008-09-19 2013-07-10 노키아 지멘스 네트웍스 오와이 네트워크 엘리먼트 및 네트워크 엘리먼트를 동작시키는 방법
US8472366B2 (en) * 2008-09-22 2013-06-25 Research In Motion Limited Network-relay signaling for downlink transparent relay
US9294219B2 (en) * 2008-09-30 2016-03-22 Qualcomm Incorporated Techniques for supporting relay operation in wireless communication systems
KR101459155B1 (ko) * 2008-09-30 2014-11-10 엘지전자 주식회사 협력 무선통신 시스템을 위한 기준신호의 전송방법 및 무선자원의 할당방법
US8477633B2 (en) * 2008-10-01 2013-07-02 Lg Electronics Inc. Method and apparatus for wireless resource allocation for relay in wireless communication system
US9203564B2 (en) * 2008-10-20 2015-12-01 Qualcomm Incorporated Data transmission via a relay station in a wireless communication system
WO2010051033A1 (en) * 2008-10-30 2010-05-06 Nortel Networks Limited Relay techniques suitable for user equipment in downlink
US20100120442A1 (en) * 2008-11-12 2010-05-13 Motorola, Inc. Resource sharing in relay operations within wireless communication systems
US9112576B2 (en) * 2008-12-26 2015-08-18 Lg Electronics Inc. Method for transmitting and receiving signal in multi-hop relay system
US8886113B2 (en) * 2008-12-30 2014-11-11 Qualcomm Incorporated Centralized control of relay operation
CN102265544B (zh) * 2009-02-24 2013-05-29 上海贝尔股份有限公司 在基于中继的系统中执行arq过程的方法、基站和中继站
CN102428660B (zh) * 2009-03-17 2016-03-16 韩国电子通信研究院 用于含有中继站的无线通信系统的数据传送方法
US8929303B2 (en) * 2009-04-06 2015-01-06 Samsung Electronics Co., Ltd. Control and data channels for advanced relay operation
US9154352B2 (en) * 2009-04-21 2015-10-06 Qualcomm Incorporated Pre-communication for relay base stations in wireless communication
US8649281B2 (en) * 2009-04-27 2014-02-11 Samsung Electronics Co., Ltd. Control design for backhaul relay to support multiple HARQ processes
CN101873625B (zh) * 2009-04-27 2013-01-09 电信科学技术研究院 一种中继链路中的信道估计方法、系统及设备
CN101877859A (zh) * 2009-04-28 2010-11-03 大唐移动通信设备有限公司 一种中继下行数据的处理方法及系统
EP2429096B1 (en) 2009-05-08 2018-10-03 LG Electronics Inc. Relay node and method for receiving a signal from a base station in a mobile communication system
US8737911B2 (en) * 2009-05-11 2014-05-27 Qualcomm Incorporated Dual-stage echo cancellation in a wireless repeater using an inserted pilot
CN101895925B (zh) 2009-05-22 2014-11-05 中兴通讯股份有限公司 一种实现中继站下行协作重传的方法及中继站
CN102461306B (zh) * 2009-06-12 2015-11-25 诺基亚公司 便于中继节点通信的方法和装置
CN101938775B (zh) * 2009-06-29 2017-07-18 宏达国际电子股份有限公司 处理移动装置移动性的方法及其相关通信装置
CN101958769B (zh) * 2009-07-14 2013-04-17 华为技术有限公司 导频传输方法和中继设备
JP5411609B2 (ja) * 2009-07-17 2014-02-12 住友電気工業株式会社 無線中継装置、フレーム構造、フレームの生成方法、無線中継装置の制御方法、及び無線通信システム
KR101075098B1 (ko) * 2009-07-21 2011-10-19 연세대학교 산학협력단 중계국 및 디코딩 후 전달 릴레이 시스템에서 처리율 향상 방법
US8249499B2 (en) * 2009-07-31 2012-08-21 Sierra Wireless, Inc. Method, system and device for initiating wireless communication
KR20110014101A (ko) 2009-08-04 2011-02-10 엘지전자 주식회사 릴레이 백홀 자원 할당
CN102449967B (zh) * 2009-08-17 2014-05-28 上海贝尔股份有限公司 移动通信系统及其中的数据传输方法
US9143294B2 (en) * 2009-08-31 2015-09-22 Lg Electronics Inc. Method of using component carrier by relay station in multi-carrier system and relay station
EP2357751A1 (en) * 2010-02-17 2011-08-17 Alcatel Lucent Backhauling link callibration
US8520634B2 (en) 2010-08-04 2013-08-27 Sierra Wireless, Inc. Active/standby operation of a femtocell base station
KR20140010624A (ko) 2012-07-16 2014-01-27 한국전자통신연구원 해상 무선 통신 방법 및 장치
KR101877754B1 (ko) * 2012-11-26 2018-07-13 삼성전자주식회사 멀티 홉 네트워크에서 채널 정보를 송, 수신하는 방법 및 그 단말들
CN103249155B (zh) * 2013-04-22 2016-01-06 东南大学 一种ofdm无线中继网络系统的资源分配方法
US9544116B2 (en) * 2014-02-14 2017-01-10 Qualcomm Incorporated Pilot transmission by relay stations in a multihop relay communication system
WO2015127616A1 (zh) 2014-02-27 2015-09-03 华为技术有限公司 无线局域网数据的传输方法及装置
WO2016010578A1 (en) * 2014-07-18 2016-01-21 Intel IP Corporation Method, apparatus, and computer readable medium for transmitting pilots in wireless local area networks
US20160157157A1 (en) * 2014-12-01 2016-06-02 Gemtek Technology Co., Ltd. Wireless transmission system
US10848294B2 (en) * 2018-05-02 2020-11-24 Qualcomm Incorporated Management of remote interference in time division duplexing networks
CN112771977A (zh) 2018-07-24 2021-05-07 皇家Kpn公司 共享资源上的可靠低时延通信
US11646833B2 (en) * 2018-07-24 2023-05-09 Koninklijke Kpn N.V. Reliable communication over shared resources
US11936503B2 (en) * 2020-08-04 2024-03-19 Qualcomm Incorporated Techniques for adding pilots to a forwarded signal by a repeater node

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3426575A1 (de) * 1984-07-19 1986-01-23 Gardena Kress + Kastner Gmbh, 7900 Ulm Gelenkstueck fuer ein wasserfuehrendes rohrsystem
US5513379A (en) 1994-05-04 1996-04-30 At&T Corp. Apparatus and method for dynamic resource allocation in wireless communication networks utilizing ordered borrowing
US6381290B1 (en) 1998-05-15 2002-04-30 Ericsson Inc. Mobile unit for pilot symbol assisted wireless system and method of improving performance thereof
WO2002071770A1 (en) * 2001-03-06 2002-09-12 Beamreach Networks, Inc. Adaptive communications methods for multiple user packet radio wireless networks
JP2002290246A (ja) * 2001-03-28 2002-10-04 Hitachi Kokusai Electric Inc 送受信機
JP3919159B2 (ja) 2001-04-27 2007-05-23 日本放送協会 Ofdmデジタル信号中継装置
DE10145759B4 (de) 2001-09-17 2004-02-12 Siemens Ag Verfahren und Funk-Kommunikationssystem zur Datenübertragung
RU2207723C1 (ru) 2001-10-01 2003-06-27 Военный университет связи Способ распределения ресурсов в системе электросвязи с множественным доступом
JP2004048126A (ja) * 2002-07-09 2004-02-12 Hitachi Ltd 無線通信制限装置および無線通信中継局および無線通信基地局
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
GB2411797B (en) * 2002-12-16 2006-03-01 Widefi Inc Improved wireless network repeater
US7218891B2 (en) * 2003-03-31 2007-05-15 Nortel Networks Limited Multi-hop intelligent relaying method and apparatus for use in a frequency division duplexing based wireless access network
US7027827B2 (en) * 2003-05-19 2006-04-11 Motorola, Inc. Method and apparatus for channel sharing between multiple communication systems
MXPA05012228A (es) * 2003-05-28 2006-02-10 Ericsson Telefon Ab L M Metodo y sistema para las redes de comunicaciones inalambricas utilizando retransmision.
US7558575B2 (en) * 2003-07-24 2009-07-07 Motorola Inc. Method and apparatus for wireless communication in a high velocity environment
CN1833387B (zh) 2003-08-12 2016-03-02 知识产权之桥一号有限责任公司 无线通信装置以及导频码元传输方法
US8018893B2 (en) * 2003-09-03 2011-09-13 Motorola Mobility, Inc. Method and apparatus for relay facilitated communications
EP1542488A1 (en) 2003-12-12 2005-06-15 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for allocating a pilot signal adapted to the channel characteristics
SE0303602D0 (sv) * 2003-12-30 2003-12-30 Ericsson Telefon Ab L M Method and arrangement in self-organizing cooperative network
JP4394474B2 (ja) 2004-02-16 2010-01-06 株式会社エヌ・ティ・ティ・ドコモ 無線中継システム、無線中継装置及び無線中継方法
JP4398752B2 (ja) 2004-02-19 2010-01-13 株式会社エヌ・ティ・ティ・ドコモ 無線中継システム、無線中継装置及び無線中継方法
EP1774675A1 (en) * 2004-07-22 2007-04-18 Philips Intellectual Property & Standards GmbH Controller unit, communication device and communication system as well as method of communication between and among mobile nodes
KR100856249B1 (ko) 2004-08-26 2008-09-03 삼성전자주식회사 무선 통신 시스템에서 초기 동작 모드 검출 방법
JP4494134B2 (ja) 2004-09-01 2010-06-30 Kddi株式会社 無線通信システム、中継局装置および基地局装置
US7720484B2 (en) * 2004-09-02 2010-05-18 Samsung Electronics Co., Ltd. Proxy translator for extending the coverage area of a wireless network
US8478283B2 (en) 2004-09-29 2013-07-02 Apple Inc. Method and system for capacity and coverage enhancement in wireless networks with relays
BRPI0515957A (pt) * 2004-09-29 2008-08-12 Matsushita Electric Ind Co Ltd dispositivo de comunicação por rádio e método de comunicação por rádio
CN101124751B (zh) 2005-02-18 2011-04-13 松下电器产业株式会社 无线通信方法、中继站装置和无线发送装置
EP1852986B1 (en) * 2005-03-14 2013-01-16 Panasonic Corporation Wireless communication system
KR20060124401A (ko) * 2005-05-31 2006-12-05 삼성전자주식회사 무선 통신 시스템에서 중계국을 이용한 스케줄링 방법 및그 시스템
KR100975743B1 (ko) 2005-07-14 2010-08-12 삼성전자주식회사 무선 통신 시스템에서 신호 릴레이 방법 및 시스템
KR20070031173A (ko) * 2005-09-14 2007-03-19 삼성전자주식회사 다중홉 릴레이 셀룰러 네트워크에서 다중 링크를 지원하기위한 장치 및 방법
US7876839B2 (en) * 2005-12-30 2011-01-25 Intel Corporation Receiver and method for channel estimation for multicarrier communication systems
KR100871856B1 (ko) * 2006-01-06 2008-12-03 삼성전자주식회사 광대역 무선접속 통신시스템에서 중계 서비스를 제공하기위한 장치 및 방법
DE602006010813D1 (de) 2006-04-24 2010-01-14 Ntt Docomo Inc Methode und System zur Funkkanal-Schätzung in einem drahtlosen Kommunikationssystem, Relaisstation und Empfänger
US7623487B2 (en) * 2006-05-24 2009-11-24 Nortel Networks Limited OFDM system and method for supporting a wide range of mobility speeds
US8520606B2 (en) * 2006-10-23 2013-08-27 Samsung Electronics Co., Ltd Synchronous spectrum sharing based on OFDM/OFDMA signaling

Also Published As

Publication number Publication date
EP2445151A1 (en) 2012-04-25
RU2009138233A (ru) 2011-04-27
CA2679221C (en) 2017-01-03
JP5852166B2 (ja) 2016-02-03
BRPI0808918B1 (pt) 2020-09-29
TW201415824A (zh) 2014-04-16
CN101636931B (zh) 2013-12-04
JP2010521928A (ja) 2010-06-24
EP3119048A1 (en) 2017-01-18
EP2135413A2 (en) 2009-12-23
CA2679221A1 (en) 2008-09-25
CN101636931A (zh) 2010-01-27
TWI426728B (zh) 2014-02-11
KR101252726B1 (ko) 2013-04-10
EP3119048B1 (en) 2024-05-15
CA2934632A1 (en) 2008-09-25
EP2239898B1 (en) 2016-03-09
WO2008115827A3 (en) 2009-01-08
CN103647618A (zh) 2014-03-19
KR20120048681A (ko) 2012-05-15
JP5518492B2 (ja) 2014-06-11
KR20090130297A (ko) 2009-12-22
JP2014161046A (ja) 2014-09-04
TWI526013B (zh) 2016-03-11
KR101341037B1 (ko) 2013-12-12
CA2987839C (en) 2019-05-07
US8670704B2 (en) 2014-03-11
EP2239899A1 (en) 2010-10-13
WO2008115827A2 (en) 2008-09-25
CA2987839A1 (en) 2008-09-25
CA2934632C (en) 2018-01-16
EP2239898A1 (en) 2010-10-13
US20080227386A1 (en) 2008-09-18
BRPI0808918A2 (pt) 2014-08-19
CN103647618B (zh) 2017-05-31
EP2239900A1 (en) 2010-10-13
TW200913540A (en) 2009-03-16

Similar Documents

Publication Publication Date Title
RU2433549C2 (ru) Передача пилотного сигнала ретрансляционными станциями в многоскачковой ретрансляционной системе связи
JP5944454B2 (ja) マルチホップ中継通信システムにおけるデータ送信及び電力制御
US9544116B2 (en) Pilot transmission by relay stations in a multihop relay communication system