RU2433507C1 - Магниторезистивный датчик - Google Patents

Магниторезистивный датчик Download PDF

Info

Publication number
RU2433507C1
RU2433507C1 RU2010125937/28A RU2010125937A RU2433507C1 RU 2433507 C1 RU2433507 C1 RU 2433507C1 RU 2010125937/28 A RU2010125937/28 A RU 2010125937/28A RU 2010125937 A RU2010125937 A RU 2010125937A RU 2433507 C1 RU2433507 C1 RU 2433507C1
Authority
RU
Russia
Prior art keywords
film
magnetoresistive
thin
layer
strips
Prior art date
Application number
RU2010125937/28A
Other languages
English (en)
Inventor
Сергей Иванович Касаткин (RU)
Сергей Иванович Касаткин
Андрей Михайлович Муравьев (RU)
Андрей Михайлович Муравьев
Владимир Викторович Амеличев (RU)
Владимир Викторович Амеличев
Илья Андреевич Гамарц (RU)
Илья Андреевич Гамарц
Сергей Александрович Поломошнов (RU)
Сергей Александрович Поломошнов
Original Assignee
Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН filed Critical Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН
Priority to RU2010125937/28A priority Critical patent/RU2433507C1/ru
Application granted granted Critical
Publication of RU2433507C1 publication Critical patent/RU2433507C1/ru

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

Изобретение может быть использовано для измерения магнитного поля в измерительных комплексах, научном и медицинском приборостроении, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий, вирусов, токсинов и ДНК). Магниторезистивный датчик содержит подложку с диэлектрическим слоем, на котором расположены соединенные в мостовую схему немагнитными низкорезистивными перемычками четыре тонкопленочные магниторезистивные полоски, содержащие каждая верхний и нижний защитные слои, между которыми расположены две ферромагнитные пленки с осью легкого намагничивания вдоль длины тонкопленочной магниторезистивной полоски, между которыми расположен разделительный слой, поверх тонкопленочных магниторезистивных полосок расположен первый изолирующий слой, на котором сформирован проводник управления с рабочими частями, расположенными над тонкопленочными магниторезистивными полосками вдоль каждой полоски, второй изолирующий слой, и защитный слой, на всей поверхности проводника управления расположена магнитожесткая пленка, причем ее коэрцитивная сила не менее чем втрое превышает поле магнитной анизотропии ферромагнитной пленки, а векторы намагниченности магнитожесткой пленки в соседних плечах мостовой схемы направлены перпендикулярно оси легкого намагничивания антипараллельно друг другу. В предлагаемом магниторезистивном датчике многократно уменьшен ток в проводнике управления, что существенно улучшает его технические характеристики за счет уменьшения потребляемой мощности и нагрева, а также возможности использования такого магниторезистивного датчика в линейке или матрице да�

Description

Изобретение относится к области магнитных наноэлементов на основе многослойных металлических наноструктур с магниторезистивным эффектом и может быть использовано для измерения магнитного поля в измерительных комплексах, научном и медицинском приборостроении, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий, вирусов, токсинов и ДНК).
Известны магниторезистивные датчики магнитного поля с линейной вольт-эрстедной характеристикой (ВЭХ), формируемой магнитным полем, создаваемым током в проводнике управления, расположенном над тонкопленочными магниторезистивными полосками (Касаткин С.И., Киселева И.Д., Лопатин В.В., Муравьев A.M., Попадинец Ф.Ф., Сватков А.В. Магниторезистивный датчик // Патент РФ. 1999. №2139602). Однако для работы данного датчика магнитного поля требуется достаточно большая величина тока в проводнике управления.
Этот недостаток существенно уменьшен в магниторезистивном датчике магнитного поля с магнитомягкой пленкой над проводником управления (Касаткин С.И., Муравьев A.M. Магниторезистивный датчик // Патент РФ. 2001. №2175797). Однако для правильной и оптимальной работы такого датчика магнитного поля надо подгонять толщину магнитомягкой пленки под конкретные параметры устройства.
Задачей, поставленной и решаемой настоящим изобретением, является создание магниторезистивного датчика магнитного поля на основе металлической ферромагнитной наноструктуры с планарным протеканием сенсорного тока, имеющего линейную ВЭХ с небольшим током в проводнике управления и параметрами магнитожесткой пленки, не зависящими от топологии конструкции датчика.
Указанный технический результат достигается тем, что в магниторезистивном датчике, содержащем подложку с диэлектрическим слоем, на котором расположены соединенные в мостовую схему немагнитными низкорезистивными перемычками четыре тонкопленочные магниторезистивные полоски, содержащие каждая верхний и нижний защитные слои, между которыми расположены две ферромагнитные пленки с осью легкого намагничивания вдоль длины тонкопленочной магниторезистивной полоски, между которыми расположен разделительный слой, поверх тонкопленочных магниторезистивных полосок расположен первый изолирующий слой, на котором сформирован проводник управления с рабочими частями, расположенными над тонкопленочными магниторезистивными полосками вдоль каждой полоски, второй изолирующий слой, и защитный слой, на всей поверхности проводника управления расположена магнитожесткая пленка, причем ее коэрцитивная сила не менее чем втрое превышает поле магнитной анизотропии ферромагнитной пленки, а векторы намагниченности магнитожесткой пленки в соседних плечах мостовой схемы направлены перпендикулярно оси легкого намагничивания антипараллельно друг другу. На всей поверхности проводника управления магниторезистивного датчика может располагаться вспомогательный слой хрома, а на поверхности магнитожесткой пленки может располагаться дополнительный защитный слой.
Сущность предлагаемого технического решения заключается в том, что магнитожесткие полоски на поверхности проводника управления создают постоянные магнитные поля, разворачивающие векторы намагниченности магниторезистивных полосок и не зависящие от тока в проводнике управления и, тем самым, существенно уменьшающие величину этого тока, необходимого для этой же цели. Вспомогательный слой хрома увеличивает коэрцитивную силу магнитожестких полосок, что упрощает требования к созданию магнитожесткой пленки.
Изобретение поясняется чертежами: на фиг.1 представлен магниторезистивный датчик с вспомогательным слоем хрома и магнитожесткой пленкой на поверхности проводника управления в разрезе; на фиг.2 показана конструкция магниторезистивного датчика, вид сверху.
Магниторезистивный датчик магнитного поля содержит подложку 1 (фиг.1) с диэлектрическим слоем 2, тонкопленочные магниторезистивные полоски, содержащие нижний 3 и верхний 4 защитные слои, между которыми расположены ферромагнитные пленки 5 и 6, разделенные слоем 7. Поверх тонкопленочных магниторезистивных полосок расположен первый изолирующий слой 8, на котором сформирован проводник управления 9 с рабочими частями, расположенными над тонкопленочными магниторезистивными полосками вдоль каждого их ряда. На поверхности проводника управления 9 последовательно расположены вспомогательный слой хрома 10, магнитожесткая пленка 11 и защитный слой 12. Выше расположен верхний защитный слой 13.
Конструктивно, магниторезистивный датчик магнитного поля состоит из четырех тонкопленочных магниторезистивных полосок 14-17 (фиг.2) мостовой схемы. Эти полоски 14-17 соединены в мостовую схему немагнитными низкорезистивными перемычками 18-21. В низкорезистивных перемычках выполнены контактные площадки 22-25. Над тонкопленочными магниторезистивными полосками 14-17 расположен проводник управления 26 с контактными площадками 27-28, вспомогательным слоем хрома 10, магнитожесткой пленкой 11 и защитным слоем 12, причем проводник управления 26, вспомогательный слой хрома 10, магнитожесткая пленка 11 и защитный слой 12 имеют одну топологию.
Оценим толщину магнитожесткой пленки 11. Величина создаваемого ею в расположенных под нею тонкопленочных магниторезистивных полосках 14-17 постоянного магнитного поля Н определяется выражением
Figure 00000001
где MS и d - намагниченность насыщения и толщина магнитожесткой пленки 11, w - ширина проводника управления 26.
Величина магнитного поля Н, необходимого для отклонения вектора намагниченности ферромагнитных пленок 5, 6 на 45° от оси легкого намагничивания определяется суммой поля магнитной анизотропии НK этих пленок и создаваемых ими магнитных размагничивающих полей НP. Для типичных значений w=40 мкм, MS=1000 Гс, НK=10 Э величина Н составляет величину около 20-25 Э. Из (1) следует, что d=0,1 мкм, что является реальной величиной для вакуумного напыления металлических ферромагнитных пленок. Нами, методом вакуумного напыления, получены Сr(30 нм)-CoNi(100 нм) наноструктуры с коэрцитивной силой около 170 Э, что более чем достаточно для их использования в качестве магнитожестких пленок в магниторезистивном датчике. Минимальная коэрцитивная сила магнитожесткой пленки 11 должна не менее чем в 1,5 раза превышать максимальные суммарные магнитные поля, возникающие при работе датчика, включая внешние магнитные поля, для исключения размагничивания магнитожесткой пленки 11. В то же время нельзя сильно увеличивать коэрцитивную силу магнитожесткой пленки 11, так как это приводит к росту требуемой для ее намагничивания амплитуды импульса тока в проводнике управления 26.
Работа магниторезистивного датчика магнитного поля происходит следующим образом. В исходном состоянии векторы намагниченности ферромагнитных пленок тонкопленочных магниторезистивных полосок 14-17 направлены вдоль ОЛН антипараллельно друг другу. Под действием постоянного магнитного поля, создаваемого магнитожесткими пленками 11 и направленного перпендикулярно ОЛН, векторы намагниченности тонкопленочных полосок 14-17 разворачиваются в направлении этого постоянного магнитного поля. Перед началом работы в проводник управления 26 подается импульс тока, создающий магнитное поле, превышающее коэрцитивную силу магнитожесткой пленки и намагничивающий магнитожесткую пленку 11 перпендикулярно ОЛН ферромагнитных пленок 5, 6 тонкопленочных магниторезистивных полосок 14-17 и антипараллельно друг другу. При этом угол отклонения векторов намагниченности ферромагнитных пленок 5, 6 должно составлять приблизительно 45°, что соответствует максимальной чувствительности и линейности ВЭХ магниторезистивного датчика.
Для считывания сигнала в мостовую схему с тонкопленочными магниторезистивными полосками 14-17 магниторезистивного датчика подается постоянный сенсорный ток. Перед началом измерения векторы намагниченности ферромагнитной пленки 5, 6 в тонкопленочных магниторезистивных полосках 14-17 направлены антипараллельно друг другу и отклонены от ОЛН ферромагнитной пленки приблизительно на 45°. Ввиду разброса параметров магниторезистивного датчика, в первую очередь, ферромагнитных пленок 5, 6 и магнитожестких пленок 11, угол отклонения ферромагнитных пленок 5, 6 - не оптимальный. Поэтому в проводник 16 подается постоянный ток нужной полярности, позволяющий отклонить векторы намагниченности ферромагнитных пленок 5, 6 на оптимальный, относительно оси легкого намагничивания, угол 45°. Величина этого тока в несколько раз меньше, чем в прототипе, так как требуется только небольшой доворот векторов намагниченности ферромагнитных пленок 5, 6, а не полный разворот этих векторов намагниченности.
Магнитные поля, создаваемые магнитожесткими пленками 11 в соседних плечах мостовой схемы направлены антипараллельно друг другу. Это приводит к отклонению векторов намагниченности ферромагнитных пленок 5, 6 соседних плеч мостовой схемы в противоположных направлениях. При воздействии на мостовую схему внешнего однородного магнитного поля векторы намагниченности ферромагнитных пленок 5, 6 будут отклоняться в направлении этого магнитного поля, но, в двух плечах векторы намагниченности будут приближаться к оси тонкопленочных магниторезистивных полосок (направлению сенсорного тока), а в двух других - отклоняться. Изменение магнитосопротивления в анизотропном магниторезистивном эффекте пропорционально cos2φ, где φ - угол между направлением сенсорного тока в тонкопленочной магниторезистивной полоске и вектором намагниченности ферромагнитной пленки. При этом в одной паре плеч мостовой схемы магнитосопротивление будет увеличиваться, а в другой паре плеч - уменьшаться. Это приведет к разбалансу мостовой схемы и появлению на ее двух вершинах электрического сигнала считывания.
Таким образом, в предлагаемом магниторезистивном датчике многократно уменьшен ток в проводнике управления, что существенно улучшает его технические характеристики за счет уменьшения потребляемой мощности и нагрева, а также возможности использования такого магниторезистивного датчика в линейке или матрице датчиков.

Claims (3)

1. Магниторезистивный датчик, содержащий подложку с диэлектрическим слоем, на котором расположены соединенные в мостовую схему немагнитными низкорезистивными перемычками четыре тонкопленочные магниторезистивные полоски, содержащие каждая верхний и нижний защитные слои, между которыми расположены две ферромагнитные пленки с осью легкого намагничивания вдоль длины тонкопленочной магниторезистивной полоски, между которыми расположен разделительный слой, поверх тонкопленочных магниторезистивных полосок расположен первый изолирующий слой, на котором сформирован проводник управления с рабочими частями, расположенными над тонкопленочными магниторезистивными полосками вдоль каждой полоски, второй изолирующий слой и защитный слой, отличающийся тем, что на всей поверхности проводника управления расположена магнитожесткая пленка, причем ее коэрцитивная сила не менее чем втрое превышает поле магнитной анизотропии ферромагнитной пленки, а векторы намагниченности магнитожесткой пленки в соседних плечах мостовой схемы направлены перпендикулярно оси легкого намагничивания антипараллельно друг другу.
2. Магниторезистивный датчик по п.1, отличающийся тем, что на всей поверхности проводника управления расположен вспомогательный слой хрома.
3. Магниторезистивный датчик по п.1, отличающийся тем, что на всей поверхности магнитожесткой пленки расположен дополнительный защитный слой.
RU2010125937/28A 2010-06-25 2010-06-25 Магниторезистивный датчик RU2433507C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010125937/28A RU2433507C1 (ru) 2010-06-25 2010-06-25 Магниторезистивный датчик

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010125937/28A RU2433507C1 (ru) 2010-06-25 2010-06-25 Магниторезистивный датчик

Publications (1)

Publication Number Publication Date
RU2433507C1 true RU2433507C1 (ru) 2011-11-10

Family

ID=44997365

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010125937/28A RU2433507C1 (ru) 2010-06-25 2010-06-25 Магниторезистивный датчик

Country Status (1)

Country Link
RU (1) RU2433507C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656237C2 (ru) * 2016-07-14 2018-06-04 Роберт Дмитриевич Тихонов Магнитный датчик тока с пленочным концентратором

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656237C2 (ru) * 2016-07-14 2018-06-04 Роберт Дмитриевич Тихонов Магнитный датчик тока с пленочным концентратором

Similar Documents

Publication Publication Date Title
JP3465059B2 (ja) 磁化反転導体と一又は複数の磁気抵抗レジスタとからなる磁界センサ
EP1677119B1 (en) Current sensor
TW550394B (en) Thin-film magnetic field sensor
US7138798B1 (en) Azimuth meter having spin-valve giant magneto-resistive elements
US7495624B2 (en) Apparatus for detection of the gradient of a magnetic field, and a method for production of the apparatus
WO2017173992A1 (zh) 一种无需置位/复位装置的各向异性磁电阻amr传感器
JP2008197089A (ja) 磁気センサ素子及びその製造方法
KR960705187A (ko) 자기저항성 선형 변위센서, 각 변위센서 및, 가변저항
JPH10256620A (ja) 巨大磁気抵抗効果素子センサ
JPWO2020208907A1 (ja) 磁気抵抗素子および磁気センサ
JP2009162499A (ja) 磁気センサ
CN110212085A (zh) 测量范围可调的巨磁电阻传感器及其制备方法
RU2436200C1 (ru) Магниторезистивный датчик
CN110197872A (zh) 测量范围可调的各向异性磁电阻传感器及其制备方法
JP2002532894A (ja) 巨大磁気抵抗効果を有する磁界センサ
Binh et al. Simple planar Hall effect based sensors for low-magnetic field detection
RU2433507C1 (ru) Магниторезистивный датчик
JP2014089088A (ja) 磁気抵抗効果素子
JP4482866B2 (ja) 巨大磁気抵抗素子を持った方位計
RU2279737C1 (ru) Магниторезистивный датчик
JP4418986B2 (ja) 磁界検出素子およびこれを利用した磁界検出方法
EP0677750A2 (en) A giant magnetoresistive sensor with an insulating pinning layer
RU2483393C1 (ru) Магниторезистивный преобразователь
KR101965510B1 (ko) 거대자기저항 센서
JP2017078594A (ja) 磁気センサ、磁界の測定方法、電流センサ、および電流の測定方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180626