RU2423317C2 - Тонкодисперсная водная суспензия углеродных наноструктур и способ ее изготовления (варианты) - Google Patents

Тонкодисперсная водная суспензия углеродных наноструктур и способ ее изготовления (варианты) Download PDF

Info

Publication number
RU2423317C2
RU2423317C2 RU2009130559/05A RU2009130559A RU2423317C2 RU 2423317 C2 RU2423317 C2 RU 2423317C2 RU 2009130559/05 A RU2009130559/05 A RU 2009130559/05A RU 2009130559 A RU2009130559 A RU 2009130559A RU 2423317 C2 RU2423317 C2 RU 2423317C2
Authority
RU
Russia
Prior art keywords
nanostructures
carbon nanostructures
suspension
carbon
compounds
Prior art date
Application number
RU2009130559/05A
Other languages
English (en)
Other versions
RU2009130559A (ru
Inventor
Владимир Иванович Кодолов (RU)
Владимир Иванович Кодолов
Юрий Михайлович Васильченко (RU)
Юрий Михайлович Васильченко
Лилия Фаритовна Ахметшина (RU)
Лилия Фаритовна Ахметшина
Диляра Анасовна Шкляева (RU)
Диляра Анасовна Шкляева
Вера Владимировна Тринеева (RU)
Вера Владимировна Тринеева
Елена Георгиевна Волкова (RU)
Елена Георгиевна Волкова
Ольга Александровна Ковязина (RU)
Ольга Александровна Ковязина
Original Assignee
Открытое акционерное общество "Ижевский электромеханический завод "Купол"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Ижевский электромеханический завод "Купол" filed Critical Открытое акционерное общество "Ижевский электромеханический завод "Купол"
Priority to RU2009130559/05A priority Critical patent/RU2423317C2/ru
Publication of RU2009130559A publication Critical patent/RU2009130559A/ru
Application granted granted Critical
Publication of RU2423317C2 publication Critical patent/RU2423317C2/ru

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

Изобретение относится к области физической и коллоидной химии и заключается в получении суспензий наноструктур, используемых при модификации неорганических композиционных материалов, в частности кристаллогидратных композиционных материалов. Получают тонкодисперсную водную суспензию, содержащую углеродные наноструктуры и поверхностно-активное вещество. Порошок углеродных наноструктур, включающих 3d-металл, в частности медь, никель, кобальт, железо, и/или его соединения, диспергируют в водном растворе поверхностно-активного вещества. Водородный показатель полученного раствора контролируют в пределах рН 7-12. Изобретение позволяет получить устойчивую суспензию, углеродные наноструктуры которой обладают магнитной восприимчивостью и статической активностью при взаимодействии с неорганическими материалами. 3 н.п. ф-лы, 18 ил.

Description

Изобретение относится к области физической и коллоидной химии и заключается в получении суспензий наноструктур, используемых при модификации неорганических композиционных материалов, в частности кристаллогидратных композиционных материалов.
Известна суспензия для получения магнитных нанокомпозитов, содержащая в большом количестве наноструктуры оксида железа, покрытые олеиновой кислотой (SI22539, опубл. 2008 г.).
Для получения суспензии магнитные наноструктуры покрывают олеиновой кислотой, затем перемешивают в декане сначала с помощью ультразвука, потом в центрифуге.
Магнитные наноструктуры оксида железа, входящие в состав данной суспензии, преимущественно проявляют низкую статическую активность при взаимодействии с неорганическими материалами. Органическая дисперсионная среда (олеиновая кислота) также не позволяет использовать суспензию для модификации неорганических сред. Перечисленные особенности приводят к нецелесообразности применения суспензии для модификации неорганических материалов.
Известен водный молекулярно-коллоидный раствор гидратированных фуллеренов (шарообразных сетчатых углеродных наноструктур), пат. RU №2213692, опубл. 2003 г. Гидратированные фуллерены представляют собой супрамолекулярные комплексы, в которых часть противоионов Н+ замещена ионами металлов. Максимальное содержание фуллерена в суспензии равно 4 мг/мл.
Для получения водных молекулярно-коллоидных растворов фуллеренов из раствора в органическом растворителе (несмешивающемся с водой) фуллерены переводят в водную среду под ультразвуковым воздействием. Затем водную среду, содержащую фуллерены, дополнительно подвергают фильтрации через микрофильтры. Для замещения противоионов Н+ катионами металлов применяют метод титрования или метод катионного обмена на ионообменных смолах.
При условии чистоты фуллеренов не менее 99,5% достигается стойкость раствора три года. Вода, используемая в качестве дисперсионной среды, и углеродные дисперсные наночастицы позволяют применять известный раствор для модификации неорганических материалов, в частности для повышения их прочностных характеристик.
Недостатками молекулярно-коллоидного раствора является низкая величина максимального содержания наноструктур в суспензии. Кроме того, не имеющие магнитной восприимчивости фуллерены не могут изменить магнитные свойства модифицируемых материалов.
Наиболее близким техническим решением является тонкодисперсная водная суспензия графенов («Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets» S.Park, J.An и др., Chem. Mater. 2008, 20, 6592-6594, http://pubs.acs.org). Известная суспензия содержит углеродные наноструктуры в виде графенов (углеродных пленочных структур), водный раствор гидроксида калия и моногидрат гидразина. Максимальное содержание наноструктур в суспензии равно 7 мг/мл.
Для изготовления известной суспензии оксид графена диспергируют в водном растворе гидроксида калия. Затем добавляют моногидрат гидразина и перемешивают компоненты в течение шести часов. Полученная устойчивая суспензия содержит электропроводные графеновые листы.
Графеновые наноструктуры характеризуются высокой статической активностью и образуют устойчивую суспензию в водной дисперсионной среде (4 месяца). Однако отсутствие у наноструктур магнитной восприимчивости сужает область применения данной суспензии.
Кроме того, применение гидразина снижает статическую активность графеновых наноструктур при взаимодействии с неорганическими материалами. Механизм действия гидразина связан с удалением функциональных групп с поверхности оксида графена за счет их химического взаимодействия с азотсодержащим компонентом. Удаление функциональных групп с поверхности графена приводит к изменению химического состава и пространственной структуры, что снижает статическую активность наноструктур в модифицируемых композициях. Например, использование восстановленного гидразином графена при модификации бетона не может дать существенного упрочняющего эффекта, так как химическое сродство наночастиц к композиции снижено; образование дополнительных сшивок, упрочняющих бетон, в композиции не происходит, вследствие отсутствия на поверхности наноструктур соответствующих функциональных групп.
Целью изобретения является получение устойчивой суспензии, углеродные наноструктуры которой обладают магнитной восприимчивостью и статической активностью при взаимодействии с неорганическими материалами, в частности кристаллогидратными композиционными материалами.
Для достижения цели изобретения тонкодисперсная водная суспензия углеродных наноструктур, содержащая углеродные наноструктуры и щелочной водный раствор, содержит углеродные наноструктуры, включающие 3d-металл, в частности медь, никель, кобальт, железо, и/или его соединения, содержит поверхностно-активное вещество (ПАВ) при водородном показателе водного раствора рН 7-12.
В способе изготовления тонкодисперсной водной суспензии углеродных наноструктур, включающем взаимодействие углеродных наноструктур и щелочного водного раствора, порошки углеродных наноструктур, включающих 3d-металл, в частности медь, никель, кобальт, железо, и/или его соединения, диспергируют в водном растворе поверхностно-активного вещества с контролем водородного показателя рН 7-12.
В способе изготовления тонкодисперсной водной суспензии углеродных наноструктур, включающем взаимодействие углеродных наноструктур и щелочного водного раствора, смесь порошков углеродных наноструктур, включающих 3d-металл, в частности медь, никель, кобальт, железо, и/или его соединения, и поверхностно-активного вещества измельчают с порционным добавлением воды при контроле водородного показателя рН 7-12.
Углеродные наноструктуры, содержащие в своем составе 3d-металл, в частности медь, никель, кобальт, железо, и/или его соединения, обладают статической активностью по отношению к неорганическому материалу и магнитной восприимчивостью, которые сохраняются при получении из них водной суспензии по предложенному способу.
Активность наноструктур приводит к их коагуляции (слипанию). Все виды поверхностно-активных веществ (ПАВ), такие как ионогенные, включающие анионогенные и катионогенные, неионогенные (Химия: Энциклопедия / под редакцией И.Л. Кнунянц. - М.: БРЭ. 2003. Стр.450), входящие в состав суспензий, выполняют одну роль - существенно снижают поверхностное натяжение воды на границах раздела фаз, тем самым облегчают распределение воды равномерным слоем на поверхности частиц. Наличие ПАВ в суспензии позволяет достичь ее устойчивости без потери активности и магнитной восприимчивости наноструктур. При этом некоторые ПАВ, например пенообразователи для производства пенобетона, являются исходным компонентом для получения изделия, поэтому суспензии, приготовленные на его основе, не ухудшают свойств модифицированного пенобетона. Количество вводимого в состав суспензии ПАВ зависит от удельной поверхности используемых наноструктур и назначения конечного продукта.
Имеющиеся в составе водного раствора с водородным показателем рН 7-12 гидроксид-ионы (ОН-) приводят к возникновению на поверхности наноструктур отрицательного заряда. Одноименно заряженные наноструктуры отталкиваются, что предотвращает их коагуляцию и разрушение суспензии. Возникший на всей поверхности наносвитков одноименный заряд приводит к их разворачиванию в виде нанопленок, что увеличивает статическую активность наноструктур.
Кислая среда (рН<7) не позволяет достичь гидрофильности и увеличения статической активности наноструктур, включающих 3d-металлы. Сильнощелочная среда (рН>12) может привести к агломерации наноструктур, содержащих 3d-металлы и их соединения, и разрушению суспензии. Кроме того, сильнощелочная среда снижает прочность таких неорганических материалов, как бетонные композиции, вследствие изменения их структуры.
Некоторые ПАВ (например, лигносульфонат натрия) сильнее проявляют свои стабилизирующие свойства по отношению к наноструктурам, находясь в растворенном виде, а не в виде порошка. В этих случаях для приготовления суспензий целесообразно использовать водные растворы ПАВ.
В способе изготовления тонкодисперсной водной суспензии углеродных наноструктур при совместном измельчении порошков углеродных наноструктур, включающих 3d-металлы, с порошком ПАВ происходит равномерное перемешивание и взаимодействие компонентов с образованием гидрофильного слоя на поверхности наноструктур, а также происходит дополнительное уменьшение размера реагирующих частиц вследствие эффекта Ребиндера. При этом полученная смесь наноструктур, стабилизированных сухим ПАВ, может быть использована в качестве полупродукта для изготовления суспензии, который может храниться, без потери своих эксплуатационных качеств, долгое время и более приспособлен к транспортировке. Дальнейшее приготовление суспензии из полупродукта может быть организовано в соответствии с установленным регламентом.
Изобретение поясняется графическими материалами.
Фиг.1. Углеродные металлсодержащие наноструктуры №1, содержащие железо и его соединения.
Фиг.2. Фотографии суспензии углеродных металлсодержащих наноструктур №1, содержащих железо и его соединения, в лигносульфонате натрия при просвечивании массы через 30 суток.
Фиг.3. Углеродные металлсодержащие наноструктуры №2, содержащие железо и его соединения.
Фиг.4. Фотографии суспензий углеродных металлсодержащих наноструктур №2, содержащих железо и его соединения, в олеате натрия, при просвечивании массы через 30 суток.
Фиг.5А, 5Б. Углеродные металлсодержащие наноструктуры, содержащий медь и ее соединения.
Фиг.6. Фотографии суспензий углеродных металлсодержащих наноструктур №2, содержащих медь и ее соединения в поливиниловом спирте, при просвечивании массы через 30 суток.
Фиг.7А, 7Б. Углеродные металлсодержащие наноструктуры №1, содержащие кобальт и его соединения.
Фиг.8. Фотографии суспензий углеродных металлсодержащих наноструктур, содержащих кобальт и его соединения, в смеси анионогенных и неионогенных ПАВ при просвечивании массы через 30 суток.
Фиг.9. Углеродные металлсодержащие наноструктуры, содержащие никель и его соединения.
Фиг.10. Фотографии суспензий углеродных металлсодержащих наноструктур, содержащих никель и его соединения, в поливиниловом спирте, при просвечивании массы через 30 суток.
Фиг.11. Углеродные металлсодержащие наноструктуры №2, содержащие кобальт и его соединения.
Фиг.12. Фотографии суспензий углеродных металлсодержащих наноструктур, содержащих кобальт и его соединения, в катионогенном, высокомолекулярном ПАВ, при просвечивании массы через 30 суток.
Фиг.13. Кривая изменения содержания ионов хлора в суспензии после соответствующих операций очистки.
Фиг.14. Зависимость оптической плотности суспензии по слоям с течением времени.
Фиг.15. Зависимость разрушающего напряжения при сжатии образцов пенобетона от содержания и типа наноструктур.
Фиг.16. Фотография суспензии углеродных металлсодержащих наноструктур, содержащих никель и его соединения, вблизи источника магнитного поля.
Пример 1. Тонкодисперсную водную суспензию получали диспергированием тонкодисперсного порошка углеродных наноструктур, таких как сферические наноструктуры 1, нанотрубки 2 (Фиг.1), содержащих железо и его соединения, с порошком лигносульфоната натрия (анионогенное ПАВ) в массовом отношении 1:1 при добавлении горячего водного раствора щелочи с последующим порционным добавлением воды при водородном показателе рН 8-12. В результате получили суспензию, устойчивую до шести месяцев (Фиг.2).
Пример 2. Смесь из тонкодисперсного порошка углеродных наноструктур, таких как нанопленки 1, сферические наноструктуры 2 (Фиг.3), содержащих железо и его соединения, и стружки 65% мыла (ГОСТ 30266-95), содержащего олеат натрия (анионогенное ПАВ), в массовом отношении 1:1 диспергировали с порционным добавлением горячей воды. В результате получили суспензию, устойчивую до шести месяцев (Фиг.4). Этап обработки щелочью отсутствует.
Пример 3. Тонкодисперсную водную суспензию получали диспергированием углеродных медьсодержащих наноструктур в виде нанопленок 1 (Фиг.5А, 5Б), сферических наноструктур 2 (Фиг.5Б) в 10% водном растворе поливинилового спирта (неионогенное, высокомолекулярное ПАВ) с добавлением водного раствора щелочи при водородном показателе рН 8-12. В результате получили суспензию, устойчивую до пяти месяцев (Фиг.6).
Пример 4. Тонкодисперсную водную суспензию получали диспергированием углеродных кобальтсодержащих наноструктур, таких как нанопленки 1 (Фиг.7А, 7Б), нанотрубки 2 (Фиг.7А), сферические наноструктуры 2 (Фиг.7Б), в синтетическом пенообразователе для пенобетона «Микропор» (смесь анионогенного и неионогенного ПАВ, http://www.inhim.ru/production/micropor/micropor_pg.html). В результате получили суспензию, имеющую стабильность до четырех месяцев (Фиг.8). Этап обработки щелочью отсутствует.
Пример 5. Тонкодисперсную водную суспензию получали диспергированием порошка углеродных никельсодержащих наноструктур в виде нанопленок 1 (Фиг.9) с порошком поливинилового спирта (неионогенное высокомолекулярное ПАВ) в массовом соотношении 1:1 при добавлении водного раствора щелочи с последующим порционным добавлением горячей воды при водородном показателе рН 8-12. В результате получили суспензию, устойчивую до шести месяцев (Фиг.10).
Пример 6. Тонкодисперсную водную суспензию получали диспергированием тонкодисперсного порошка углеродных наноструктур, таких как наносвитки 1, нанотрубки 2, нанопленки 3 (Фиг.11), содержащих кобальт и его соединения, в органическом пенообразователе для пенобетона «Экопен» (катионогенное высокомолекулярное ПАВ, http://chelyabinsk.umap.ru/up/pp/42453_c87.doc) при водородном показателе рН 8-12. В результате получили суспензию, устойчивую до четырех месяцев (Фиг.12).
Приведенные примеры подтверждают возможность использования для приготовления суспензий углеродных металлсодержащих наноструктур различных видов (сферические наноструктуры, нанотрубки, нанопленки, наносвитки) и поверхностно-активных веществ всех известных классов: анионогенные (лигносульфонат, олеат натрия), катионогенные (органический пенообразователь «Экопен»), неионогенные (поливиниловый спирт), смесь анионогенного и неионогенного ПАВ (синтетический пенообразователь для пенобетона «Микропор»).
Контроль состава суспензии осуществлялся на содержание ионов хлора, сульфат-ионов, которые могут ухудшить свойства суспензии как модифицирующей нанодобавки. Эти ионы удаляли из массы порошка путем обработки его раствором щелочи с последующей промывкой горячей водой (Фиг.13).
Контроль распределения и изменения размеров наноструктур осуществлялся по оптической плотности по высоте (поверхностного, срединного и придонного слоев) через определенные промежутки времени (Фиг.14).
Устойчивость суспензий оценивалась по времени осаждения в ходе хранения с контролем формы и размеров осаждаемых частиц (Фиг.2, 4, 6, 8, 10, 12).
Активность наноструктур в составе суспензий оценивалась по изменению прочности модифицированных с помощью суспензий неорганических материалов. На Фиг.15 приведена зависимость разрушающего напряжения при сжатии образцов модифицированного наноструктурами пенобетона от содержания и типа наноструктур. Кривая "Сu №1" отражает влияние на прочность образцов углеродных медьсодержащих наноструктур пленочной формы, полученных при 200°С; кривая "Сu №2" - влияние углеродных медьсодержащих наноструктур в форме свитков, полученных при 400°С; кривая "Ni №1" - влияние углеродных никельсодержащих наноструктур в форме трубчатых наноструктур и свитков, полученных при 400°С. Из графиков (Фиг.15) видно, что прочность модифицированных образцов изменяется по волновой зависимости, но не опускается ниже эталонного значения (при нулевом содержании добавки). При этом максимальное увеличение прочности материала (в два раза по сравнению с эталоном) достигается при содержании добавки, характерном для данного типа наноструктур.
Для подтверждения магнитной восприимчивости наноструктур суспензию расположили вблизи источника магнитного поля. Под действием магнита наноструктуры в объеме жидкости переместились в сторону источника магнитного поля (Фиг.16).
Суспензии наноструктур являются модификаторами, способствующими изменению структуры и свойств кристаллогидратных композиционных материалов при введении их в сверхмалых концентрациях (0,01-0,0033% по массе), что приводит к улучшению прочностных и теплофизических характеристик. Использование устойчивой тонкодисперсной водной суспензии углеродных наноструктур, изготовленной по предложенному способу, позволяет повысить прочность модифицируемых материалов за счет статической активности наноструктур и передать модифицируемым материалам магнитную восприимчивость, свойственную металлсодержащим наноструктурам.

Claims (3)

1. Тонкодисперсная водная суспензия углеродных наноструктур, содержащая углеродные наноструктуры и щелочной водный раствор, отличающаяся тем, что содержит углеродные наноструктуры, включающие 3d-металл, в частности медь, никель, кобальт, железо и/или его соединения, содержит поверхностно-активное вещество при водородном показателе водного раствора рН7-12.
2. Способ изготовления тонкодисперсной водной суспензии углеродных наноструктур, включающий взаимодействие углеродных наноструктур и щелочного водного раствора, отличающийся тем, что порошок углеродных наноструктур, включающих 3d-металл, в частности медь, никель, кобальт, железо и/или его соединения, диспергируют в водном растворе поверхностно-активного вещества с контролем водородного показателя полученного раствора в пределах рН7-12.
3. Способ изготовления тонкодисперсной водной суспензии углеродных наноструктур, включающий взаимодействие углеродных наноструктур и щелочного водного раствора, отличающийся тем, что смесь порошков углеродных наноструктур, включающих 3d-металл, в частности медь, никель, кобальт, железо и/или его соединения, и поверхностно-активного вещества измельчают с порционным добавлением воды при контроле водородного показателя полученного раствора в пределах рН7-12.
RU2009130559/05A 2009-08-10 2009-08-10 Тонкодисперсная водная суспензия углеродных наноструктур и способ ее изготовления (варианты) RU2423317C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009130559/05A RU2423317C2 (ru) 2009-08-10 2009-08-10 Тонкодисперсная водная суспензия углеродных наноструктур и способ ее изготовления (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009130559/05A RU2423317C2 (ru) 2009-08-10 2009-08-10 Тонкодисперсная водная суспензия углеродных наноструктур и способ ее изготовления (варианты)

Publications (2)

Publication Number Publication Date
RU2009130559A RU2009130559A (ru) 2011-02-20
RU2423317C2 true RU2423317C2 (ru) 2011-07-10

Family

ID=44740492

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009130559/05A RU2423317C2 (ru) 2009-08-10 2009-08-10 Тонкодисперсная водная суспензия углеродных наноструктур и способ ее изготовления (варианты)

Country Status (1)

Country Link
RU (1) RU2423317C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2482082C2 (ru) * 2011-08-15 2013-05-20 Общество с ограниченной ответственностью "НаноТехЦентр" Наномодификатор строительных материалов и способ его получения
RU2531172C2 (ru) * 2012-07-03 2014-10-20 Общество с ограниченной ответственностью "НаноТехЦентр" Способ получения дисперсий углеродных нанотрубок

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUNGJIN PARK et al. Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets, Chemistry of Materials, 2008, 20 (21), pp.6592-6594. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2482082C2 (ru) * 2011-08-15 2013-05-20 Общество с ограниченной ответственностью "НаноТехЦентр" Наномодификатор строительных материалов и способ его получения
RU2531172C2 (ru) * 2012-07-03 2014-10-20 Общество с ограниченной ответственностью "НаноТехЦентр" Способ получения дисперсий углеродных нанотрубок

Also Published As

Publication number Publication date
RU2009130559A (ru) 2011-02-20

Similar Documents

Publication Publication Date Title
Boccalon et al. Layered double hydroxides are still out in the bloom: Syntheses, applications and advantages of three-dimensional flower-like structures
Rees et al. Formation and morphology of calcium sulfate nanoparticles and nanowires in water-in-oil microemulsions
Kong et al. Size control of Au@ Cu 2 O octahedra for excellent photocatalytic performance
KR100869026B1 (ko) 구형의 산화제일구리 응집체 입자 조성물 및 그 제조방법
DE69507482T2 (de) Hochdispergierte magnetische metalloxidteilchen,produktionsverfahren und anwendung
Wang et al. Morphology controllable synthesis of nickel nanopowders by chemical reduction process
WO2006082962A1 (ja) 複合粒子の製造方法
JP4496026B2 (ja) 金属銅微粒子の製造方法
RU2423317C2 (ru) Тонкодисперсная водная суспензия углеродных наноструктур и способ ее изготовления (варианты)
Zhang et al. Self-assembled core-shell Fe3O4@ SiO2 nanoparticles from electrospun fibers
US20210178477A1 (en) Composite body having nanoparticles uniformly dispersed in nano-sized pores in support, and method for producing same
Vanyorek et al. Nanotubes as polymer composite reinforcing additive materials–A comparative study
Anushree et al. Oil-absorbent MnOx capped iron oxide nanoparticles: Synthesis, characterization and applications in oil recovery
Mourdikoudis et al. Colloidal chemical bottom-up synthesis routes of pnictogen (As, Sb, Bi) nanostructures with tailored properties and applications: a summary of the state of the art and main insights
Wang et al. Large-scale fabrication and application of magnetite coated Ag NW-core water-dispersible hybrid nanomaterials
KR101368404B1 (ko) 금속 나노입자 및 이의 제조방법
KR101890463B1 (ko) 중공 금속 나노입자의 제조방법 및 이에 의해 제조된 중공 금속 나노입자
CN105903979B (zh) 一种Fe3O4@Au核壳功能材料的制备方法
Zheng et al. Facile fabrication of NiFe2O4-FeNi/C heterointerface composites with balanced magnetic-dielectric loss for boosting electromagnetic wave absorption
CN104384525B (zh) 一种镍或镍铁金属纳米线的分散与组装方法
Fan et al. GO@ Fe3O4@ CuSilicate composite with a hierarchical structure: fabrication, microstructure, and highly electromagnetic shielding performance
Zhu et al. Template‐Free Synthesis of Magnetic Chains Self‐Assembled from Urchin‐Like Hierarchical Ni Nanostructures
JP2007308754A (ja) 金属微粒子の製造方法、金属微粒子−炭素複合体の製造方法および金属微粒子−炭素複合体
TWI468240B (zh) 銀微粒子、銀微粒子之製造方法、及銀微粒子之製造裝置
Xie et al. Study on Pickering emulsions co-stabilized by multiple particles for building MXene-based multifunctional composite foam

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner