RU2421296C2 - Способ изготовления детали газотурбинного двигателя, включающей отверстия выпуска охлаждающего воздуха - Google Patents

Способ изготовления детали газотурбинного двигателя, включающей отверстия выпуска охлаждающего воздуха Download PDF

Info

Publication number
RU2421296C2
RU2421296C2 RU2007103246/02A RU2007103246A RU2421296C2 RU 2421296 C2 RU2421296 C2 RU 2421296C2 RU 2007103246/02 A RU2007103246/02 A RU 2007103246/02A RU 2007103246 A RU2007103246 A RU 2007103246A RU 2421296 C2 RU2421296 C2 RU 2421296C2
Authority
RU
Russia
Prior art keywords
holes
wall
radial
sections
section
Prior art date
Application number
RU2007103246/02A
Other languages
English (en)
Other versions
RU2007103246A (ru
Inventor
Тьерри Энри Раймон АЛО (FR)
Тьерри Энри Раймон АЛО
Патрик Эмильен Поль Эмиль ЮШЭН (FR)
Патрик Эмильен Поль Эмиль ЮШЭН
Патрис Жан-Марк РОССЕ (FR)
Патрис Жан-Марк РОССЕ
Борис СУЛАЛЬУ (FR)
Борис СУЛАЛЬУ
Original Assignee
Снекма
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Снекма filed Critical Снекма
Publication of RU2007103246A publication Critical patent/RU2007103246A/ru
Application granted granted Critical
Publication of RU2421296C2 publication Critical patent/RU2421296C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/32Arrangement of components according to their shape
    • F05D2250/324Arrangement of components according to their shape divergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade
    • Y10T29/49341Hollow blade with cooling passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53613Spring applier or remover
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53613Spring applier or remover
    • Y10T29/53617Transmission spring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53613Spring applier or remover
    • Y10T29/53635Leaf spring

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Изобретение касается охлаждения детали газотурбинного двигателя, которая имеет отверстия, содержащие первый участок (110 Е), выходящий на внешнюю поверхность (171ext) стенки детали, и второй участок (110Т), выходящий на внутреннюю поверхность (171int) стенки. Деталь изготавливают методом литья по выплавляемым моделям. В модели формируют впадины, соответствующие первым участкам (110 Е) отверстий в детали. В отлитой детали формируют второй участок отверстий, соединяющий дно первого участка с внутренней поверхностью стенки детали, например посредством пучка лазера. Отверстия для выпуска охлаждающего воздуха формируют без образования острых ребер, которые приводят к возникновению напряжений в детали и образованию трещин. Обеспечивается повышение качества деталей и упрощение технологии изготовления отверстий. 2 н. и 10 з.п. ф-лы, 8 ил.

Description

Настоящее изобретение касается охлаждения деталей газотурбинного двигателя тонким слоем воздуха.
Чтобы улучшить показатели газотурбинного двигателя, необходимо поднять температуру газа на выходе из камеры сгорания. Детали двигателя, омываемые таким газом, в этом случае подвергаются высоким термомеханическим напряжениям. Их защищают, осуществляя циркуляцию охлаждающего воздуха, отбирая его в компрессоре в каналах, расположенных под стенкой и выпуская в газовый поток через отверстия малого диаметра, выполненные таким образом, чтобы образовывать защитную газовую прослойку между стенкой и потоком горячего газа. Детали, подвергнутые такой обработке, - это главным образом сектора распределителя, составленные из одной или нескольких радиальных лопастей между двумя платформами в секторах кольца, ограничивающего газовый поток вместе с подвижными лопатками первых ступеней турбины. Механическая стойкость и срок службы деталей при использовании этого средства оказываются увеличенными.
Отверстия - это полости цилиндрической формы, выполненные в соответствующих зонах стенки, подлежащей защите. Для того чтобы улучшить образование прослойки воздуха вдоль стенки, этим полостям придают форму, расширенную к уровню ее поверхности. Таким образом, эти отверстия содержат две различных части: цилиндрическую часть, калибрующую поток воздуха, и часть, сформированную таким образом, чтобы рассеивать и ориентировать поток воздуха и этим благоприятствовать его протеканию в зоне образования охлаждающей прослойки. Примеры таких отверстий представлены в патентах US 6183199, EP 228338 и US 4197443.
Известный метод изготовления состоит в том, что эти полости выполняют в два этапа; начинают с того, что создают расширенный участок отверстия с помощью электроэрозии, техники, обозначаемой также аббревиатурой EDM (electrodischarge machining), затем сверлят дно полученной впадины, например, пучком лазера, чтобы образовать цилиндрический канал.
Согласно технике EDM, электрод размещается на некотором расстоянии от подлежащей обработке поверхности, и между ним и деталью генерируют электрические разряды. Эти разряды захватывают частицы вещества и прогрессивно разрушают поверхность детали. Форма полученной впадины зависит от геометрии электрода, которая может иметь форму усеченного конуса, например на прямоугольной части, или более сложную, с закругленными участками, как это показано в патентах US 6183199 или EP 228338. Вторая часть, калибрующая, изготавливается либо электродом, либо с помощью лазерного луча.
При использовании вышеуказанной технологии возникают следующие проблемы.
Электроду, какой бы ни была его форма, даже если она позволяет обработать внутренность впадины в округленных участках стенки, могут помешать существующие острые ребра. Эти острые ребра - места концентрации напряжений, обуславливают риски образования трещин.
Главным образом, по экономическим причинам, отверстия в пластине изготавливают серийно разрезными электродами, которые, таким образом, расположены в ряд. Такая практика не позволяет осуществить индивидуальную оптимизацию геометрии отверстий в зависимости от окружающего их локального профиля.
Невозможно реализовать этот тип отверстия в зонах затрудненного доступа. В особенности в том случае, когда речь идет об осуществлении сверления по длине лопастей сектора двухлопастного распределителя в канале между лопатками. Так как в этой зоне расширяющаяся форма отверстий необходима, то невозможно изготавливать секторы двухлопастных распределителей литьем как одну деталь. Каждую систему лопаток изготовляют отдельно и сваривают их вместе, чтобы сформировать сектор распределителя. В этом случае стоимость изготовления повышается.
Указанные проблемы могут быть устранены при использовании способа создания отверстий для выпуска охлаждающего газа в стенке детали, изготовленных технологией литья с удаляемым воском, согласно которой модель детали создают в восковой изложнице, включая и вышеозначенный первый участок, который выходит на внешнюю поверхность стенки. Этот способ на практике характеризуется, тем, что он состоит в подготовке на восковой модели впадин, соответствующих первым участкам упомянутых отверстий, затем в создании в отлитой детали второго участка отверстия, соединяющего дно первого участка с внутренней поверхностью стенки.
Преимущественно на восковой изложнице изготавливают выпуклости с формами, дополняющими формы указанных первых участков, таким образом, что на модели образуются обусловленные впадины, причем деталь после литья уже имеет вышеуказанные предварительно сформированные первые участки.
Формируя эти участки отверстий на восковой модели детали таким образом, чтобы они были в дальнейшем сформированы литьем, можно легко оптимизировать их форму для каждого поступающего в профиль потока. Можно избежать применения тяжелой и дорогой электроэрозионной техники, и такой метод совместим с изготовлением секторов многолопастных литых распределителей.
Наиболее часто вышеупомянутый первый участок имеет расширяющуюся форму, но изобретение позволяет получать все типы форм.
Зоны соединения между двумя участками поверхности, не компланарными выпуклостям, имеют как правило сглаженный профиль, исключающий образование острых кромок. Обозначим их как «радиальные» (rayonnées). Радиусы кривизны «радиальных» поверхностей имеют величину от, по меньшей мере, 0,1 мм, до, преимущественно, 0,2 мм, кривизна этих поверхностей в некоторых случаях является изменяющейся.
Целесообразно, чтобы сечение второго участка отверстия калибровалось таким образом, чтобы дозировать расход воздуха. Этот участок имеет трубчатую форму круглого сечения или в продолговатую форму сечения в виде щели.
Предпочтительно, чтобы обработка осуществлялась с помощью пучка лазера, но могут быть использованы и другие средства.
Область изобретения включает также деталь газотурбинного двигателя, полученную согласно заявленному способу и содержащую отверстия выпуска охлаждающего воздуха, у которой зоны соединения первых участков с внешней стенкой детали являются радиальными.
В дальнейшем изобретение поясняется описанием неограничительных вариантов его осуществления, со ссылками на чертежи, в числе которых:
Фиг.1 изображает подвижную лопатку охлажденной турбины;
Фиг.2 - в разрезе стенку на уровне отверстия выпуска охлаждающего воздуха согласно предшествующему описанию;
Фиг.3 - в разрезе модель детали в своей восковой изложнице;
Фиг.4-6 иллюстрируют этапы осуществления расширяющихся отверстий согласно изобретению;
Фиг.7 и 8 - в изометрии виды расширяющегося отверстия согласно изобретению.
Как это видно на фиг.1, подвижная лопатка 1 включает опору 3, платформу 5 и лопасть 7. Лопатка монтируется опорой в пазе, устроенном в ободе диска турбины. Когда турбина охлаждена и лопатка вынута, то видно, что она включает в себя впадины, предназначенные для циркуляции охлаждающего воздуха. Часть этого воздуха направлена сквозь стенку лопасти калиброванными отверстиями. Со стороны 9 эти отверстия имеют простую трубчатую форму. Другие отверстия 10 включают расширяющуюся часть для того, чтобы направлять воздух вдоль стенки, что позволит образовать пленку или прослойку для защиты стенки. Эти отверстия 10 в части, расширяющейся вниз по ходу потока, расположены, например, на лопасти вдоль кромки атаки на поверхности ее спинки 10a или вдоль глобально радиальной линии на поверхности ее внутреннего выгиба 10b. Другой ряд отверстий с расширяющейся частью располагается вдоль задней кромки на поверхности ее внутреннего выгиба 10с.
На фиг.2 изображен разрез стенки лопасти 71 по плоскости II-II через отверстие 10. Видны первая расширяющаяся часть 10Е, выходящая на внешнюю поверхность стенки 71 и трубчатая часть 10T. Сечение этой части 10T определяет расход охлаждающего воздуха через отверстие. Струя воздуха проходит сбоку по расширяющейся части 10Е и образует прослойку вдоль стенки лопасти вместе с другими примыкающими струями.
Ввиду сложности ее геометрии и термомеханических напряжений, которые она должна выдерживать, деталь этого типа изготавливается литьем в удаляемом воске. Далее используется вышеупомянутая технология.
Вначале изготавливают модель из воска или другого аналогичного материала, которая включает в себя литейный стержень с формой, учитывающей внутренние впадины системы лопаток. Этот стержень изготавливают отдельно, и он представляет собой композицию из нескольких элементарных стержней. Стержень помещают в восковую изложницу, и заливают воск в пространство, остающееся между стержнем и внутренней стенкой изложницы. Получают модель, включающую в себя стержень и являющуюся ответной частью для литья детали.
Примером детали является лопатка турбины, изображенная на фиг.3. Восковая модель 20 включает стержень, состоящий из нескольких элементов-стержней от 21a до 21d из керамического материала. Восковая изложница 30 составлена из двух частей 30a и 30b, у каждой стенка литья 30a' и 30b' соответствует корпусу детали. Изложница согласно представленному примеру имеет простую форму, но, в зависимости от сложности детали, она может содержать многочисленные элементы.
Затем извлекают из изложницы 30 восковую модель 20 и погружают ее в шликеры, представляющие собой суспензии керамических частиц, для того чтобы покрыть ее защитной оболочкой из последовательно наносимых слоев и изготовить изложницу-панцирь. После упрочнения изложницы с помощью варки, удаляют воск. Получают деталь, в которой льющийся в нее расплавленный металл занимает пустоты между внутренней стенкой изложницы-панциря и стержнем. Благодаря зародышу или соответствующему селектору и контролируемому охлаждению металл твердеет, образуя определенную структуру. Согласно природе смеси и ожидаемым после литья свойствам детали можно вести речь о затвердевании в столбчатую структуру, затвердевании в монокристаллическую структуру или о равноосном затвердевании, соответственно. В первых двух вариантах используются суперсмеси, что необходимо для деталей, подвергаемых сильным напряжениям, как термическим, так и механическим, как, например, для лопаток турбины высокого давления HP в турбореактивном двигателе.
Согласно технике предшествующего способа расширяющиеся отверстия создают обработкой отлитой детали. Отверстие, которое представлено на фигуре 2, получено обработкой с использованием технологии EDM. В частности видно, что зона соединения между поверхностью 71ext и расширяющимся участком 10Е представляет собой ребро 10E1, образования которого невозможно избежать. Обработка этой зоны привела бы в лучшем случае к образованию фаски, но не к выравниванию, в особенности по причине малого размера отверстия этого типа. Допускаемые отклонения обработки не позволили бы расположить достаточно точно рабочий инструмент по отношению к зоне, подлежащей обработке.
Согласно изобретению предлагается реализовать вышеупомянутый первый расширяющийся участок отверстия непосредственно по восковой модели. По сути дела восковая изложница, в которую залит воск, представляет отпечаток с первых участков отверстий.
На фиг.4 представлен разрез по уровню внутренней поверхности 130a' изложницы 130a через выпуклость 132 формовки первого участка в соответствии с изобретением. У элементов, выполненных согласно по изобретению, соответствующих элементам предшествующего способа, используются те же обозначения, но увеличенные на сотню. Выпуклость 132 имеет форму первого участка, которую желают получить в стенке 120' восковой модели 120. Для того чтобы не превысить допустимых напряжений при выемке из формы, поверхности выпуклости не содержат частей, образующих угол, меньший лимитирующего угла выемки из формы по отношению к представленному стрелой D направлению выемки из формы в этой зоне. В случае, когда изложница составлена из множества элементов со специфическими вставками, формирующими выпуклости, достаточно, чтобы угол был определен по отношению к направлению извлечения этой вставки. Применение вставки представляет дополнительное преимущество - облегчать изменение профиля выпуклостей, например, в фазе разработки детали. Достаточно изменить единственную вставку, чтобы изготовлять деталь с новым профилем расширяющихся отверстий.
Деталь 101, изготовленная литьем, имеет в своей стенке 171 впадину 110Е, соответствующую по форме выпуклости 132, которая создана в стенке 120' восковой модели 120. Эта впадина 110Е составляет первый участок отверстия, который необходимо удалить из стенки 120'. Образование отверстий выпуска воздуха охлаждения заканчивают, сверля дно впадины 110Е, например, пучком лазера. Это сверление образует трубчатый канал 110T. Сечение этого канала 110T является определяющим для создания необходимого расхода воздуха, и его форма может быть, в случае необходимости, круглой или продолговатой. Эти два этапа проиллюстрированы на фиг.5 и 6.
На фигурах 7 и 8 представлено отверстие 110 в стенке 171 для выпуска охлаждающего воздуха, получаемое в соответствии с заявленным способом и применяемое при охлаждении пленкой воздуха. Различные части поверхности представлены с сегментами образующих директрис, чтобы этим показать ее трехмерный характер.
Виден первый участок 110Е расширяющейся формы, выходящий на внешнюю поверхность 171ext стенки 171. Второй, трубчатый, участок 110T выполнен в дне первого участка и выходит на внутреннюю поверхность 171int стенки 171.Впадина 110Е имеет дно A, форма которого на виде снизу практически трапециевидна. Впадина повернута вниз по ходу потока газа. Это дно заключено между трубчатым участком 110T и ребром А1 сопряжения с внешней поверхностью 171ext стенки 171. Боковые поверхности L1 и L2 впадины искривлены в виде вогнутых цилиндрических секторов L1 и L2, имеющих изменяющийся профиль вдоль зоны их соединения с дном A. Поверхности названы «радиальными». Радиус кривизны этих поверхностей, что оказывается выгодным, равен по меньшей мере 0,1 мм и меняется вдоль профиля. Боковые поверхности L1 и L2 включают также искривленные участки поверхности LIS и L2S, с изменяющимся профилем по направлению к поверхности стенки 171ext. Поверхность B впадины, расположенная поперек между обеими боковыми поверхностями L1 и L2, также включает выпуклый «радиальный» участок BS соединения с внешней поверхностью 171ext стенки 171, и вогнутые «радиальные» участки, связанные с боковыми поверхностями L1 и L2.
Эти «радиальные» участки поверхности L1S, L2S и BS дополняют поверхности соединения выпуклостей 132 с поверхностью 130a' восковой изложницы 130a, в которой формируется модель. Достаточно правильно согласовать параметры выпуклости, чтобы получить деталь без острого ребра на этих участках.
Эти «радиальные» участки соединения имеют радиус кривизны, например, 0,2 мм, с минимумом в 0,1 мм. Они ограничивают термические и механические напряжения в этих зонах и уменьшают вероятность случаев образования трещины. Механическая стойкость детали и срок ее службы также существенно улучшаются.
Другое преимущество по отношению к обработке методом EDM состоит в создании поверхностей, имеющих малую шероховатость, что благоприятствует аэродинамике. Например, типичная шероховатость Ra после EDM - определяется величиной 4,5 мкм. Получение меньших значений сопряжено с резким возрастанием стоимости. Способом литья легко получаем более гладкие поверхности; Ra=1,2 мкм, например.
Следует отметить, что линия пересечения трубчатой зоны 110T с дном первого участка 110 E не является «радиальной» зоной, поскольку она получена обработкой.

Claims (12)

1. Способ изготовления отверстий для выпуска охлаждающего газа в стенке детали, изготовленной согласно методу литья по выплавляемым моделям, с образованием восковой модели в восковой изложнице, при этом отверстия включают первый участок, выходящий на внешнюю поверхность стенки, отличающийся тем, что в восковой модели выполняют впадины, соответствующие первым участкам указанных отверстий в детали, изготавливают в отлитой детали второй участок отверстий, соединяющих дно первого участка отверстий с внутренней поверхностью стенки.
2. Способ по п.1, отличающийся тем, что в восковой изложнице формируют выпуклости, имеющие форму, дополняющую форму первых участков для формирования в модели вышеупомянутых впадин и обеспечения в литой детали первых участков предварительно сформированных отверстий.
3. Способ по п.2, отличающийся тем, что впадины, которые соответствуют первым участкам отверстий, имеют расширяющуюся форму.
4. Способ по одному из пп.1-3, отличающийся тем, что зоны соединения, которые, по меньшей мере частично, подготовлены на впадинах, соответствующих первым участкам отверстий, являются радиальными.
5. Способ по п.2, отличающийся тем, что выпуклости являются радиальными.
6. Способ по п.4, отличающийся тем, что зона соединения между сторонами впадин, которые соответствуют первым участкам отверстий, с внешней поверхностью модели является радиальной.
7. Способ по п.4, отличающийся тем, что радиусы кривизны радиальных поверхностей имеют размеры, по меньшей мере, 0,1 мм, преимущественно 0,2 мм, причем радиус кривизны вдоль профиля радиальных поверхностей в случае необходимости изменяют.
8. Способ по одному из пп.5 или 6, отличающийся тем, что радиусы кривизны радиальных поверхностей имеют размеры, по меньшей мере, 0,1 мм, преимущественно 0,2 мм, причем радиус кривизны вдоль профиля радиальных поверхностей в случае необходимости изменяют.
9. Способ по п.1, отличающийся тем, что второй участок отверстия имеет трубчатую форму.
10. Способ по п.9, отличающийся тем, что обработку осуществляют посредством пучка лазера или при помощи EDM.
11. Деталь газотурбинного двигателя, изготовленная согласно способу по пп.1-10, содержащая отверстия выпуска воздуха охлаждения с элементами стенки, у которой зоны соединения элементов стенки между собой являются радиальными.
12. Деталь по п.11, отличающаяся тем, что зоны соединения первых участков отверстия с внешней поверхностью стенки детали являются радиальными, а радиусы кривизны, по меньшей мере, равны 0,1 мм.
RU2007103246/02A 2006-01-27 2007-01-26 Способ изготовления детали газотурбинного двигателя, включающей отверстия выпуска охлаждающего воздуха RU2421296C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0650292A FR2896710B1 (fr) 2006-01-27 2006-01-27 Procede de fabrication de piece de turbomachine comportant des orifices d'evacuation d'air de refroidissement
FR0650292 2006-01-27

Publications (2)

Publication Number Publication Date
RU2007103246A RU2007103246A (ru) 2008-08-10
RU2421296C2 true RU2421296C2 (ru) 2011-06-20

Family

ID=37027418

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007103246/02A RU2421296C2 (ru) 2006-01-27 2007-01-26 Способ изготовления детали газотурбинного двигателя, включающей отверстия выпуска охлаждающего воздуха

Country Status (6)

Country Link
US (1) US7841083B2 (ru)
EP (1) EP1813365B1 (ru)
CN (1) CN101007337B (ru)
CA (1) CA2576709C (ru)
FR (1) FR2896710B1 (ru)
RU (1) RU2421296C2 (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8915289B2 (en) * 2011-05-10 2014-12-23 Howmet Corporation Ceramic core with composite insert for casting airfoils
US8899303B2 (en) 2011-05-10 2014-12-02 Howmet Corporation Ceramic core with composite insert for casting airfoils
US9138804B2 (en) 2012-01-11 2015-09-22 United Technologies Corporation Core for a casting process
US8408446B1 (en) 2012-02-13 2013-04-02 Honeywell International Inc. Methods and tooling assemblies for the manufacture of metallurgically-consolidated turbine engine components
US9033670B2 (en) 2012-04-11 2015-05-19 Honeywell International Inc. Axially-split radial turbines and methods for the manufacture thereof
US9115586B2 (en) 2012-04-19 2015-08-25 Honeywell International Inc. Axially-split radial turbine
US9476305B2 (en) 2013-05-13 2016-10-25 Honeywell International Inc. Impingement-cooled turbine rotor
US20150184518A1 (en) * 2013-12-26 2015-07-02 Ching-Pang Lee Turbine airfoil cooling system with nonlinear trailing edge exit slots
EP3002415A1 (en) * 2014-09-30 2016-04-06 Siemens Aktiengesellschaft Turbomachine component, particularly a gas turbine engine component, with a cooled wall and a method of manufacturing
US11280214B2 (en) 2014-10-20 2022-03-22 Raytheon Technologies Corporation Gas turbine engine component
US10260353B2 (en) 2014-12-04 2019-04-16 Rolls-Royce Corporation Controlling exit side geometry of formed holes
US20160298462A1 (en) 2015-04-09 2016-10-13 United Technologies Corporation Cooling passages for a gas turbine engine component
US10006293B1 (en) 2015-07-22 2018-06-26 Florida Turbine Technologies, Inc. Apparatus and process for refining features in an additive manufactured part
FR3053999B1 (fr) * 2016-07-13 2020-06-26 Safran Aircraft Engines Production amelioree de trous de refroidissement d'une aube
US10927705B2 (en) 2018-08-17 2021-02-23 Raytheon Technologies Corporation Method for forming cooling holes having separate complex and simple geometry sections
US11000925B2 (en) 2018-09-21 2021-05-11 Raytheon Technologies Corporation Method of forming cooling holes
FR3101104B1 (fr) * 2019-09-23 2021-09-03 Safran Aircraft Engines Dispositif de refroidissement par jets d’air d’un carter de turbine
FR3124822B1 (fr) 2021-07-02 2023-06-02 Safran Aube de turbomachine equipee d’un circuit de refroidissement et procede de fabrication a cire perdue d’une telle aube
KR102728161B1 (ko) * 2022-06-23 2024-11-07 두산에너빌리티 주식회사 터빈 블레이드 및 이를 포함하는 가스 터빈
FR3148922A1 (fr) * 2023-05-22 2024-11-29 Safran Aircraft Engines Procede de fabrication d’une aube creuse de turbine de turbomachine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1305064A (fr) * 1961-11-07 1962-09-28 Howe Sound Co Procédé et dispositif pour la production de modèles à noyaux
FR90962E (fr) * 1961-11-07 1968-03-22 Howe Sound Co Procédé et dispositif pour la production de modèles à noyaux
US3596703A (en) * 1968-10-01 1971-08-03 Trw Inc Method of preventing core shift in casting articles
US3957104A (en) * 1974-02-27 1976-05-18 The United States Of America As Represented By The Administrator Of The United States National Aeronautics And Space Administration Method of making an apertured casting
FR2569225A1 (fr) * 1977-06-11 1986-02-21 Rolls Royce Aube creuse refroidie, pour moteur a turbine a gaz
US4197443A (en) * 1977-09-19 1980-04-08 General Electric Company Method and apparatus for forming diffused cooling holes in an airfoil
US4684323A (en) * 1985-12-23 1987-08-04 United Technologies Corporation Film cooling passages with curved corners
US5243759A (en) * 1991-10-07 1993-09-14 United Technologies Corporation Method of casting to control the cooling air flow rate of the airfoil trailing edge
US5382133A (en) * 1993-10-15 1995-01-17 United Technologies Corporation High coverage shaped diffuser film hole for thin walls
DE59808269D1 (de) * 1998-03-23 2003-06-12 Alstom Switzerland Ltd Filmkühlungsbohrung
US7036556B2 (en) * 2004-02-27 2006-05-02 Oroflex Pin Development Llc Investment casting pins
US7172012B1 (en) * 2004-07-14 2007-02-06 United Technologies Corporation Investment casting
US7144220B2 (en) * 2004-07-30 2006-12-05 United Technologies Corporation Investment casting

Also Published As

Publication number Publication date
CN101007337B (zh) 2013-01-09
FR2896710A1 (fr) 2007-08-03
EP1813365A1 (fr) 2007-08-01
CA2576709C (fr) 2014-01-14
FR2896710B1 (fr) 2009-10-30
CN101007337A (zh) 2007-08-01
EP1813365B1 (fr) 2011-05-18
US20070175009A1 (en) 2007-08-02
CA2576709A1 (fr) 2007-07-27
US7841083B2 (en) 2010-11-30
RU2007103246A (ru) 2008-08-10

Similar Documents

Publication Publication Date Title
RU2421296C2 (ru) Способ изготовления детали газотурбинного двигателя, включающей отверстия выпуска охлаждающего воздуха
JP6315553B2 (ja) タービンエアフォイル用鋳込冷却構造
EP2991787B1 (en) Investment casting utilizing flexible wax pattern tool for supporting a ceramic core along its length during wax injection
US4422229A (en) Method of making an airfoil member for a gas turbine engine
JP5518208B2 (ja) 柔軟なワックスパターンツールを利用するインベストメント鋳造
US8752609B2 (en) One-piece manufacturing process
JP2017064785A (ja) 鋳造コア装置及び鋳造方法
JP2006300056A (ja) エアフォイルおよびエアフォイルの形成方法
JP4902146B2 (ja) 合成モデル鋳造
US8151862B2 (en) One-piece manufacturing process
JP2008151129A (ja) タービンエンジンコンポーネントおよびその製造方法
RU2477196C2 (ru) Лопатка газотурбинного двигателя, выполненная литьем, и способ ее изготовления, турбина, содержащая такую лопатку, и газотурбинный двигатель
JP6355839B2 (ja) ガスタービンエンジンで使用可能な構成部品を形成するためのセラミック鋳型を有するダイカストシステム
US20190022743A1 (en) A method of forming dust-removal holes for a turbine blade, and an associated ceramic core
US10081052B2 (en) Casting of engine parts
JPS6174754A (ja) 複雑な中空製品の鋳造方法
US10094225B2 (en) Core component having toroidal structures
CA2967086A1 (en) Gas engine component with cooling passages in wall and method of making the same
EP3269470B1 (en) Die for molding a core
US12202033B2 (en) Method for manufacturing a shell mould for the manufacture of aeronautical metal components by lost-wax casting

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner