RU2417428C2 - Система для моделирования датчика - Google Patents

Система для моделирования датчика Download PDF

Info

Publication number
RU2417428C2
RU2417428C2 RU2009107049/08A RU2009107049A RU2417428C2 RU 2417428 C2 RU2417428 C2 RU 2417428C2 RU 2009107049/08 A RU2009107049/08 A RU 2009107049/08A RU 2009107049 A RU2009107049 A RU 2009107049A RU 2417428 C2 RU2417428 C2 RU 2417428C2
Authority
RU
Russia
Prior art keywords
signal
generator
phase
modeling system
modeling
Prior art date
Application number
RU2009107049/08A
Other languages
English (en)
Other versions
RU2009107049A (ru
Inventor
Жилль МАЗО (FR)
Жилль МАЗО
Кристоф ВЛАСИК (FR)
Кристоф ВЛАСИК
Original Assignee
Эрбюс Франс
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эрбюс Франс filed Critical Эрбюс Франс
Publication of RU2009107049A publication Critical patent/RU2009107049A/ru
Application granted granted Critical
Publication of RU2417428C2 publication Critical patent/RU2417428C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/02Digital function generators
    • G06F1/03Digital function generators working, at least partly, by table look-up
    • G06F1/0321Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers
    • G06F1/0328Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers in which the phase increment is adjustable, e.g. by using an adder-accumulator
    • G06F1/0335Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers in which the phase increment is adjustable, e.g. by using an adder-accumulator the phase increment itself being a composed function of two or more variables, e.g. frequency and phase

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Manipulation Of Pulses (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Testing Of Engines (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

Настоящее изобретение относится к системе для моделирования датчика. Технический результат - расширение области использования. Моделирующая система (1) содержит генератор (3), который генерирует цифровой сигнал посредством прямого цифрового синтеза частоты на основе следующих параметров: частоты, амплитуды, фазы и отклонения амплитуды; цифроаналоговый преобразователь (4) и средство (6), которое модулирует сигнал, принимаемый из упомянутого преобразователя (4). 7 з.п. ф-лы, 4 ил.

Description

Изобретение относится к моделирующей системе для моделирования работы датчика, предназначенного для преобразования физических параметров в электрические сигналы.
Такая моделирующая система особенно, хотя и не исключительно, пригодна для моделирования функционирования дифференциального преобразователя линейных перемещений (Linear Variable Differential Transformer - LVDT), преобразователя линейных перемещений (Linear Variable Transformer - LVT), дифференциального преобразователя вращательных перемещений (Rotary Variable Differential Transformer - RVDT), преобразователя вращательных перемещений (Rotary Variable Transformer - RVT) или кругового датчика положения (RESOLVER). Известно, что такие известные датчики используются для преобразования (линейных, угловых) перемещений и угловых скоростей в электрические сигналы. Такие датчики находят применение главным образом в авиации, более конкретно при выполнении функций определения выдвижения цилиндрического стержня, положения поверхности управления, перемещения и положения ползуна сервоклапана, числа оборотов двигателя и др. Интерес к данным датчикам основан на том, что положение и/или перемещение определяется посредством амплитудной модуляции. Данная технология обеспечивает, в частности, высокую стойкость к шумам и электромагнитным возмущениям. Более конкретно:
- датчиком LVDT является преобразователь, который изменяет напряжение пропорционально перемещению ферромагнитного сердечника. Данный датчик содержит основную катушку, возбуждаемую периодически изменяющимся сигналом возбуждения, и две вспомогательные катушки. Сердечник перемещается внутри данных катушек, направляет магнитный поток и генерирует напряжения в каждой вспомогательной катушке, амплитуды которых зависят от положения сердечника;
- датчик RVDT подобен датчику LVDT, но он использует вращающийся ферромагнитный сердечник;
- датчиками LVT и RVT являются датчики LVDT и RVDT соответственно, но оснащенные одной вспомогательной катушкой; и
- круговой датчик положения (RESOLVER) вместо ферромагнитного сердечника содержит элемент возбуждения, выполняющий функцию ротора, и две вспомогательные обмотки, расположенные под углом 90° таким образом, чтобы выполнять функцию статоров.
Такие различные датчики являются звеньями в системе сервоуправления, алгоритмы управления которой реализуются компьютером.
Настоящее изобретение относится к моделирующей системе, которая обеспечивает моделирование такого датчика и которая, в частности, может быть использована для проверки правильности вышеупомянутых алгоритмов управления, или для автоматизации процедур испытаний, или же для проверки граничных условий для конкретных применений, которые трудно воспроизвести при использовании реальных датчиков, таких как внесение шума и сдвига фазы или возможная комбинация информации.
С этой целью в соответствии с настоящим изобретением упомянутая моделирующая система для моделирования работы датчика, предназначенного для преобразования физических параметров, представленных в цифровой форме, в электрические сигналы, примечательна тем, что она содержит, по меньшей мере, один моделирующий узел, который содержит:
- генератор, который обеспечивает генерирование посредством прямого цифрового синтеза частоты цифрового сигнала с учетом по меньшей мере следующих параметров: частоты, амплитуды, фазы и отклонения амплитуды;
- цифроаналоговый преобразователь, который преобразует цифровой сигнал, генерируемый упомянутым генератором, в аналоговый сигнал; и
- вычислительное средство:
• которое обеспечивает модуляцию аналогового сигнала, принимаемого из упомянутого преобразователя, таким образом, чтобы сформировать электрический сигнал, способный моделировать работу упомянутого датчика; и
• которое передает сформированный таким образом электрический сигнал.
Таким образом, благодаря настоящему изобретению и как описано ниже, создана система для моделирования датчика, имеющая множество преимуществ, в частности:
- создание интегрированной и недорогой системы, которая может быть включена в состав программируемого элемента или интегральной схемы типа специализированной интегральной схемы (СИС);
- возможность моделирования целого самолета с использованием нескольких модулей, синхронизированных друг с другом;
- получение высоких технических характеристик, в частности, в отношении точности частоты, мгновенного скачкообразного изменения частоты и управления сдвигом фаз между каналами;
- возможность моделирования случаев отказа оборудования, таких как утрата обмотки, гармонические искажения, межканальное затухание, перекрестные помехи и сбой в генерировании возбуждения.
Моделирующая система согласно настоящему изобретению, в частности, может быть использована для моделирования работы датчика любого из вышеупомянутых типов: LVDT, LVT, RVDT, RVT и кругового датчика положения (RESOLVER). Однако данная моделирующая система может также использоваться для моделирования работы датчика, предназначенного для измерения по меньшей мере одного конкретного параметра самолета, такого как скорость колеса, массовый расход топлива, вибрации и/или число оборотов двигателя.
Применительно к настоящему изобретению и в зависимости от типа датчика, который должна моделировать моделирующая система, последняя содержит:
- либо один моделирующий узел вышеупомянутого типа;
- либо множество моделирующих узлов вышеупомянутого типа, которые в этом случае устанавливаются параллельно.
Кроме того, в последнем случае упомянутая моделирующая система с достижением преимущества содержит один генератор, способный генерировать несущую частоту, которая позволяет осуществлять модуляцию, который связан со всеми вычислительными средствами упомянутой моделирующей системы, а также с синхронизирующим средством (которое синхронизирует различные генераторы).
В предпочтительном варианте осуществления упомянутый генератор моделирующего узла содержит:
- накапливающий сумматор фазы, который осуществляет частотную модуляцию сигнала;
- фазосдвигающее устройство, которое осуществляет фазовую модуляцию сигнала, принимаемого из накапливающего сумматора фазы;
- запоминающее устройство, которое включает в себя волновую таблицу, которая содержит двоичное описание синтезированного сигнала и которая осуществляет фазово-амплитудное преобразование данного сигнала;
- аттенюатор, который осуществляет амплитудную модуляцию сигнала, принимаемого из упомянутого запоминающего устройства; и
- суммирующее средство, которое обеспечивает сложение отклонения амплитуды с сигналом, принимаемым из упомянутого аттенюатора, и которое передает полученный в результате сигнал.
Кроме того, в одном конкретном варианте осуществления упомянутый генератор может также содержать:
- синхронизирующее средство, обеспечивающее параллельное включение упомянутого генератора с другими генераторами; и/или
- интерполятор, обеспечивающий улучшение отношения сигнал-шум выходного сигнала из упомянутого генератора; и/или
- цитирующее средство, позволяющее снизить низкочастотные пределы синусоидальных сигналов без одновременного изменения расчетных параметров, таких как размер волновой таблицы и частота устройства. Следовательно, без изменения этих двух расчетных параметров данное средство способно получить в два-четыре раза более низкие частоты; и/или
- переключающее средство, обеспечивающее переключение источника амплитудной модуляции; и/или
- средство ограничения шума, обеспечивающее цифровое ограничение шума для выходного сигнала из упомянутого генератора.
Прилагаемые чертежи позволяют лучше понять способ осуществления настоящего изобретения. На данных чертежах одинаковые ссылочные позиции обозначают одинаковые элементы.
Фиг.1 и 2 соответственно изображают общие схемы моделирующей системы согласно настоящему изобретению в двух разных вариантах осуществления.
Фиг.3 изображает общую схему варианта осуществления на основе генератора, который является частью моделирующей системы согласно настоящему изобретению.
Фиг.4 схематично иллюстрирует конкретный вариант осуществления генератора, который является частью моделирующей системы согласно настоящему изобретению.
Моделирующая система 1, соответствующая настоящему изобретению и схематично проиллюстрированная в различных вариантах осуществления на фиг.1 и 2, предназначена для моделирования работы датчика (не показан), задачей которого, в общем, является преобразование физических параметров в электрические сигналы.
Для этого упомянутая моделирующая система 1 содержит по меньшей мере один моделирующий узел 2, как показано на фиг.1, который содержит:
- генератор 3, который обеспечивает генерирование посредством прямого цифрового синтеза частоты типа прямого цифрового синтеза (Direct Digital Synthesis - DDS) цифрового сигнала с учетом по меньшей мере следующих параметров: частоты, амплитуды и фазы (и обычно также отклонения амплитуды и коэффициента усиления);
- цифроаналоговый преобразователь 4 обычного типа, который посредством соединения 5 соединяется с упомянутым генератором 3 и который преобразует цифровой сигнал, генерируемый данным генератором 3, в аналоговый сигнал; и
- вычислительное средство 6:
• которое посредством соединения 7 соединяется с упомянутым цифроаналоговым преобразователем;
• которое обеспечивает модуляцию аналогового сигнала, принимаемого из упомянутого преобразователя 4, таким образом, чтобы сформировать электрический сигнал, способный моделировать работу упомянутого датчика; и
• которое передает сформированный таким образом электрический сигнал посредством соединения 8 в устройство пользователя (не проиллюстрировано).
Таким образом, благодаря настоящему изобретению и как описано ниже, создана система 1 для моделирования датчика, которая обеспечивает много преимуществ, в частности:
- создание интегрированного и недорогого устройства, которое может быть включено в состав программируемого элемента или интегральной схемы типа специализированной интегральной схемы (СИС);
- возможность моделирования целого самолета с использованием нескольких модулей, синхронизированных друг с другом;
- получение высоких технических характеристик, в частности, в отношении точности частоты, мгновенного скачкообразного изменения частоты и управления сдвигом фазы между каналами;
- возможность моделирования случаев отказа оборудования, таких как утрата обмотки, гармонические искажения, межканальное затухание, перекрестные помехи и сбой в генерировании возбуждения.
Моделирующая система 1 согласно настоящему изобретению, в частности, может быть использована для моделирования работы датчика любого из перечисленных ниже обычных типов: LVDT, LVT, RVDT, RVT и кругового датчика положения (RESOLVER).
Известно, что:
- датчиком LVDT является преобразователь, который изменяет напряжение пропорционально перемещению ферромагнитного сердечника. Данный датчик содержит основную катушку, возбуждаемую периодически изменяющимся сигналом возбуждения, и две вспомогательные катушки. Сердечник перемещается внутри данных катушек, направляет магнитный поток и генерирует напряжения в каждой вспомогательной катушке, амплитуды которых зависят от положения данной катушки;
- датчик RVDT подобен датчику LVDT, но он использует вращающийся ферромагнитный сердечник;
- датчиками LVT и RVT являются датчики LVDT и RVDT соответственно, но оснащенные одной вспомогательной катушкой;
- круговой датчик положения вместо ферромагнитного сердечника содержит элемент возбуждения, выполняющий функцию ротора, и две вспомогательные обмотки, расположенные под углом 90° таким образом, чтобы выполнять функцию статоров.
Однако моделирующая система 1 согласно настоящему изобретению может также использоваться для моделирования датчиков, предназначенных для измерения конкретных параметров самолета, таких как скорость колеса, массовый расход топлива, вибрации и/или число оборотов двигателя.
Упомянутая моделирующая система 1, которая обеспечивает моделирование датчика, может, в частности, использоваться:
- для проверки правильности алгоритмов управления для системы сервоуправления, включающей в себя такой датчик; и/или
- для автоматизации процедур испытаний; и/или
- для проверки граничных условий для конкретных применений, которые трудно воспроизвести при использовании реальных датчиков, таких как внесение шума и сдвига фазы или возможная комбинации информации.
Применительно к настоящему изобретению и в зависимости от типа датчика, который должна моделировать моделирующая система 1, последняя включает в себя:
- либо один моделирующий узел 2 вышеупомянутого типа, как показано на фиг.1;
- либо множество моделирующих узлов 2 вышеупомянутого типа, которые в данном случае устанавливаются параллельно, как показано на фиг.2.
В примерном варианте осуществления, проиллюстрированном на фиг.2, моделирующая система 1 содержит два моделирующих узла 2 (такие как моделирующий узел 2, проиллюстрированный на фиг.1), а также, в частности, следующие элементы:
- стандартное синхронизирующее средство 9, которое посредством соединений 10 и 11 соединяется с каждым из генераторов 3 упомянутых двух моделирующих узлов 2. Данное синхронизирующее средство 9, содержащее, например, стандартные часы, синхронизирует два моделирующих узла 2;
- один генератор 12, который посредством соединений 13 и 14 соответственно соединяется с множительными средствами 15 и 16. Данный генератор 12 и множительные средства 15, 16 образуют упомянутое вычислительное средство 6. Данный генератор 12 генерирует несущую Ve(t) [например, типа Ve(t)=A sin(WO.t), где А и WO - заданные параметры, а t обозначает время], которая умножается на выходной сигнал каждого из преобразователей 4 [K1(t) и K2(t) соответственно] таким образом, чтобы получить следующие выходные сигналы V1(t) и V2(t) на выходе упомянутых моделирующих узлов 2:
V1(t)=K1(t)A sin(WO.t),
V2(t)=K2(t)A sin(WO.t).
Множительные средства 15, 16 могут быть цифровыми или могут быть созданы посредством опорных входных сигналов цифроаналогового преобразователя.
Необходимо отметить, что синхронизирующее средство 9 обеспечивает сдвиг фазы между сигналами V1(t) и V2(t) и одновременное постепенное изменение параметров, таких как регулируемая частота.
На фиг.2 прямоугольники 17 и 18 из штриховых линий иллюстрируют цифровую часть и аналоговую часть соответственно упомянутой моделирующей системы 1.
Конечно, упомянутая моделирующая система 1 может содержать другое количество (три, четыре и т.д.) моделирующих узлов 2.
Кроме того, в предпочтительном варианте осуществления генератор 3 каждого моделирующего узла 2 моделирующей системы 1 согласно настоящему изобретению содержит, как проиллюстрировано на фиг.3:
- накапливающий сумматор 20 фазы, который осуществляет частотную модуляцию сигнала;
- фазосдвигающее устройство 21, которое посредством соединения 22 соединяется с упомянутым накапливающим сумматором 20 фазы и которое осуществляет фазовую модуляцию сигнала, принимаемого из упомянутого накапливающего сумматора 20 фазы;
- запоминающее устройство 23, которое посредством соединения 24 соединяется с упомянутым фазосдвигающим устройством 21. Данное запоминающее устройство 23 включает в себя волновую таблицу, которая содержит двоичное описание синтезированного сигнала. Оно осуществляет фазово-амплитудное преобразование данного сигнала;
- аттенюатор 26, который посредством соединения 27 соединяется с упомянутым средством 23 (запоминающим устройством) и который осуществляет амплитудную модуляцию сигнала, принимаемого из упомянутого средства 23; и
- суммирующее средство 28, которое посредством соединения 29 соединяется с упомянутым аттенюатором 26, которое обеспечивает суммирование отклонения амплитуды с сигналом, принимаемым из упомянутого аттенюатора 26, и которое передает полученный в результате сигнал посредством соединения 5.
Упомянутый генератор 3 использует электронную функцию, которая обеспечивает генерирование электрического сигнала произвольной формы. Основной принцип заключается в цитировании волновой таблицы и в генерировании электрического сигнала из следующих числовых параметров:
- частоты;
- амплитуды;
- фазы;
- отклонения амплитуды.
Необходимо отметить, что в генераторе 3, проиллюстрированном на фиг.3, имеется ввод данных (не показан) в устройства 20, 21, 23, 26 и 28, поступающих снаружи и соответствующих соответственно вышеупомянутым параметрам (частоте, фазе, описанию волновой таблицы, коэффициенту усиления/амплитуде, отклонению).
Применительно к настоящему изобретению термин «цитирование» волновой таблицы означает метод поиска в волновой таблице. Поиск выполняется подобно чтению страницы, в направлении сверху вниз. Машина таким же образом подходит к считыванию волновой таблицы для цитирования последней. Накапливающий сумматор фазы сканирует адреса в таблице с самого нижнего адреса до самого верхнего адреса посредством приращения. Скорость приращения зависит от частоты генерируемого сигнала. Чем выше частота, тем быстрее цитирование. Мгновенная амплитуда выходного сигнала соответствует каждому адресу в таблице. Таким образом, выходной сигнал является модулированным по частоте.
Накапливающим сумматором 20 фазы является сердечник упомянутого генератора 3. Данным накапливающим сумматором 20 фазы является N-разрядный регистр (N=M+T), скорость приращения которого устанавливается М-разрядным регистром и тактовой частотой Fosc. Т самых значимых разрядов накапливающего сумматора 20 фазы обеспечивают адресацию запоминающего устройства 23.
Накапливающий сумматор 20 фазы принимает двоичный код TW (для настроечного слова), который соответствует частоте синхронизированного выходного сигнала. Данный двоичный код TW устанавливает скорость сканирования фазы и, следовательно, частоту генерируемого сигнала. Накапливающий сумматор 20 фазы арифметически добавляет двоичный код, связанный с предыдущим результатом. Следовательно, для двоичного кода TW и длительности n выходной сигнал из накапливающего сумматора 20 фазы может соответствовать следующей величине: (n+1).TW.
Следовательно, результат выхода из накапливающего сумматора 20 соответствует пилообразному сигналу, наклон которого зависит от величины двоичного кода TW. Размер слова в двоичном коде на выходе накапливающего сумматора 20 фазы является более ограниченным, например, 32 разрядами.
Следовательно, в каждый момент времени изменение (осуществляемое оператором) в величине двоичного кода TW обеспечивает изменение в наклоне накапливающего сумматора 20 фазы и, таким образом, изменение выходной частоты.
По техническим причинам данные на выходе из накапливающего сумматора 20 фазы является усеченными, поскольку положение на тригонометрической окружности соответствует каждому мгновенному выходному значению. Поэтому сохраняется только верхняя часть результата из накапливающего сумматора 20 фазы. Следовательно, выходной сигнал состоит из двух частей:
- верхней части, которая соответствует мгновенной фазе выходного сигнала; и
- усеченной части, которая сохраняется для обратной связи накапливающего сумматора 20 фазы для ограничения эффектов усечения (округления).
Кроме того, фазосдвигающее устройство 21 добавляет верхнюю часть выходного сигнала из накапливающего сумматора 20 фазы в регистр, содержащий мгновенную фазу, для осуществления фазовой модуляции. Добавленная величина φ находится в пределах от 0° до 360°.
Кроме того, запоминающее устройство 23 содержит двоичное описание синтезированного сигнала. Содержимое данного запоминающего устройства является произвольным. Размер данного запоминающего устройства 23, напротив, фиксируется размером усечения на выходе из накапливающего сумматора 20 фазы. Таким образом, размер Т запоминающего устройства 23 соответствует следующему правилу:
Т=2N-M,
где N - размер двоичного кода TW;
M - размер усеченной части на выходе из накапливающего сумматора 20 фазы.
Данные на выходе из накапливающего сумматора 21 фазы выполняют функцию указателя в волновой таблице. Поиск в данной волновой таблице является более или менее быстрым в зависимости от величины двоичного кода TW на входе в накапливающий сумматор 20 фазы.
Кроме того, амплитудный модулятор или аттенюатор 26, который расположен на выходе из волновой таблицы, принимает мгновенную амплитуду синтезированного сигнала как информацию из волновой таблицы. Данный аттенюатор 26 перемножает регистр амплитудной модуляции с данными на выходе из средства 23.
Запоминающее устройство 23 сохраняет реконфигурируемую форму сигнала, которая цитируется с частотой накапливающего сумматора 20 фазы. Например, данная форма сигнала может быть синусоидальной, треугольной или любого другого типа.
Когда генератор 3 должен передавать на свой выход сигнал So в виде:
So=A sin(θt+φ)+B,
он формируется таким образом, чтобы генерировать:
- сигнал θt на выходе из накапливающего сумматора фазы (определяющего частоту);
- сигнал θt+φ на выходе из фазосдвигающего устройства 21 (создающего сдвиг фазы величиной φ);
- сигнал (θt+φ) на выходе из устройства 23 (определяющего форму сигнала, например, синусоидального типа);
- сигнал A sin(θt+φ) на выходе из аттенюатора 26 (осуществляющего амплитудную модуляцию с величиной А);
- упомянутый сигнал A sin(θt+φ)+B на выходе из суммирующего устройства 28 (создающего отклонение амплитуды величиной В).
Кроме того, в конкретном варианте осуществления, представленном на фиг.4, упомянутый генератор 3 также содержит:
- синхронизирующее средство 30, обеспечивающее параллельное включение генератора 3 с другими генераторами. Доступными режимами синхронизации являются, в частности: временная синхронизация, частотная синхронизация, синхронизация по событиям (запуск);
- интерполятор 31 (линейный, второго порядка и др.), который соединяется, например, посредством соединений 31А и 24 соответственно с устройством 23 и фазосдвигающим устройством 21 и который обеспечивает улучшение отношения сигнал-шум без одновременного изменения размера волновой таблицы. Вычисление интерполяции основано на дробной части из накапливающего сумматора 20 фазы. Данный интерполятор установлен параллельно с устройством 23 и соединяется со средством выбора 37, которое посредством соединений 37А, 37В и 37С соединяется соответственно с устройствами 23, 31 и 26;
- цитирующее средство 32, которое, например, посредством соединения 33 соединяется с упомянутым накапливающим сумматором 20 фазы и которое обеспечивает несколько режимов цитирования волновой таблицы для снижения низкочастотных пределов синусоидальных сигналов без одновременного изменения двоичного решения генератора 3.
- переключающее средство 34, которое, например, при помощи соединения 35 соединяется с упомянутым аттенюатором 26 и которое обеспечивает переключение источника амплитудной модуляции либо внутри (цифровая модуляция), либо посредством получения внешнего опорного напряжения; и
- средство 36 ограничения шума, которое установлено позади упомянутого суммирующего устройства 28 (с которым оно соединяется, например, посредством соединения 36А) и которое обеспечивает цифровое ограничение шума для выходного сигнала таким образом, чтобы избавить его от скачков вследствие возможных ошибок знакового разряда.

Claims (8)

1. Моделирующая система для моделирования работы датчика, предназначенного для преобразования физических параметров, представленных в цифровой форме, в электрические сигналы, причем упомянутая моделирующая система (1) содержит, по меньшей мере, два моделирующих узла (2), которые содержат:
генератор (3), который обеспечивает генерирование, посредством прямого цифрового синтеза частоты, цифрового сигнала, с учетом, по меньшей мере, следующих параметров: частоты, амплитуды, фазы и отклонения амплитуды;
цифроаналоговый преобразователь (4), который преобразует цифровой сигнал, генерируемый упомянутым генератором (3), в аналоговый сигнал; и
вычислительное средство (6):
которое осуществляет модуляцию аналогового сигнала, принимаемого из упомянутого преобразователя (4) таким образом, чтобы сформировать электрический сигнал, способный моделировать работу упомянутого датчика; и
которое передает сформированный таким образом электрический сигнал;
причем моделирующая система дополнительно содержит:
одно средство (12) генерирования, выполненное с возможностью генерирования несущей частоты, которая позволяет осуществлять модуляцию, и которое соединено со всеми вычислительными средствами (6) упомянутой моделирующей системы (1), а также
синхронизирующее средство (9), которое синхронизует генераторы.
2. Моделирующая система по п.1, причем данная система содержит множество моделирующих узлов (2), которые установлены параллельно.
3. Моделирующая система по п.1, в которой упомянутый генератор (3) моделирующего узла (2) содержит:
накапливающий сумматор (20) фазы, который осуществляет частотную модуляцию сигнала;
фазосдвигающее средство (21), которое осуществляет фазовую модуляцию сигнала, принимаемого из накапливающего сумматора (20) фазы;
запоминающее устройство (23), которое включает в себя волновую таблицу, которая содержит двоичное описание синтезированного сигнала и которое осуществляет фазово-амплитудное преобразование данного сигнала;
аттенюатор (26), который осуществляет амплитудную модуляцию сигнала, принимаемого из упомянутого запоминающего устройства (23); и
суммирующее средство (28), которое обеспечивает сложение отклонения амплитуды с сигналом, принимаемым из упомянутого аттенюатора (26), и которое передает полученный в результате сигнал.
4. Моделирующая система по п.3, в которой упомянутый генератор (3) дополнительно содержит синхронизирующее средство (30), обеспечивающее параллельное включение генератора (3) с другими генераторами (3).
5. Моделирующая система по п.3, в которой упомянутый генератор (3) также содержит интерполятор (31), обеспечивающий улучшение отношения сигнал-шум выходного сигнала из упомянутого генератора (3).
6. Моделирующая система по п.3, в которой упомянутый генератор (3) дополнительно содержит цитирующее средство (32), позволяющее снизить низкочастотные пределы синусоидальных сигналов без одновременного изменения расчетных параметров.
7. Моделирующая система по п.3, в которой упомянутый генератор (3) дополнительно содержит переключающее средство (34), обеспечивающее переключение источника амплитудной модуляции.
8. Моделирующая система по п.3, в которой упомянутый генератор (3) дополнительно содержит средство (36) ограничения шума, обеспечивающее цифровое ограничение шума для выходного сигнала из упомянутого генератора (3).
RU2009107049/08A 2006-07-31 2007-07-30 Система для моделирования датчика RU2417428C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0606990 2006-07-31
FR0606990A FR2904450B1 (fr) 2006-07-31 2006-07-31 Systeme de simulation de capteur.

Publications (2)

Publication Number Publication Date
RU2009107049A RU2009107049A (ru) 2010-09-10
RU2417428C2 true RU2417428C2 (ru) 2011-04-27

Family

ID=37907002

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009107049/08A RU2417428C2 (ru) 2006-07-31 2007-07-30 Система для моделирования датчика

Country Status (9)

Country Link
US (1) US8417500B2 (ru)
EP (1) EP2047390A2 (ru)
JP (1) JP4997290B2 (ru)
CN (1) CN101496013B (ru)
BR (1) BRPI0714107A2 (ru)
CA (1) CA2657082C (ru)
FR (1) FR2904450B1 (ru)
RU (1) RU2417428C2 (ru)
WO (1) WO2008015333A2 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9166321B2 (en) 2011-03-22 2015-10-20 Greatbatch Ltd. Thin profile stacked layer contact
US8874219B2 (en) * 2011-04-07 2014-10-28 Greatbatch, Ltd. Arbitrary waveform generator and neural stimulation application
US8996117B2 (en) 2011-04-07 2015-03-31 Greatbatch, Ltd. Arbitrary waveform generator and neural stimulation application with scalable waveform feature
US9656076B2 (en) 2011-04-07 2017-05-23 Nuvectra Corporation Arbitrary waveform generator and neural stimulation application with scalable waveform feature and charge balancing
US8996115B2 (en) 2011-04-07 2015-03-31 Greatbatch, Ltd. Charge balancing for arbitrary waveform generator and neural stimulation application
CN102201788B (zh) * 2011-05-11 2013-10-02 清华大学 数字噪声产生方法
EP2662737A1 (de) * 2012-05-08 2013-11-13 Prognost Systems GmbH Simulationseinrichtung, Verfahren zum Betrieb einer Simulationseinrichtung sowie Verwendung einer Simulationseinrichtung und eines Verfahrens zum Betrieb einer Simulationseinrichtung
US9782587B2 (en) 2012-10-01 2017-10-10 Nuvectra Corporation Digital control for pulse generators
FR3035290B1 (fr) * 2015-04-16 2018-11-30 Airbus Operations Carte electronique et systeme d'acquisition et de generation de signaux correspondant, comprenant un ou des commutateurs matriciels numeriques programmables
CN110989401B (zh) * 2019-12-19 2023-04-07 中国航空工业集团公司沈阳飞机设计研究所 一种用于液冷系统试验的rvdt特性机构激励装置
CN111339705B (zh) * 2020-03-04 2024-02-20 海南金盘智能科技股份有限公司 一种海洋运输工况下的干式变压器机械振动仿真分析方法
CN111190359A (zh) * 2020-03-12 2020-05-22 辽宁众联石油天然气有限公司 录井参数模拟器
CN114136629A (zh) * 2021-10-20 2022-03-04 中国航发四川燃气涡轮研究院 一种数字油门装置及试车台油门信号模拟仿真系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806881A (en) * 1987-08-28 1989-02-21 Hewlett-Packard Company Multi-channel modulated numerical frequency synthesizer
US5701598A (en) * 1990-09-14 1997-12-23 Atkinson; Noel D. Scanning receiver with direct digital frequency synthesis and digital signal processing
JP3650146B2 (ja) * 1994-06-24 2005-05-18 オリンパス株式会社 二次元データコード付回路図を印刷した印刷物及びそれを用いた波形計測システム
CN1148567C (zh) * 2000-10-27 2004-05-05 合肥工业大学 传感器模拟系统
JP2005092640A (ja) * 2003-09-18 2005-04-07 Ricoh Co Ltd 駆動機構のシミュレーション装置、シミュレーション方法、及びシミュレーションプログラム
DE102005041427A1 (de) * 2005-08-31 2007-03-01 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Sensorsimulator
US7889812B2 (en) * 2006-05-26 2011-02-15 Silicon Laboratories, Inc. Direct digital frequency synthesizer with phase error correction, method therefor, and receiver using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
«DS 2302 DIRECT DIGITAL SYNTESIS BOARD» Catalog 2005, найдено по адресу URL: http/www.dspace.de/shared/data/pdf/katalog2005/dspace-catalog 2005-ds2302.pdf, с.260-265. *

Also Published As

Publication number Publication date
RU2009107049A (ru) 2010-09-10
WO2008015333A2 (fr) 2008-02-07
WO2008015333A3 (fr) 2008-06-19
FR2904450B1 (fr) 2008-09-26
JP4997290B2 (ja) 2012-08-08
CA2657082A1 (fr) 2008-02-07
US8417500B2 (en) 2013-04-09
EP2047390A2 (fr) 2009-04-15
CA2657082C (fr) 2017-05-16
JP2009545792A (ja) 2009-12-24
CN101496013B (zh) 2013-08-21
CN101496013A (zh) 2009-07-29
FR2904450A1 (fr) 2008-02-01
BRPI0714107A2 (pt) 2013-01-01
US20090265153A1 (en) 2009-10-22

Similar Documents

Publication Publication Date Title
RU2417428C2 (ru) Система для моделирования датчика
US11378997B2 (en) Variable phase and frequency pulse-width modulation technique
EP1548543B1 (en) Low jitter direct digital synthesizer
US7440987B1 (en) 16 bit quadrature direct digital frequency synthesizer using interpolative angle rotation
JP3110530B2 (ja) 位置検出装置及び時間測定装置
JPH01152313A (ja) 角度位置を指示する装置および角度変位を示すデジタル信号を発生する方法
CN1232031C (zh) 基于fpga的高精度任意波形发生器
US6885310B2 (en) Phase difference detection device and method for a position detector
CN103529256A (zh) 一种波形合成装置
Sharma et al. Design and implementation of a re-configurable versatile direct digital synthesis-based pulse generator
CN104753388A (zh) 压电致动器的驱动装置、驱动电路和驱动方法
Fang et al. Design and simulation of DDS based on Quartus II
RU181855U1 (ru) Устройство цифрового синтеза многочастотного линейно-частотно-модулированного фазокодоманипулированного сигнала в режиме полнополяризационного зондирования пространства
CN103095297B (zh) 直接数字频率合成器产生精准频率的方法
RU2423782C1 (ru) Цифровой синтезатор многофазных сигналов
JP5823785B2 (ja) 回転角度検出装置
Rutherford et al. Practical direct digital synthesis for realizing high frequency signals from low frequency domains
CN203502449U (zh) 一种波形合成装置
JP6951804B2 (ja) エンコーダ開発用信号発生装置
Raghunath et al. ASIC Based LVDT Signal Conditioner for High-Accuracy Measurements
WO2021140937A1 (ja) エンコーダ開発用信号発生装置
Li et al. The Design of Pseudo-random Signal Transmitting Electromagnetic Detection System Based on FPGA
Limpisathian Design of low-cost high-accuracy microcontroller-based resolver emulator
JP3077515B2 (ja) 任意パラメータスイープ機能付き波形発生器
RU2070770C1 (ru) Преобразователь перемещения в код

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20120221

MM4A The patent is invalid due to non-payment of fees

Effective date: 20200731