RU2412109C1 - Способ одностадийного получения синтез-газа при горении и устройство для его осуществления - Google Patents

Способ одностадийного получения синтез-газа при горении и устройство для его осуществления Download PDF

Info

Publication number
RU2412109C1
RU2412109C1 RU2009129650/05A RU2009129650A RU2412109C1 RU 2412109 C1 RU2412109 C1 RU 2412109C1 RU 2009129650/05 A RU2009129650/05 A RU 2009129650/05A RU 2009129650 A RU2009129650 A RU 2009129650A RU 2412109 C1 RU2412109 C1 RU 2412109C1
Authority
RU
Russia
Prior art keywords
combustion
ignition
chamber
synthesis gas
working mixture
Prior art date
Application number
RU2009129650/05A
Other languages
English (en)
Inventor
Игорь Васильевич Билера (RU)
Игорь Васильевич Билера
Юлий Абрамович Колбановский (RU)
Юлий Абрамович Колбановский
Игорь Владимирович Россихин (RU)
Игорь Владимирович Россихин
Анатолий Александрович Борисов (RU)
Анатолий Александрович Борисов
Кирилл Яковлевич Трошин (RU)
Кирилл Яковлевич Трошин
Original Assignee
Учреждение Российской Академии Наук Ордена Трудового Красного Знамени Институт Нефтехимического Синтеза Им. А.В. Топчиева Ран (Инхс Ран)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской Академии Наук Ордена Трудового Красного Знамени Институт Нефтехимического Синтеза Им. А.В. Топчиева Ран (Инхс Ран) filed Critical Учреждение Российской Академии Наук Ордена Трудового Красного Знамени Институт Нефтехимического Синтеза Им. А.В. Топчиева Ран (Инхс Ран)
Priority to RU2009129650/05A priority Critical patent/RU2412109C1/ru
Application granted granted Critical
Publication of RU2412109C1 publication Critical patent/RU2412109C1/ru

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Изобретения относятся к области химии и могут быть использованы при получении синтез-газа. Синтез-газ получают из углеводородного сырья в условиях горения в проточном реакторе, состоящем из двух или более соосно распложенных камер, при коэффициенте избытка окислителя менее 1 и повышенном давлении, в котором процесс осуществляют в одну стадию в режиме самовоспламенения, при помощи стабилизатора-воспламенителя, предварительно нагретого до температуры, достаточной для самовоспламенения рабочей смеси с задержкой не более 1 секунды. Горение осуществляют до остаточного содержания кислорода не более 0,3 об.% и отношения объемных концентраций водорода и оксида углерода, равного 1-2,2, а оксида углерода к его диоксиду - не менее 5. Устройство для осуществления способа включает электропневмоклапан 1, форсуночную головку 2, зону смешения 3, стабилизатор-воспламенитель 4, реакционную зону камеры сгорания 5, в которой происходит основной процесс горения, зону догарания 6, сопло 7, через которое продукты процесса выводят из камеры сгорания, и резервный вывод 8. Изобретения позволяют упростить аппаратурное оформление процесса, исключить разбавление рабочей смеси водяным паром. 2 н. и 6 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области переработки углеводородного сырья, а конкретно к окислительной конверсии углеводородных газов в синтез-газ.
Известны различные способы получения синтез-газа из углеродного сырья, в том числе парциальным окислением метана кислородом CH4+0,5O2=СО+2Н2.
Так, например, известен патент SU №1831468, С01В 3/38, в котором описан способ получения синтез-газа из углеводородного сырья, включающий смешение углеводородного сырья и окислителя - кислорода или кислородсодержащего газа или пара - и конверсию полученной смеси в присутствии монолитного катализатора при температуре, которая в реакционной зоне не менее чем на 93°С ниже точки самовоспламенения смеси, а скорость ввода смеси в реакционную зону превышает скорость процесса проскока пламени. Известный способ требует использования высокоселективного катализатора.
Основным недостатком описанного изобретения является высокая стоимость катализатора, возможность разрушения катализатора за счет локальных перегревов и возможность образования сажи.
Известны также способ и устройство смешанного риформинга CH4+O2+H2O в реакторе с псевдоожиженным слоем катализатора, описанный в патенте US №5980782, С01В 3/24, 1999 г., в котором газообразные компоненты предварительно подогревают и инжектируют в зону реакции за период, меньший, чем время самовоспламенения, т.е. меньше чем 9 мс, со скоростью от 8 до 333 м/с. Полученный синтез-газ охлаждают и направляют для дальнейшей переработки.
Основным недостатком изобретения является необходимость использования катализатора и поддержание его активности.
Известен способ получения синтез-газа по патенту RU №2096313, С01В 3/36, в котором исключается применение катализаторов. Известный способ осуществляют в следующем порядке:
- предварительно смешивают углеводородное сырье с воздухом до α=0,5-0,8;
- нагревают полученную смесь до температуры 200-450°С;
- подают нагретую смесь в объем цилиндра двигателя внутреннего сгорания компрессионного типа при движении поршня к нижней мертвой точке;
- при сжатии смеси в объеме цилиндра движением поршня к верхней мертвой точке до ее самовоспламенения и получения температуры 1300-2300°С на период 10-2-10-3 с осуществляют парциальное окисление углеводородного сырья;
- далее охлаждают полученные продукты процесса окисления, расширяя их при движении поршня к нижней мертвой точке;
- при движении поршня к верхней мертвой точке выводят продукты процесса, содержащие синтез-газ.
Описанный цикл повторяют с частотой, превышающей 350 мин-1.
Основным недостатком описанного способа является отсутствие непрерывности процесса получения синтез-газа.
Известно устройство для получения синтез-газа, с помощью которого осуществляют описанный выше способ получения синтез-газа. Устройство основано на двигателе внутреннего сгорания компрессионного типа, цилиндр которого представляет собой замкнутый реакционный объем, в котором помещен поршень. Впускной и выпускной клапаны размещены в зоне верхней мертвой точки цилиндра, при этом впускной клапан связан со смесителем окислителя и углеводородного сырья и устройством их подогрева, а выпускной клапан связан с приемником продуктов окисления. Поршень цилиндра через кривошипно-шатунный механизм связан с приводом.
Описанное устройство для получения синтез-газа работает циклично с частотой движения поршня в цилиндре не менее 350 мин1. Меньшая частота цикла приводит к относительно меньшей скорости сжатия, которая не обеспечивает самовоспламенения рабочей смеси.
Основным недостатком устройства для получения синтез-газа, описанного в патенте RU №2096313, является невозможность обеспечить непрерывность процесса образования синтез-газа, что снижает производительность процесса его получения.
Известен также способ получения синтез-газа по патенту RU №2120913, С01В 3/36. Способ получения синтез-газа включает парциальное окисление углеводородного сырья кислородом воздуха в объеме цилиндра двигателя внутреннего сгорания при соотношении количества кислорода к количеству углеводородного сырья α=0,4-0,5. При этом в момент положения поршня в верхней мертвой точке часть смеси углеводородного сырья с воздухом при отношении количества кислорода к количеству углеводородного сырья α=0,8-1,2 в количестве 5-10% от объема исходной смеси изолированно от нее подвергают воспламенению и глубокому окислению. Далее смешивают продукты глубокого окисления с исходной смесью в рабочем объеме цилиндра и воспламеняют ее. Расширяют и охлаждают продукты процесса при движении поршня к нижней мертвой точке, выводят продукты процесса, содержащие синтез-газ, из реакционной зоны при движении поршня к верхней мертвой точке. Затем цикл повторяют. Благодаря тому, что в известном способе часть углеводородного сырья с воздухом при α=0,8-1,2 в количестве 5-10% объема исходной смеси при положении поршня в верхней мертвой точке подвергают предварительному воспламенению и глубокому окислению изолированно от основного объема смеси, а затем эту часть впрыскивают высокоэнергетичной струей в основной объем смеси, в рабочем объеме цилиндра исходная смесь подвергается интенсивному перемешиванию и воспламенению.
Основным недостатком способа получения синтез-газа по патенту RU №2120913 является отсутствие непрерывности процесса и разбавление синтез-газа продуктами глубокого окисления.
В том же патенте описана установка, с помощью которой осуществляют описанный выше способ получения синтез-газа.
Установка содержит основанный на двигателе внутреннего сгорания химический реактор сжатия, включающий цилиндр и камеру предварительного воспламенения. В цилиндре размещены поршень и впускной клапан, через который в цилиндр и камеру предварительного воспламенения подают смесь углеводородного сырья с воздухом. На цилиндре установлен выпускной клапан, который предназначен для вывода продуктов процесса. Камера предварительного воспламенения имеет отдельный клапан, через который подают воздух для достижения в камере значения α=0,8-1,2. Объем предварительной камеры воспламенения составляет 5% от объема цилиндра при положении поршня в верхней мертвой точке.
В процессе получения синтез-газа при положении поршня вблизи верхней мертвой точки воздушно-углеводородную смесь указанного состава в камере предварительного воспламенения подвергают воспламенению от искры. Далее высокоэнергетичная струя сильно турбулизованного газа вбрасывается со скоростью около 103м/с в рабочий объем цилиндра в течение 10-3-10-2 с. В рабочем объеме цилиндра рабочая смесь подвергается смешению с продуктами глубокого окисления и воспламенению, происходит процесс парциального окисления. При движении поршня в цилиндре к нижней мертвой точке происходит расширение продуктов процесса, их охлаждение и закалка. При последующем движении поршня к верхней мертвой точке продукты процесса выводят из цилиндра через выпускной клапан. Подачу в цилиндр и в камеру предварительного воспламенения свежей рабочей смеси производят при движении поршня к нижней мертвой точке и открытии впускных клапанов. Так циклично работает установка и осуществляется способ получения синтез-газа.
Основным недостатком установки для получения синтез-газа по патенту RU №2120913 является отсутствие возможности достижении непрерывного процесса конверсии углеводородного сырья вследствие его цикличности, что снижает производительность получения синтез-газа, кроме этого описанная установка недостаточно надежна и долговечна, так как ее работа связана с механическим движением основных деталей в условиях ограниченной смазки.
Известен также способ получения синтез-газа по патенту RU №2191743, С01В 3/34, B01J 7/00, являющийся аналогом заявляемого способа.
Способ получения синтез-газа включает смешивание углеводородного сырья с воздухом в соотношении, соответствующем коэффициенту избытка окислителя α меньше 1, принудительное воспламенение воздушно-углеводородной смеси и парциальное окисление углеводородного сырья кислородом воздуха в реакционной зоне, охлаждение с последующим выводом продуктов процесса, содержащих синтез-газ, и введение новой порции углеводородного сырья и воздуха, при этом подогрев углеводородного сырья и воздуха осуществляют при повышенных давлении и температуре на 50-100°С ниже температуры самовоспламенения их смеси, процесс парциального окисления углеводородного сырья проводят в проточной камере горения, при этом принудительное воспламенение проводят при коэффициенте избытка окислителя α=0,6-0,7, и после прогрева проточной камеры горения отношение кислорода к углеводородному сырью доводят до уровня, соответствующего значению α=0,30-0,56. При этом процесс охлаждения продуктов парциального окисления, выходящих из реакционной зоны, проводят со скоростью не ниже 3000°С/с.
Известно устройство для получения синтез-газа по патенту RU №2191743, С01В 3/34, B01J 7/00, являющееся аналогом устройства для осуществления заявляемого способа. Устройство для получения синтез-газа включает камеру парциального окисления углеводородного сырья кислородом воздуха, смеситель, систему расширения и охлаждения продуктов парциального окисления и вывода синтез-газа. Также оно снабжено системой предварительного подогрева углеводородного сырья и воздуха, регулятором расхода углеводородного сырья. При этом камера парциального окисления углеводородного сырья содержит средство воспламенения и выполнена в виде проточной камеры горения, ко входу которой через антипроскоковую решетку пристыкован смеситель, а к смесителю подключены подводящая труба углеводородного сырья и подводящая труба воздуха, обе указанные подводящие трубы охвачены с зазором рекуператорным патрубком, один конец которого пристыкован к выходу из проточной камеры горения, а другой, открытый, конец сообщается с полостью теплообменника, который образован оболочкой, ограничивающей полость вокруг рекуператорного патрубка. Кроме того, в полости теплообменника расположены трубчатый нагреватель углеводородного сырья и трубчатый нагреватель воздуха. При этом к одному концу трубчатого нагревателя углеводородного сырья подключен регулятор расхода углеводородного сырья, а другой конец через упомянутую подводящую трубу связан со смесителем. Один конец трубчатого нагревателя воздуха подключен к источнику воздуха, а другой конец через подводящую трубу связан со смесителем. Вместе с тем теплообменник снабжен штуцером для вывода из его полости синтез-газа.
Одним из основных недостатков способа получения синтез-газа и устройства для его осуществления по патенту RU №2191743 является осуществление процесса горения в режиме, близком к ламинарному. При ламинарном режиме горения для получения состава продуктов, близкого к термодинамически равновесному (в том числе для выгорания кислорода), необходимо большое время пребывания в зоне реакции, что приводит к заметному образованию конденсированных продуктов уплотнения, в том числе сажи, и получению основных продуктов процесса водорода и оксида углерода в соотношении ~1,6, что не соответствует требованиям к синтез-газу для ряда каталитических процессов его переработки, например, в метанол.
Существенным недостатком является также предусмотренное по патенту RU №2191743 использование в качестве окислителя только атмосферного воздуха, что ограничивает диверсификацию процесса.
Ближайшим аналогом заявляемого технического решения является патент RU №2320531, С01В 3/36, B01J 7/00, опубл. 27.03.08.на изобретение "Способ получения синтез-газа при горении и устройство для его осуществления".
Согласно этому патенту в реактор подают трехкомпонентную смесь, состоящую из углеводородного сырья, окислителя в количестве, соответствующем α<1, и перегретого водяного пара в количестве 5-20 мас.% от массы поданного углерода в виде углеводородного сырья. Воспламенение этой трехкомпонентной смеси производят струей горячего газа из внешнего источника, давление в котором при воспламенении превышает давление в первой камере.
В качестве недостатка этого способа и устройства для его осуществления следует указать способ зажигания рабочей смеси, требующий для ее воспламенения дополнительных устройств и сверления отверстий для этих устройств на боковой поверхности камеры сгорания. Другим недостатком является разбавление рабочей смеси водяным паром.
Задача предлагаемого технического решения заключается в устранении недостатков прототипа при создании одностадийного способа получения синтез-газа при горении и устройства для его осуществления.
Поставленная задача решается тем, что в способе получения синтез-газа из углеводородного сырья в условиях горения в проточном реакторе, состоящем из двух или более соосно распложенных камер, при коэффициенте избытка окислителя менее 1 и повышенном давлении, процесс осуществляют в одну стадию в режиме самовоспламенения, которое обеспечивают при помощи стабилизатора-воспламенителя, предварительно нагретого до температуры, достаточной для самовоспламенения с задержкой не более 1 секунды, причем горение осуществляют до остаточного содержания кислорода не более 0,3 об.% и отношения объемных концентраций водорода и оксида углерода, равного 1-2, а оксида углерода к его диоксиду не менее 5. Причем рабочую смесь перед подачей в первую камеру реактора предварительно нагревают за счет тепла продуктов процесса горения.
После самовоспламенения время пребывания рабочей смеси в зоне горения выбирают в пределах 0,001-1 с.
В качестве окислителя используют газообразный кислород, концентрация которого достаточна для самовоспламенения рабочей смеси с задержкой менее 1 с.
Для подавления сажеобразования 5-20 об.% газообразных продуктов процесса возвращают в первую камеру.
Поставленная задача решается также тем, что предложено проточное устройство для одностадийного получения синтез-газа при горении при повышенном давлении, включающее реактор горения, выполненный из нескольких цилиндрических соосно расположенных камер, между которыми размещено охлаждаемое сопло с сечением, обеспечивающим критический перепад давления между ними, через которое продукты сгорания из первой камеры направляют в последующие камеры, а на входе в первую камеру установлен блок форсунок для подачи компонентов рабочей смеси, в котором в первой камере, снабженной охлаждаемыми стенками, установлен стабилизатор-воспламенитель, выполненный в виде диска с отверстиями, причем их число и диаметр подбирают так, чтобы обеспечить самовоспламенение рабочей смеси со временем задержки воспламенения не превышающим 1 с.
Стабилизатор-воспламенитель изготовлен из термостойких материалов.
На выходе из второй камеры установлен автоматический анализатор содержания остаточной концентрации кислорода в отходящих газах процесса, сигнализирующий о превышении допустимого содержания кислорода.
Проточное устройство для одностадийного получения синтез-газа при горении и его разрез А-А представлены на фиг.1 и фиг.2 соответственно.
Устройство включает электропневмоклапан 1, форсуночную головку 2, зону смешения 3, стабилизатор-воспламенитель 4, реакционную зону камеры сгорания 5, в которой происходит основной процесс горения, зону догорания 6, сопло 7, через которое продукты процесса выводят из камеры сгорания, и резервный вывод 8.
Предлагаемый способ и работа устройства иллюстрируются следующими примерами.
Пример 1.
После стандартной сероочистки метана рабочую смесь, состоящую из метана и кислорода, под давлением, превосходящим давление в камере сгорания, нагревают и подают через форсуночную головку 2 в зону смешения 3 камеры сгорания проточного реактора. Воспламенение рабочей смеси происходит при ее контакте со стабилизатором-воспламенителем 4, причем время задержки воспламенения не превышает 1 с. Стабилизатор-воспламенитель 4 выполнен в виде решетки, число и диаметр отверстий в которой обеспечивают турбулентный характер движения газа в реакционной зоне 5 и зоне догорания 6 камеры сгорания, причем время пребывания рабочей смеси в камере сгорания после воспламенения составляет 0,1 с.
В данном эксперименте коэффициент избытка окислителя α в рабочей смеси составляет 0,35.
Горячую смесь продуктов подают через охлаждаемое сопло 7 с сечением, обеспечивающим критический перепад давления на выходе в следующую камеру, в которой происходит внезапное расширение потока газа и дальнейшее превращение остатков исходных компонентов.
В данном эксперименте парциальное окисление метана проводят при давлении в камере сгорания 54 атм, начальной температуре рабочей смеси 570 К и максимальной температуре в реакторе 1600 К.
Полученный синтез-газ при поддержании примерно постоянного давления охлаждают с целью выделения из него паров воды до уровня, не превышающего 0,5 об.%. Полученный сухой синтез-газ имеет состав (мол.%): СО 32,1; Н2 60,4; CO2 3,7; CH4 - 3,40; O2 0,4; сажа - следы, водяной пар - 0,5. В полученном синтез-газе отношение Н2/СО=1,8; отношение СО/CO2=9,1.
Пример 2.
Условия, как в примере 1, за исключением коэффициента избытка окислителя α=0,39.
Проводят парциальное окисление метана при давлении в первой камере 54 атм, начальной температуре 520 К и максимальной температуре в реакторе около 1650 К, причем время пребывания рабочей смеси в камере сгорания после воспламенения составляет 0,005 с.
Полученный синтез-газ при поддержании примерно постоянного давления охлаждают с целью выделения из него паров воды до уровня, не превышающего 0,5 об.%. Полученный сухой синтез-газ имеет состав (мол.%): СО 33,3; Н2 60,1; CO2 4,4; СН4 1,4; О2 0,35, сажа - следы, водяной пар - 0,5. В полученном синтез-газе отношение Н2/СО=1,8; отношение СО/СО2=7,6.
Пример 3.
Условия, как в примере 1, но окислителем является обогащенный кислородом воздух, содержащий 45 об.% кислорода, при коэффициенте избытка окислителя α=0,44.
Проводят парциальное окисление метана при давлении в первой камере 54 атм, начальной температуре 570 К и максимальной температуре в реакторе около 1550 К, причем время пребывания рабочей смеси в камере сгорания после воспламенения составляет 0,5 с.
Полученный синтез-газ при поддержании примерно постоянного давления охлаждают с целью выделения из него паров воды до уровня, не превышающего 0,5 об.%. Полученный сухой синтез-газ имеет состав (мол.%): СО 24,0; Н2 37,5; CO2 4,0; CH4 1,5; О2 0,45; N2 32,2, сажа - следы, водяной пар - 0,5. В полученном синтез-газе отношение Н2/СО=1,56; отношение СО/СО2=6,0.
Пример 4.
Условия, как в примере 1, за исключением того, что 10% продуктов сгорания, т.е. синтез-газ состава, полученного в примере 3, после охлаждаемого сопла (7) направляют в зону смешения (3) камеры сгорания. Полученный синтез-газ при поддержании примерно постоянного давления охлаждают с целью выделения из него паров воды до уровня, не превышающего 0,5 об.%. Полученный сухой синтез-газ имеет состав (мол. %): СО 31,5; Н2 63,6; СО2 5,7; СН4 0,4; О2 0,4, сажа - следы, водяной пар - 0,5. В полученном синтез-газе отношение Н2/СО=2,2, отношение СО/CO2=5,5.
Таким образом, предлагаемое техническое решение позволяет получать синтез-газ, в котором Н2/СО≈2, СО/CO2≥5, O2≤0,5.
Газ такого состава пригоден для последующей каталитической переработки.

Claims (8)

1. Способ получения синтез-газа из углеводородного сырья в условиях горения в проточном реакторе, состоящем из двух или более соосно распложенных камер, при коэффициенте избытка окислителя менее 1 и повышенном давлении, отличающийся тем, что процесс осуществляют в одну стадию в режиме самовоспламенения, которое обеспечивают при помощи стабилизатора-воспламенителя, предварительно нагретого до температуры, достаточной для самовоспламенения с задержкой не более 1 с, причем горение осуществляют до остаточного содержания кислорода не более 0,5 об.% и отношения объемных концентраций водорода и оксида углерода, равного 1-2,2, а оксида углерода к его диоксиду - не менее 5.
2. Способ по п.1, отличающийся тем, что рабочую смесь перед подачей в первую камеру реактора предварительно нагревают за счет тепла продуктов процесса горения.
3. Способ по п.1, отличающийся тем, что после самовоспламенения время пребывания рабочей смеси в зоне горения выбирают в пределах 0,001-1 с.
4. Способ по п.1, отличающийся тем, что в качестве окислителя используют газообразный кислород или воздух, обогащенный кислородом, концентрация которого достаточна для самовоспламенения рабочей смеси с задержкой менее 1 с.
5. Способ по пп.1-4, отличающийся тем, что для подавления сажеобразования 5-20 об.% газообразных продуктов процесса возвращают в камеру сгорания.
6. Проточное устройство для одностадийного получения синтез-газа при горении при повышенном давлении, включающее реактор, выполненный из нескольких цилиндрических соосно расположенных камер, причем после камеры сгорания размещено охлаждаемое сопло с сечением, обеспечивающим критический перепад давления между камерами, через которое продукты сгорания из камеры сгорания направляют в последующие камеры, а на входе в камеру сгорания установлен блок форсунок для подачи компонентов рабочей смеси в зону смешения, отличающееся тем, что в камере сгорания, снабженной охлаждаемыми стенками, установлен стабилизатор-воспламенитель, разделяющий камеру сгорания на зоны смешения, реакционную и догорания и выполненный в виде диска с отверстиями, причем их число и диаметр подбирают так, чтобы обеспечить самовоспламенение рабочей смеси со временем задержки воспламенения, не превышающим 1 с.
7. Устройство по п.6, отличающееся тем, что стабилизатор-воспламенитель изготовлен из термостойких материалов.
8. Устройство по п.6, отличающееся тем, что на выходе из второй камеры установлен автоматический анализатор содержания остаточной концентрации кислорода в отходящих газах процесса, сигнализирующий о превышении допустимого содержания кислорода.
RU2009129650/05A 2009-08-04 2009-08-04 Способ одностадийного получения синтез-газа при горении и устройство для его осуществления RU2412109C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009129650/05A RU2412109C1 (ru) 2009-08-04 2009-08-04 Способ одностадийного получения синтез-газа при горении и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009129650/05A RU2412109C1 (ru) 2009-08-04 2009-08-04 Способ одностадийного получения синтез-газа при горении и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2412109C1 true RU2412109C1 (ru) 2011-02-20

Family

ID=46310027

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009129650/05A RU2412109C1 (ru) 2009-08-04 2009-08-04 Способ одностадийного получения синтез-газа при горении и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2412109C1 (ru)

Similar Documents

Publication Publication Date Title
RU2320531C2 (ru) Способ получения синтез-газа при горении и устройство для его осуществления
US11701632B2 (en) Method and reactor for producing one or more products
RU2120913C1 (ru) Способ получения синтез-газа
KR102533234B1 (ko) 탄소를 공급원료 가스 반응기로 재순환시키는 방법
RU2361809C2 (ru) Способ получения синтез-газа и устройство для его осуществления
JP7154289B2 (ja) 水素含有ガスを得るための装置および方法
WO2007094702A1 (fr) Procédé de production de gaz de synthèse dans une installation comprenant un moteur à combustion interne de type à compression
RU2561077C2 (ru) Способ получения водорода из углеводородного сырья
RU1778146C (ru) Реактор термоокислительного пиролиза метана
WO2009154512A2 (ru) Способ получения синтез-газа и устройство для его осуществления
RU2632846C1 (ru) Способ получения водородсодержащего газа для производства метанола и устройство для его осуществления
RU2412109C1 (ru) Способ одностадийного получения синтез-газа при горении и устройство для его осуществления
RU2191743C2 (ru) Способ получения синтез-газа и устройство для его осуществления
US1972898A (en) Process of making combustible gas
RU2389747C1 (ru) Способ получения сажи и реактор для его осуществления
RU2571149C1 (ru) Реактор конверсии метана
RU2596260C2 (ru) Способ получения водородсодержащего газа из природного газа и реактор для осуществления этого способа
RU2379230C2 (ru) Способ получения водорода паро-углекислотной конверсией природного газа
RU2675561C1 (ru) Способ получения синтез-газа
KR20220085707A (ko) 공급원료 가스 반응기를 사용하여 수소 및 질소를 제조하는 방법
RU2136580C1 (ru) Способ получения синтез-газа
PL210552B1 (pl) Sposób mieszania gazu ziemnego w procesie autotermicznego półspalania