RU2410201C1 - Способ получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена - Google Patents

Способ получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена Download PDF

Info

Publication number
RU2410201C1
RU2410201C1 RU2009139788/02A RU2009139788A RU2410201C1 RU 2410201 C1 RU2410201 C1 RU 2410201C1 RU 2009139788/02 A RU2009139788/02 A RU 2009139788/02A RU 2009139788 A RU2009139788 A RU 2009139788A RU 2410201 C1 RU2410201 C1 RU 2410201C1
Authority
RU
Russia
Prior art keywords
molybdenum
composite material
temperature
silicon
powder
Prior art date
Application number
RU2009139788/02A
Other languages
English (en)
Inventor
Иван Юрьевич Ефимочкин (RU)
Иван Юрьевич Ефимочкин
Алексей Викторович Королев (RU)
Алексей Викторович Королев
Андрей Иванович Наймушин (RU)
Андрей Иванович Наймушин
Original Assignee
Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России)
Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России), Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") filed Critical Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России)
Priority to RU2009139788/02A priority Critical patent/RU2410201C1/ru
Application granted granted Critical
Publication of RU2410201C1 publication Critical patent/RU2410201C1/ru

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе интерметаллида молибдена. Может использоваться для деталей, предназначенных для длительной эксплуатации при высоких температурах в условиях значительных механических и термических нагрузок, таких как жаростойкие детали ГТД, в частности рабочие и сопловые лопатки, элементы жаровых труб. Путем размола в два этапа получают порошок кремния, при этом на первом этапе металлический кремний размалывают до частиц размером около 100 мкм, а затем до размера менее 40 мкм. Готовят смесь из порошков молибдена, бора и кремния и подвергают ее механическому легированию при 40-50°С в защитной рабочей жидкости. Горячее компактирование порошковой смеси осуществляют методом экструзии при температуре 1100-1200°С с коэффициентом вытяжки не менее 1:6. Способ позволяет получить композиционный материал на основе интерметаллида молибдена с высоким уровнем прочностных свойств, заданным химическим составом и высоким уровнем выхода годного, при сокращении времени его получения.

Description

Изобретение относится к способам получения композиционных материалов на основе интерметаллида молибдена, предназначенных для длительной эксплуатации при высоких температурах в условиях значительных механических и термических нагрузок. Такие металлические композиционные материалы могут быть использованы в качестве жаростойких деталей ГТД: рабочих и сопловых лопаток, элементов жаровых труб, а также других деталей машин, работающих при температурах до 1400°С.
Известен способ получения тугоплавких композиционных материалов с металлической или интерметаллидной матрицей, армированной керамическими частицами, включающий приготовление исходной заготовки из порошковой смеси механическим легированием, помещение заготовки в емкость и нагрев емкости до температуры начала экзотермической реакции путем погружения ее донной части в расплав металла и последующую кристаллизацию путем дальнейшего погружения емкости в расплав металла (Патент РФ №2263089).
Недостатком этого способа является то, что тепла, выделяющегося в процессе экзотермической реакции, недостаточно для образования упрочняющих фаз и, следовательно, для изготовления металлических композиционных материалов на основе молибдена.
Известен способ получения композиционного материала на основе интерметаллидной металлической матрицы, содержащей карбид кремния в качестве керамического упрочнителя. Карбид кремния берут в форме нитевидных кристаллов. В качестве матричного материала используют дисилицид молибдена. Способ заключается в приготовлении смеси порошка матричного материала и керамического упрочнителя в скоростном смесителе типа кофемолки и дальнейшем горячем прессовании (Патент США №4,927,792).
Недостатком этого способа является высокая стоимость нитевидных кристаллов карбида кремния, которая делает продукцию из этого материала неоправданно дорогой, тогда как в процессе помола эти усы все равно измельчают, а стоимость порошков кремния и бора в сотни раз ниже стоимости нитевидных кристаллов этого материала. Кроме того, после горячего прессования относительная плотность полученного материала составляет 97%, что не позволяет получать композиционный материал с высокими механическими свойствами.
За прототип принят способ получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена, включающий перемешивание порошков молибдена, бора, кремния, механическое легирование смеси в защитной атмосфере (водород) при температуре 100-150°С, горячее компактирование (прессование и штамповку) осуществляют при температуре 1100-1900°С, деформацию в суперпластичном состоянии при температуре 1000-1600°С, с последующей термообработкой при 1400-1900°С (Заявка США №2006/0285990).
Использование данного метода не позволяет получать композиционный материал, обладающий высокой прочностью и высоким выходом годного. Кроме того, использование в качестве защитной атмосферы газа, в частности водорода, что делает сам процесс чрезвычайно взрывоопасным.
Технической задачей данного изобретения является разработка способа получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена с равномерной структурой, высокой относительной плотностью и высокой прочностью, который обеспечивает высокий выход годного при минимальных материальных и энергетических затратах.
Для достижения поставленных задач предложен способ получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена, включающий смешивание порошков молибдена, бора, кремния, механическое легирование смеси в защитной атмосфере и последующее горячее компактирование порошковой смеси, отличающийся тем, что порошок кремния получают путем размола металлического кремния в 2 этапа, на первом этапе металлический кремний размалывают до частиц размером около 100 мкм, а на втором этапе - до размера менее 40 мкм, механическое легирование смеси осуществляют при температурах 40-50°С, в качестве защитной атмосферы используют рабочую жидкость, а горячее компактирование порошковой смеси осуществляют методом экструзии при температуре 1100-1200°С с коэффициентом вытяжки не менее 1:6, с предварительным капсулированием порошковой смеси и дегазацией в вакууме при температуре 1200-1250°С до полного прекращения газовыделения.
Порошковую смесь предварительно капсулируют и дегазируют в вакууме при температуре 1200-1250°С до полного прекращения газовыделения.
Так как мелкодисперсный порошок кремния чрезвычайно гигроскопичен, размол проводят непосредственно перед операцией смешивания. Таким образом, время хранения порошка сводится к минимальному, что, в свою очередь, снижает количество воды, абсорбированной порошком из воздуха, и, как следствие это положительно сказывается на качестве материала и его свойствах.
В качестве рабочей жидкости используют абсолютный спирт (этиловый, изопропиловый). При использовании газа в качестве защитной атмосферы в рабочей камере аттритора появляются «мертвые» зоны, в которых скапливается материал и не подвергается механическому легированию (МЛ). Для исчезновения мертвых зон необходим большой промежуток времени, что увеличивает общее время проведения процесса МЛ. Также существует «неудаляемая» мертвая зона (в районе отверстия выгрузки аттритора), которая влияет на качество материала, т.к. скопившийся там материал (100-200 г) вообще не участвует в процессе МЛ и при выгрузке добавляется в следующую партию загружаемого материала. Для предотвращения появления таких зон предложено использовать в качестве защитной атмосферы инертную жидкость. При использовании жидкости в рабочей камере аттритора образуется суспензия спирта и шихты, которая при вращении вала аттритора циркулирует по всему объему рабочей камеры, тем самым препятствует образованию «мертвых» зон. Таким образом, при использовании жидкости вся загружаемая шихта подвергается процессу МЛ с самого начала обработки (без образования мертвых зон), тем самым позволяя сократить время проведения МЛ. Также при использовании жидкости не требуется применять защитные устройства при выгрузке аттритора, тогда как при выгрузке без жидкости образуется смесь воздуха (газа) и выгружаемого порошка, которая может быть пожаровзрывоопасна (температура в рабочей камере аттритора при использовании газа достигает 100-120°С, а при использовании рабочей жидкости 40-50°С).
Компактирование механически легированной смеси порошков осуществляют методом экструзии (температура экструзии 1100-1200°С) с предварительным капсулированием и дегазацией при температуре 1200-1250°С, что обеспечивает предотвращение взаимодействия механически легированного порошка с атмосферой, исключение появления хрупких оксидов в структуре материала, а также при экструзии зерна композиционного материала вытягиваются вдоль направления экструзии, что положительно сказывается на прочностных свойствах готового материала. Температуру экструзии определили эмпирическим путем, она составила 1100-1200°С.
Предложенный способ получения композиционного материала позволяет получать композиционные гранулы с заданным химическим составом и равномерно распределенным по объему каждой гранулы фазовым составом после проведения процесса механического легирования в течение выбранного интервала времени, а компактные образцы с высоким уровнем плотности и прочностных свойств после экструзии в выбранном интервале температур.
Пример 1
Получение композиционного материала состава Мо-15Si-5В (вес.%).
Для получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена использовали элементарные промышленные порошки молибдена, бора, кремния. Порошок кремния получали размолом металлического кремния: вначале размалывали на гидравлическом прессе до размера частиц менее 100 мкм, а затем в валковой мельнице до размера менее 40 мкм. Исходные порошки в количествах, соответствующих химическому составу, смешивали. Исходную порошковую смесь подвергли механическому легированию в высокоэнергетической установке для размола и смешивания (атритторе) по следующему режиму: время обработки - 20 ч, защитная атмосфера - абсолютированный этиловый спирт, температура в рабочей камере - 50°С. Затем капсулировали с последующей дегазацией при температуре 1250°С и экструдировали при температуре 1200°С, коэффициент вытяжки 1:6. Относительная плотность полученного материала составила 0,99, σ1200в=500-600 МПа, при заданном химическом составе (основа твердый р-р Мо плюс упрочняющие фазы) и равномерно распределенными по объему композиционного материала фазами Mo3Si Mo5SiB2. Равномерность распределения фазового состава определяют путем исследования микроструктуры методами растровой электронной микроскопии. Время получения композиционного материала 35-40 ч, выход годного - 95%.
Пример 2
Получение композиционного материала состава Мо-15Si-5В (вес.%).
Для получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена использовали элементарные промышленные порошки молибдена, бора, кремния. Порошок кремния получали размолом металлического кремния: вначале размалывали на гидравлическом прессе до размера частиц мене 80 мкм, а затем в валковой мельнице до размера менее 40 мкм. Исходные порошки в количествах, соответствующих химическому составу, смешивали. Исходную порошковую смесь подвергли механическому легированию в высокоэнергетической установке для размола и смешивания (атритторе) по следующему режиму: время обработки - 20 ч, защитная атмосфера - абсолютированный изопропиловый спирт, температура в рабочей камере - 40°С. Затем капсулировали с последующей дегазацией при температуре 1200°С и экструдировали при температуре 1100°С коэффициент вытяжки 1:6. Относительная плотность полученного материала составила 0,98, σ1200в=500-600 МПа, при заданном химическом составе (основа твердый раствор Мо плюс упрочняющие фазы) и равномерно распределенными по объему композиционного материала фазами Mo3Si Mo5SiB2. Время получения композиционного материала 30-35 ч, выход годного - 97%.
Пример 3 (по прототипу)
Получение композиционного материала состава Мо-15Si-5В (вес.%)
Для получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена использовали элементарные промышленные порошки молибдена, бора, кремния. Исходные порошки в количествах, соответствующих химическому составу, смешивали. Исходную порошковую смесь подвергли механическому легированию в высокоэнергетической установке для размола и смешивания (атритторе) по следующему режиму: время обработки - 40 ч, защитная атмосфера - аргон, температура в рабочей камере - 100-150°С. Затем порошки подвергли горячему компактированию: прессованию по режиму: температура - 1450°С, давление - 20 МПа, время - 3 мин, с последующей штамповкой при температуре 1500°С и термообработкой в вакууме при 1600°С в течение 2 ч. Относительная плотность полученного материала составила 0,99, σ1200в=350-380 МПа, при заданном химическом составе (основа твердый р-р Мо плюс упрочняющие фазы) и неравномерно распределенными по объему композиционного материала фазами Mo3Si, Mo5SiB2. Время получения композиционного материала около 70 ч, выход годного - 85%.
Таким образом, предложенный способ позволяет получать композиционные материалы на основе интерметаллида молибдена с высоким уровнем прочностных свойств, заданным химическим составом и высоким уровнем выхода годного, при этом сокращая время получения композиционного материала. Применение предлагаемого способа позволит снизить материальные и энергетические затраты, а следовательно, себестоимость продукции, в частности лопаток ГТД и ГТУ нового поколения.

Claims (1)

  1. Способ получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена, включающий смешивание порошков молибдена, бора и кремния, механическое легирование смеси в защитной атмосфере и последующее горячее компактирование порошковой смеси, отличающийся тем, что порошок кремния получают путем размола металлического кремния в два этапа, при этом на первом этапе металлический кремний размалывают до частиц размером около 100 мкм, а затем до размера менее 40 мкм, механическое легирование осуществляют при температурах 40-50°С, в качестве защитной атмосферы используют рабочую жидкость, а горячее компактирование порошковой смеси осуществляют методом экструзии при температуре 1100-1200°С с коэффициентом вытяжки не менее 1:6.
RU2009139788/02A 2009-10-28 2009-10-28 Способ получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена RU2410201C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009139788/02A RU2410201C1 (ru) 2009-10-28 2009-10-28 Способ получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009139788/02A RU2410201C1 (ru) 2009-10-28 2009-10-28 Способ получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена

Publications (1)

Publication Number Publication Date
RU2410201C1 true RU2410201C1 (ru) 2011-01-27

Family

ID=46308327

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009139788/02A RU2410201C1 (ru) 2009-10-28 2009-10-28 Способ получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена

Country Status (1)

Country Link
RU (1) RU2410201C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2570273C1 (ru) * 2014-09-04 2015-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения композиционного материала на основе молибдена
CN111929165A (zh) * 2020-08-25 2020-11-13 常州启赋安泰复合材料科技有限公司 复合材料零件与金属零件混杂连接强度校核方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2570273C1 (ru) * 2014-09-04 2015-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения композиционного материала на основе молибдена
CN111929165A (zh) * 2020-08-25 2020-11-13 常州启赋安泰复合材料科技有限公司 复合材料零件与金属零件混杂连接强度校核方法
CN111929165B (zh) * 2020-08-25 2021-06-08 常州启赋安泰复合材料科技有限公司 复合材料零件与金属零件混杂连接强度校核方法

Similar Documents

Publication Publication Date Title
AU758878B2 (en) Powder metal injection molding process for forming an article from the nickel-based superalloy "Hastelloy X"
CN101440440B (zh) 铝基复合材料和铝基复合材料零件的成形方法及其成形装置
CN106756158B (zh) 钽钨合金坯料制备方法
CN105348704A (zh) 一种铝/钨/聚四氟乙烯含能材料的制备方法
CN109261971A (zh) 一种用于改善纳米CuAl2/Al2O3增强铝基复合材料均匀性的变速球磨混粉方法
CN104674098B (zh) 基于TiCN‑(Ti,M)CN混芯结构的金属陶瓷材料及其制备方法
CN102168200B (zh) 一种高密度铱合金坯的制备方法
RU2410201C1 (ru) Способ получения высокотемпературного металлического композиционного материала на основе интерметаллида молибдена
CN109207762A (zh) 一种以微波烧结制备钨钼铜复合材料的方法
CN114315490A (zh) PTFE-Al-Ce含能结构材料及其制备方法
CN101397613B (zh) 一种钼-硅-硼合金的制备方法
CN103938005A (zh) 气流磨氢化钛粉制备超细晶粒钛及钛合金的方法
CN110157971B (zh) 一种原位增强高熵合金复合材料的感应熔炼方法
RU2630740C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК СПЛАВОВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА TiNi
RU2623942C1 (ru) Способ изготовления дисперсно-упрочненного композиционного электродного материала для электроискрового легирования и электродуговой наплавки
CN101541677B (zh) 制造金属-碳纳米复合材料的方法
CN108620586A (zh) 3d打印高致密度钛-硼化钛的复合材料及其制备方法
RU2393060C1 (ru) Способ получения композиционного материала
CN111378870A (zh) 一种sps烧结钛基复合材料及其制备方法
CN110343932B (zh) 一种具有高强度的WVTaZrSc难熔高熵合金及其制备方法
RU2564648C1 (ru) Способ получения композиционного материала на основе ниобия
RU2569446C1 (ru) Шихта для композиционного катода и способ его изготовления
Gülsoy et al. Injection molding of mechanical alloyed Ti–Fe–Zr powder
RU2632047C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО СПЛАВА TiNi С ВЫСОКИМ УРОВНЕМ МЕХАНИЧЕСКИХ СВОЙСТВ
CN110526718B (zh) 一种B-Al-Ti系复相陶瓷及其低温致密化烧结制备方法