RU2406648C2 - Управление пограничным слоем аэродинамического профиля - Google Patents

Управление пограничным слоем аэродинамического профиля Download PDF

Info

Publication number
RU2406648C2
RU2406648C2 RU2008129684/11A RU2008129684A RU2406648C2 RU 2406648 C2 RU2406648 C2 RU 2406648C2 RU 2008129684/11 A RU2008129684/11 A RU 2008129684/11A RU 2008129684 A RU2008129684 A RU 2008129684A RU 2406648 C2 RU2406648 C2 RU 2406648C2
Authority
RU
Russia
Prior art keywords
aerodynamic profile
flap
air
laminar
holes
Prior art date
Application number
RU2008129684/11A
Other languages
English (en)
Other versions
RU2008129684A (ru
Inventor
Адриан Стефанус ЙОНКЕР (ZA)
Адриан Стефанус ЙОНКЕР
Йоханнес Якобус БОСМАН (ZA)
Йоханнес Якобус БОСМАН
Original Assignee
Норт-Вест Юниверсити
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Норт-Вест Юниверсити filed Critical Норт-Вест Юниверсити
Publication of RU2008129684A publication Critical patent/RU2008129684A/ru
Application granted granted Critical
Publication of RU2406648C2 publication Critical patent/RU2406648C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/14Adjustable control surfaces or members, e.g. rudders forming slots
    • B64C9/16Adjustable control surfaces or members, e.g. rudders forming slots at the rear of the wing
    • B64C9/18Adjustable control surfaces or members, e.g. rudders forming slots at the rear of the wing by single flaps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow
    • B64C21/02Influencing air flow over aircraft surfaces by affecting boundary layer flow by use of slot, ducts, porous areas or the like
    • B64C21/025Influencing air flow over aircraft surfaces by affecting boundary layer flow by use of slot, ducts, porous areas or the like for simultaneous blowing and sucking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/04Boundary layer controls by actively generating fluid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/06Boundary layer controls by explicitly adjusting fluid flow, e.g. by using valves, variable aperture or slot areas, variable pump action or variable fluid pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/30Wing lift efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Wind Motors (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Slot Machines And Peripheral Devices (AREA)

Abstract

Группа изобретений относится к области авиации. Аэродинамический профиль (12) оснащен системой (10) управления пограничным слоем, которая содержит закрылок, линию подвески закрылка, первое средство для выдува воздуха из нижней поверхности (14) аэродинамического профиля (12) для изменения воздушного потока с превращением его из ламинарного потока в турбулентный поток при положительном отклонении закрылка и второе средство для приложения силы отсоса на нижней поверхности (14) для сохранения ламинарного потока при отрицательном отклонении закрылка. Способ и летательный аппарат характеризуются использованием аэродинамического профиля. Группа изобретений направлена на снижение лобового сопротивления. 3 н. и 21 з.п. ф-лы, 4 ил.

Description

Область техники, к которой относится изобретение
Это изобретение относится к способу и системе управления пограничным слоем аэродинамического профиля.
Уровень техники
Планеры обычно имеют аэродинамические профили с ламинарными потоками. Эти аэродинамические профили обеспечивают ламинарный воздушный поток на площади до 70% своей верхней поверхности и на площади до 93% своей нижней поверхности. Обычный переход ламинарного потока в турбулентный поток происходит за счет процесса образования пузыря ламинарного отрыва. Замечено, что естественный пузырь ламинарного отрыва приводит к большему лобовому сопротивлению профиля, чем в случае, когда переход вынуждается искусственно.
В настоящее время применяют два способа искусственного вынуждения превращения ламинарного потока в турбулентный поток. При осуществлении первого способа применяется лента-турбулизатор, нанесенная на аэродинамический профиль, которая снабжена малыми трехмерными препятствиями вдоль своей длины и которая изменяет поток в пограничном слое, превращая его из ламинарного в турбулентный. При осуществлении второго способа используют пневматические турбулизаторы, которые выдувают воздух сквозь малые отверстия, предусмотренные вдоль длины нижней поверхности аэродинамического профиля. Это тоже приводит к тому, что поток в пограничном слое изменяется, превращаясь из ламинарного в турбулентный. Отверстия находятся в максимальном положении, соответствующем 93% длины хорды аэродинамического профиля по направлению к его задней кромке. Второй способ также может предусматривать наличие малых отверстий, обеспечиваемых вдоль длины верхней поверхности аэродинамического профиля, через которые в аэродинамический профиль отсасывается воздух.
Обычный аэродинамический профиль включает в себя подвижный закрылок на своей задней кромке, который изменяет кривизну аэродинамического профиля и эффективно изменяет форму аэродинамического профиля. Однако введение закрылка в заднюю кромку аэродинамического профиля вносит зазор закрылка в месте, где закрылок совершает движение относительно аэродинамического профиля. Когда закрылок отклоняется, в месте отклонения образуется «колено» закрылка. Когда закрылок находится в положении крейсерского режима (не отклонен), доля ламинарного потока в потоке воздуха через зазор закрылка доходит до 93%, а остальное составляет турбулентный поток. В общем случае, ламинарный поток в положении зазора закрылка изменяется, превращаясь в турбулентный поток, и возможная доля ламинарного потока составляет лишь около 84%, с чем связано увеличение лобового сопротивления. Можно - но это весьма затруднительно - закупорить и загладить зазор закрылка таким образом, что поток в этом положении не будет изменяться, превращаясь в турбулентный поток.
В промышленно выпускаемых планерах показал себя жизнеспособным вариант со смещением ламинарного пограничного слоя за пределы зазора закрылка и осуществлением искусственного перехода на поверхности закрылка. Однако это возможно лишь в положении отклонения закрылка на ноль градусов, когда нижняя поверхность не отклонена. Как только закрылок отклоняется в положение положительного отклонения закрылка, «колено» в поверхности аэродинамического профиля приводит к тому, что поток в пограничном слое изменяется, превращаясь в турбулентный поток. Тогда в этом положении образуется пузырь ламинарного отрыва, вследствие чего поток снова, но - турбулентно, вступает в контакт с закрылком, что приводит к повышенному лобовому сопротивлению.
В документе WO 2005/113334 описан летательный аппарат с системой каналов рабочей жидкости для отделения ламинарного слоя и сдувания зон пониженного давления в уязвимых местах внешней обшивки с целью снижения сопротивления потоку энергосберегающим образом. Однако это действенно лишь в той степени, в какой приложенное пониженное давление позволит избежать отслаивания потока. Иными словами, это поможет избежать превращения ламинарного потока в турбулентный поток.
Один из недостатков этой системы заключается в том, что она позволяет лишь избежать превращения ламинарного потока в турбулентный поток и ни в коей мере не предусматривает преобразование турбулентного потока. Эта система также не воспринимает различия между положительным и отрицательным отклонением закрылка. Поэтому она и не продемонстрировала уменьшение аэродинамического сопротивления в обоих вариантах отклонения.
В документе ЕР 0436243 описана противообледенительная система, предусматривающая выпуск воздуха из полости позади задней кромки через множество малых отверстий в обшивке передней кромки в воздушный поток, набегающий на переднюю кромку. Хотя в этой системе часть существующей воздухораспределительной системы используется в качестве системы управления ламинарным потоком, это достигается не за счет того, что ламинарный поток одновременно изменяют и отделяют, чтобы сохранить ламинарный поток в целом как при отрицательном, так и при положительном отклонении закрылка. Следовательно, это изобретение имеет тот же недостаток, что и в документе WO 2005/113334, заключающийся в том, что в обоих вариантах отклонения не продемонстрировано уменьшение аэродинамического сопротивления.
Раскрытие изобретения
Поэтому задача настоящего изобретения состоит в том, чтобы разработать способ и систему управления пограничным слоем аэродинамического профиля, которые представляют собой усовершенствование по сравнению с вышеописанными способами.
В соответствии с первым аспектом настоящего изобретения предложен способ управления пограничным слоем аэродинамического профиля с ламинарным потоком, имеющего закрылок и линию подвески закрылка, для снижения лобового сопротивления профиля при отклонении закрылка, включающий в себя этапы, на которых:
- изменяют поток, превращая его из ламинарного в турбулентный, при положительном отклонении закрылка и
- при отрицательном отклонении закрылка сохраняют ламинарный поток за линией подвески закрылка и изменяют поток, превращая его из ламинарного в турбулентный, перед задней кромкой аэродинамического профиля для уменьшения образования пузыря отрыва.
Этап изменения потока с превращением его из ламинарного в турбулентный при положительном отклонении закрылка может включать в себя дополнительный этап, на котором выдувают воздух из нижней поверхности аэродинамического профиля.
Этап выдува воздуха из нижней поверхности аэродинамического профиля может включать в себя этап, на котором выдувают воздух в направлении, перпендикулярном поверхности, из которой его выдувают.
Аэродинамический профиль может также включать в себя крыло, а линия подвески закрылка может быть определена там, где закрылок поворачивается относительно крыла, и этап выдува воздуха из нижней поверхности аэродинамического профиля может включать в себя дополнительный этап, на котором выдувают воздух из аэродинамического профиля в некотором положении к задней кромке аэродинамического профиля, но на стороне крыла от линии подвески закрылка.
Этап выдува воздуха из нижней поверхности аэродинамического профиля может включать в себя этап, на котором выдувают воздух из аэродинамического профиля в положении, соответствующем от 65% до 80%, а предпочтительно - 71% длины хорды аэродинамического профиля от передней кромки к задней кромке аэродинамического профиля.
Этап выдува воздуха из нижней поверхности аэродинамического профиля может включать в себя этап, на котором выдувают воздух из множества отверстий, ограниченных вдоль длины нижней поверхности крыла.
Этап сохранения ламинарного потока за линией подвески закрылка при отрицательном отклонении закрылка может включать в себя этап, на котором прикладывают силу отсоса на нижней поверхности крыла, а этап изменения потока с превращением его из ламинарного в турбулентный перед задней кромкой аэродинамического профиля, может включать в себя этап, на котором выдувают воздух из нижней поверхности закрылка.
Этапы выдува воздуха из нижней поверхности аэродинамического профиля и приложения силы отсоса на нижней поверхности крыла, могут включать в себя дополнительный этап, на котором осуществляют выдув и прикладывают силу отсоса из множества отверстий, ограниченных в нижней поверхности крыла.
Этап выдува и приложения силы отсоса из множества отверстий, ограниченных в нижней поверхности крыла, может включать в себя еще один дополнительный этап, на котором осуществляют выдув и прикладывают силу отсоса из одного и того же множества отверстий.
Множество отверстий может быть первым множеством отверстий, и можно предусмотреть второе множество отверстий, ограниченных вдоль длины нижней поверхности закрылка в положении, соответствующем от 90% до 98%, а предпочтительно - 95%» длины хорды аэродинамического профиля от передней кромки к задней кромке аэродинамического профиля, через которые выдувают воздух для того, чтобы изменить поток, превращая его из ламинарного в турбулентный, при отрицательном отклонении закрылка.
В соответствии со вторым аспектом изобретения предложен аэродинамический профиль, имеющий закрылок и линию подвески закрылка, оснащенный системой управления пограничным слоем аэродинамического профиля с ламинарным потоком для снижения лобового сопротивления профиля при отклонении закрылка, причем эта система содержит:
- средство для выдува воздуха из нижней поверхности аэродинамического профиля для изменения потока с превращением его из ламинарного в турбулентный при положительном отклонении закрылка;
- средство для приложения силы отсоса на нижней поверхности аэродинамического профиля для сохранения ламинарного потока за линией подвески закрылка при отрицательном отклонении закрылка; и
- средство для выдува воздуха из нижней поверхности закрылка для изменения потока с превращением его из ламинарного в турбулентный перед задней кромкой аэродинамического профиля для уменьшения образования пузыря отрыва при отрицательном отклонении закрылка.
Средство для выдува воздуха при положительном отклонении закрылка может включать в себя канал внутри аэродинамического профиля вдоль его длины, по которому можно выдувать воздух, и выдувное устройство для выдува воздуха по этому каналу при использовании.
Воздух можно выдувать из упомянутого канала через множество отверстий, ограниченных вдоль длины нижней поверхности крыла, в направлении, перпендикулярном поверхности, из которой выдувается воздух.
Аэродинамический профиль может включать в себя крыло, а линия подвески закрылка может быть определена вдоль линии, где закрылок подвешен к крылу, и воздух можно выдувать из отверстий, находящихся в некотором положении, к задней кромке аэродинамического профиля, но на стороне крыла от линии подвески закрылка.
Отверстия могут находиться в положении, соответствующем от 65% до 80%, а предпочтительно - 71% длины хорды аэродинамического профиля, от передней кромки к задней кромке аэродинамического профиля.
Средство для приложения силы отсоса на нижней поверхности аэродинамического профиля может включать в себя канал внутри крыла вдоль его длины, по которому можно отсасывать воздух.
Канал, по которому выдувается воздух, может быть тем же самым, что и канал, по которому воздух отсасывается.
Средство для приложения силы отсоса может дополнительно включать в себя отсасывающее устройство для отсоса воздуха из канала такое, как отсасывающий насос.
Воздух можно отсасывать по каналу из множества отверстий, ограниченных в нижней поверхности крыла.
Множество отверстий, из которых можно отсасывать воздух, может быть тем же множеством отверстий, через которые воздух выдувается.
Множество отверстий может быть первым множеством отверстий, а система может включать в себя второе множество отверстий, ограниченных вдоль длины нижней поверхности закрылков в положении, соответствующем от 90% до 98%, а предпочтительно - 95% длины хорды аэродинамического профиля от передней кромки к задней кромке аэродинамического профиля.
Система может включать в себя средство для выдува воздуха, которое выдувает воздух из второго множества отверстий, по меньшей мере, когда наклон закрылков является отрицательным, чтобы изменить ламинарный поток, превращая его в турбулентный поток на закрылке, с целью снижения лобового сопротивления путем уменьшения образования пузыря отрыва.
Канал может быть первым каналом, а система может включать в себя второй канал, по которому средство для выдува воздуха может выдувать воздух через второе множество отверстий.
Средство для выдува воздуха может включать в себя выдувное устройство такое, как насос, для выдува воздуха по каналу.
Средство для приложения силы отсоса и средства для выдува воздуха могут представлять собой единственный насос, который и выдувает, и отсасывает воздух.
Эту систему можно использовать в планере, а к ней можно подсоединить устройство для приложения силы отсоса и для выдува воздуха с целью управления планером, вследствие чего система будет автоматически выдувать и отсасывать воздух в зависимости от положения закрылка аэродинамического профиля.
В соответствии с третьим аспектом изобретения предложен летательный аппарат, оснащенный системой управления пограничным слоем аэродинамического профиля с ламинарным потоком для снижения лобового сопротивления при отклонении закрылка, соответствующей второму аспекту изобретения.
Краткое описание чертежей
Далее будет приведено пояснение изобретения посредством неограничительного примера со ссылками на прилагаемые чертежи, при этом:
на фиг.1 представлен вид снизу планера, в котором используется система в соответствии с предпочтительным вариантом осуществления изобретения;
на фиг.2А представлено поперечное сечение на виде сбоку аэродинамического профиля планера с закрылком в положении положительного отклонения закрылка;
на фиг.2В представлено такое же сечение, как на фиг.2А, с закрылком в положении, в котором закрылок не отклонен; и
на фиг.2С представлено такое же сечение, как на фиг.2А, с закрылком в положении отрицательного отклонения закрылка.
Осуществление изобретения
Обращаясь к чертежам, отмечаем, что система управления пограничным слоем аэродинамического профиля 12 с ламинарным потоком для снижения лобового сопротивления при отклонении закрылка в соответствии с предпочтительным вариантом осуществления изобретения обозначена как единое целое позицией 10.
Система 10 содержит первое средство для выдува воздуха из нижней поверхности 14 аэродинамического профиля 12, чтобы изменить воздушный поток, превращая его из ламинарного потока в турбулентный поток при положительном отклонении закрылка, и второе средство для приложения силы отсоса на нижней поверхности 14 аэродинамического профиля 12, чтобы сохранить ламинарный поток при отрицательном отклонении закрылка.
Система 10 используется в планере 32, включающем в себя крылья 34, для управления пограничным слоем аэродинамических профилей 12 с ламинарным потоком с целью снижения лобового сопротивления профилей при отклонении закрылков.
Первое средство для выдува воздуха из аэродинамического профиля 12 включает в себя выдувное устройство такое, как насос (не показан). Этот насос выдувает воздух по первому каналу 16, ограниченному внутри крыльев 34 планера 32 вдоль их длины, и через первое множество отверстий 18, ограниченных вдоль длины нижней поверхности 14 крыльев 34. Компоновка такова, что первое множество отверстий 18 сообщаются посредством потока текучей среды с первым каналом 16. Воздух выдувают в направлении, перпендикулярном нижней поверхности 14 крыльев 32, как показано стрелками на фиг.2А.
Аэродинамический профиль 12 включает в себя поворачиваемый закрылок 20 и ограничивает зазор 22 закрылка у линии подвески, где закрылок 20 поворачивается относительно аэродинамического профиля 12. Первое множество отверстий 18 находятся в некотором положении к задней кромке 24, но на стороне передней кромки 26 относительно зазора 22 закрылка. В частности, первое множество отверстий 18 находится в положении, соответствующем от 65% до 80% длины хорды аэродинамического профиля 12 от передней кромки 26 к задней кромке 24 аэродинамического профиля 12. Более конкретно, первое множество отверстий 18 находится в положении, соответствующем приблизительно 71% длины хорды аэродинамического профиля 12 от передней кромки 26 к задней кромке 24 аэродинамического профиля 12.
Второе средство для приложения силы отсоса на нижней поверхности 14 аэродинамического профиля 12 при отрицательном отклонении закрылка выполнено в форме отсасывающего устройства такого, как отсасывающий насос (не показан). Отсасывающий насос - это тот же самый насос, из которого выдувают воздух. Следовательно, для выдува и отсоса воздуха используется единственный насос. Таким образом, воздух отсасывается из атмосферы в первый канал 16 через первое множество отверстий 18, как показано стрелками на фиг.2С.
Система 10 включает в себя второй канал 28, ограниченный внутри закрылка 20, и второе множество отверстий 30, ограниченных вдоль длины нижней поверхности 14 закрылка 20. Второе множество отверстий 20 находится в положении, соответствующем от 90% до 98%, а более конкретно - соответствующем 95% длины хорды аэродинамического профиля 12 от передней кромки 26 к задней кромке 24 аэродинамического профиля 12. Поэтому второе множество отверстий 30 сообщаются посредством потока текучей среды со вторым каналом 28.
Насос также выдувает воздух по второму каналу 28 через второе множество отверстий 30, по меньшей мере, когда закрылок 20 находится в положении отрицательного отклонения закрылка, чтобы изменить ламинарный поток, превращая его в турбулентный поток на закрылке 20, с целью снижения лобового сопротивления путем уменьшения образования пузыря отрыва. Конечно, можно было бы также выдувать воздух по второму каналу 28 через второе множество отверстий 30, когда закрылок 20 находится в положении положительного отклонения закрылка.
Количество отверстий в каждом из первого и второго множеств отверстий 18 и 30 составляет от 1500 до 2500, а более конкретно - таких отверстий по 2000 в каждом множестве. Отверстия 18 и 30 отстоят друг от друга на расстояние от 3 мм до 20 мм, более конкретно - от 8 мм до 12 мм, а диаметр каждого отверстия составляет от 0,2 мм до 2 мм, более конкретно - 0,7 мм.
При использовании насос подсоединен с возможностью управления планером 32 таким образом, что система 10 автоматически выдувает и отсасывает воздух в зависимости от положения отклонения закрылка. Насос соединен со вторым каналом 28 и выдувает воздух, когда закрылок 20 находится в положениях положительного или отрицательного отклонения закрылка. Насос также соединен с первым каналом 16, но только выдувает воздух, когда закрылок 20 находится в положении положительного отклонения закрылка, и только отсасывает воздух, когда закрылок 20 находится в положении отрицательного отклонения закрылка.
Следовательно, когда закрылок 20 находится в положении отрицательного отклонения закрылка, как показано на фиг.2С, сила отсоса прикладывается на нижней поверхности 14 аэродинамического профиля 12 для сохранения ламинарного потока. Для этого насос отсасывает воздух из атмосферы в первый канал 16 через первое множество отверстий 18. Одновременно, насос выдувает воздух по второму каналу 28 через второе множество отверстий 30, чтобы изменить ламинарный поток, превращая его в турбулентный поток у закрылка 20 с целью снижения лобового сопротивления путем уменьшения образования пузыря отрыва.
Когда закрылок 20 находится в положении положительного отклонения закрылка, как показано на фиг.2А, воздух выдувается из нижней поверхности 14 аэродинамического профиля 12, чтобы изменить воздушный поток, превращая его из ламинарного в турбулентный. Насос выдувает воздух по первому и второму каналам 16 и 28 через первое и второе множества отверстий 18 и 30 в атмосферу.
Предполагается, что способ и система управления пограничным слоем аэродинамического профиля будут способствовать уменьшению лобового сопротивления при положительном отклонении закрылка путем исключения пузыря отрыва при переходе, что и приводит к повышению эффективности. Лобовое сопротивление профиля также уменьшается при отрицательном отклонении закрылка, поскольку система стабилизирует ламинарный поток и обеспечивает получение ламинарного потока в течение более длительного периода. Также предполагается, что использование упомянутой системы планером могло бы уменьшить затруднения при изготовлении крыльев планера, связанные с областью перехода «крыло-закрылок», поскольку эта область менее критична, вследствие чего допуски на изготовление могут быть менее строгими.
Возможно использование предложенных системы и способа в планерах, дельтапланах и секциях аэродинамических профилей, крыльях легких и экономичных летательных аппаратов, лопатках ветряных турбин и фюзеляжах летательных аппаратов.
Следует отдавать себе отчет в том, что в рамках объема притязаний прилагаемой формулы изобретения возможны изменения отдельных особенностей способа и системы управления пограничным слоем аэродинамического профиля в соответствии с изобретением.

Claims (24)

1. Способ управления пограничным слоем аэродинамического профиля с ламинарным потоком, имеющего закрылок и линию подвески закрылка, для снижения лобового сопротивления профиля при отклонении закрылка, включающий в себя этапы, на которых
изменяют поток, превращая его из ламинарного в турбулентный, при положительном отклонении закрылка и
при отрицательном отклонении закрылка сохраняют ламинарный поток за линией подвески закрылка и изменяют поток, превращая его из ламинарного в турбулентный, перед задней кромкой аэродинамического профиля для уменьшения образования пузыря отрыва.
2. Способ по п.1, в котором этап изменения потока с превращением его из ламинарного в турбулентный при положительном отклонении закрылка включает в себя дополнительный этап, на котором выдувают воздух из нижней поверхности аэродинамического профиля.
3. Способ по п.2, в котором аэродинамический профиль включает в себя крыло, и в котором линия подвески закрылка определена в месте, где закрылок поворачивается относительно крыла, и при этом этап выдува воздуха из нижней поверхности аэродинамического профиля включает в себя дополнительный этап, на котором выдувают воздух из аэродинамического профиля в направлении по нормали к поверхности, из которой его выдувают, в положении от 65 до 80% длины хорды аэродинамического профиля от передней кромки, в некотором положении к задней кромке аэродинамического профиля, но на стороне крыла от линии подвески закрылка.
4. Способ по п.3, в котором этап выдува воздуха из нижней поверхности аэродинамического профиля включает в себя дополнительный этап, на котором выдувают воздух из множества отверстий, ограниченных вдоль длины нижней поверхности крыла.
5. Способ по п.4, в котором этап сохранения ламинарного потока за линией подвески закрылка при отрицательном отклонении закрылка включает в себя этап, на котором прикладывают силу отсоса на нижней поверхности аэродинамического профиля, а этап изменения слоя с превращением его из ламинарного в турбулентный перед задней кромкой аэродинамического профиля включает в себя этап, на котором выдувают воздух из нижней поверхности закрылка.
6. Способ по п.5, в котором этапы выдува воздуха из нижней поверхности аэродинамического профиля и приложения силы отсоса на нижней поверхности аэродинамического профиля включают в себя дополнительный этап, на котором осуществляют выдув и прикладывают силу отсоса из первого множества отверстий, ограниченных в нижней поверхности крыла.
7. Способ по п.6, в котором этап выдува и приложения силы отсоса из множества отверстий, ограниченных в нижней поверхности крыла, включает в себя еще один дополнительный этап, на котором осуществляют выдув и прикладывают силу отсоса из одного и того же множества отверстий.
8. Способ по п.7, в котором множество отверстий представляет собой первое множество отверстий, и в котором предусматривают второе множество отверстий, ограниченных вдоль длины нижней поверхности закрылка в положении, соответствующем от 90 до 98% длины хорды аэродинамического профиля от передней кромки к задней кромке аэродинамического профиля, через которые выдувают воздух, чтобы изменить поток, превращая его из ламинарного в турбулентный, при отрицательном отклонении закрылка.
9. Аэродинамический профиль, оснащенный системой управления пограничным слоем аэродинамического профиля с ламинарным потоком, имеющего закрылок и линию подвески закрылка, для снижения лобового сопротивления профиля при отклонении закрылка, причем эта система содержит
средство для выдува воздуха из нижней поверхности аэродинамического профиля для изменения потока с превращением его из ламинарного в турбулентный при положительном отклонении закрылка;
средство для приложения силы отсоса на нижней поверхности аэродинамического профиля для сохранения ламинарного потока за линией подвески закрылка при отрицательном отклонении закрылка; и
средство для выдува воздуха из нижней поверхности закрылка для изменения потока с превращением его из ламинарного в турбулентный перед задней кромкой аэродинамического профиля для уменьшения образования пузыря отрыва при отрицательном отклонении закрылка.
10. Аэродинамический профиль по п.9, в котором средство для выдува воздуха при положительном отклонении закрылка включает в себя первый канал внутри аэродинамического профиля вдоль его длины, по которому выдувается воздух, и выдувное устройство, такое, как насос, для выдува воздуха по каналу при использовании.
11. Аэродинамический профиль по п.10, в котором воздух выдувается из канала через множество отверстий, ограниченных вдоль длины нижней поверхности крыла, в направлении, перпендикулярном поверхности, из которой воздух выдувается.
12. Аэродинамический профиль по п.11, который включает в себя крыло, и при этом линия подвески закрылка проходит вдоль линии, где закрылок подвешен к крылу, и при этом воздух выдувается из отверстий, находящихся в некотором положении, к задней кромке аэродинамического профиля, но на стороне крыла от линии подвески закрылка.
13. Аэродинамический профиль по п.12, в котором отверстия находятся в положении, соответствующем от 65 до 80% длины хорды аэродинамического профиля от передней кромки к задней кромке аэродинамического профиля.
14. Аэродинамический профиль по п.9, в котором средство для приложения силы отсоса на нижней поверхности аэродинамического профиля включает в себя канал внутри аэродинамического профиля вдоль его длины, по которому отсасывается воздух.
15. Аэродинамический профиль по п.14, в котором канал, по которому выдувается воздух, является тем же самым, что и канал, по которому воздух отсасывается.
16. Аэродинамический профиль по п.15, в котором средство для приложения силы отсоса включает в себя отсасывающее устройство для отсоса воздуха из канала, такое, как отсасывающий насос.
17. Аэродинамический профиль по п.16, в котором воздух отсасывается по каналу из множества отверстий, ограниченных вдоль длины нижней поверхности аэродинамического профиля.
18. Аэродинамический профиль по п.17, в котором множество отверстий, из которых отсасывается воздух, является тем же множеством отверстий, через которые воздух выдувается.
19. Аэродинамический профиль по п.9, в котором средства выдувания воздуха из нижней поверхности закрылка включают второй канал вдоль длины закрылка, из которого выдувается воздух, а также в котором воздух выдувается через второй канал через второе множество отверстий, ограниченных вдоль длины нижней поверхности закрылков в положении, соответствующем от 90 до 98% длины хорды аэродинамического профиля от передней кромки к задней кромке аэродинамического профиля.
20. Аэродинамический профиль по п.19, который включает в себя средство для выдува воздуха, которое выдувает воздух из второго множества отверстий, по меньшей мере, когда наклон закрылков является отрицательным, чтобы изменить ламинарный поток, превращая его в турбулентный поток на закрылке, с целью снижения лобового сопротивления путем уменьшения образования пузыря отрыва.
21. Аэродинамический профиль по п.20, в котором упомянутое средство для выдува воздуха включает в себя выдувное устройство, такое, как насос, для выдува воздуха по каналу.
22. Аэродинамический профиль по любому из пп.14-21, в котором средство для приложения силы отсоса и упомянутые средства для выдува воздуха представляют собой единственный насос.
23. Аэродинамический профиль по п.20, который используется в планере и к которому подсоединено устройство для приложения силы отсоса и для выдува воздуха с целью управления планером, вследствие чего система автоматически выдувает и отсасывает воздух в зависимости от положения закрылка аэродинамического профиля.
24. Летательный аппарат, оснащенный аэродинамическим профилем, с системой управления пограничным слоем аэродинамического профиля с ламинарным потоком для снижения лобового сопротивления при отклонении закрылка по пп.9-21.
RU2008129684/11A 2005-12-20 2006-12-01 Управление пограничным слоем аэродинамического профиля RU2406648C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ZA200510346 2005-12-20
ZA2005/10346 2005-12-20

Publications (2)

Publication Number Publication Date
RU2008129684A RU2008129684A (ru) 2010-01-27
RU2406648C2 true RU2406648C2 (ru) 2010-12-20

Family

ID=38179456

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008129684/11A RU2406648C2 (ru) 2005-12-20 2006-12-01 Управление пограничным слоем аэродинамического профиля

Country Status (8)

Country Link
US (1) US8251319B2 (ru)
EP (1) EP1966044B1 (ru)
AT (1) ATE438560T1 (ru)
DE (1) DE602006008351D1 (ru)
PL (1) PL1966044T3 (ru)
RU (1) RU2406648C2 (ru)
WO (1) WO2007072259A2 (ru)
ZA (1) ZA200803980B (ru)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008033005A1 (de) * 2008-07-14 2010-03-18 Airbus Deutschland Gmbh Aerodynamische Klappe und Flügel
DE102009006145A1 (de) 2009-01-26 2010-08-12 Airbus Deutschland Gmbh Hochauftriebsklappe, Anordnung einer Hochauftriebsklappe mit einer Vorrichtung zur Strömungsbeeinflussung an derselben sowie Flugzeug mit einer derartigen Anordnung
DE102009011662A1 (de) 2009-03-04 2010-09-09 Airbus Deutschland Gmbh Tragflügel eines Flugzeugs sowie Anordnung eines Tragflügels mit einer Vorrichtung zur Strömungsbeeinflussung
WO2013172914A2 (en) * 2012-02-27 2013-11-21 Sinhatech Self adjusting deturbulator enhanced flap and wind deflector
EP2644496B1 (en) 2012-03-29 2015-07-01 Airbus Operations GmbH Surface element for an aircraft, aircraft and method for improving high-lift generation on a surface element
EP2644497B1 (en) * 2012-03-29 2016-01-20 Airbus Operations GmbH Wing for an aircraft, aircraft and method for reducing aerodynamic drag and improving maximum lift
JP5956803B2 (ja) * 2012-03-29 2016-07-27 一般社団法人日本航空宇宙工業会 飛行体の高揚力装置
DE102012112405B4 (de) * 2012-12-17 2017-06-08 Airbus Defence and Space GmbH Gekrümmter Flügelabschnitt mit einer schwenkbaren Hinterkantenklappe
DE102013109489B4 (de) * 2013-08-30 2017-05-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Aerodynamisches Bauteil mit einem Strukturelement zur Ausbildung einer Oberfläche mit veränderlicher Luftdurchlässigkeit
US10106246B2 (en) 2016-06-10 2018-10-23 Coflow Jet, LLC Fluid systems that include a co-flow jet
US10315754B2 (en) 2016-06-10 2019-06-11 Coflow Jet, LLC Fluid systems that include a co-flow jet
US10532805B2 (en) * 2016-09-20 2020-01-14 Gulfstream Aerospace Corporation Airfoil for an aircraft having reduced noise generation
US9815545B1 (en) 2017-02-28 2017-11-14 Steering Financial Ltd. Aerodynamic lifting system
US10683076B2 (en) 2017-10-31 2020-06-16 Coflow Jet, LLC Fluid systems that include a co-flow jet
US11293293B2 (en) 2018-01-22 2022-04-05 Coflow Jet, LLC Turbomachines that include a casing treatment
US11111025B2 (en) 2018-06-22 2021-09-07 Coflow Jet, LLC Fluid systems that prevent the formation of ice
GB2600584B (en) 2019-07-23 2024-03-06 Coflow Jet Llc Fluid systems and methods that address flow separation
CN113148148B (zh) * 2021-04-20 2022-03-29 南京航空航天大学 一种地效飞行器的增稳环量控制方法及增稳型地效飞行器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2833492A (en) * 1955-02-07 1958-05-06 Harlan D Fowler Boundary layer control system with aerodynamic glove
US3159362A (en) * 1959-04-15 1964-12-01 Laing Nikolans Lifting and propulsion means for aircraft
US4074878A (en) * 1975-06-23 1978-02-21 Sherman Irving R Programmed flap system for an aircraft having wings
DE3043567C2 (de) 1980-11-15 1982-09-23 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Anordnung zur Beeinflussung der Strömung an aerodynamischen Profilen
US4575030A (en) * 1982-09-13 1986-03-11 The Boeing Company Laminar flow control airfoil
US5114100A (en) * 1989-12-29 1992-05-19 The Boeing Company Anti-icing system for aircraft
US5115996A (en) * 1990-01-31 1992-05-26 Moller International, Inc. Vtol aircraft
US5253828A (en) * 1992-07-17 1993-10-19 The Board Of Regents Of The University Of Oklahoma Concealable flap-actuated vortex generator
US5590854A (en) * 1994-11-02 1997-01-07 Shatz; Solomon Movable sheet for laminar flow and deicing
DE29817545U1 (de) 1997-02-20 1999-07-01 Droxner Thomas Dipl Ing Fh Kombinierte Spalt- und Wölbklappe
US6167829B1 (en) * 1997-10-09 2001-01-02 Thomas G. Lang Low-drag, high-speed ship
DE10339030B4 (de) * 2003-08-25 2005-11-03 Man Technologie Ag Tragstruktur für eine ein- und ausfahrbare Klappe und deren Verwendung
DE102004024057B3 (de) 2004-05-13 2005-09-15 Airbus Deutschland Gmbh Luftfahrzeug mit einem Fluidkanalsystem
US7134631B2 (en) * 2004-06-10 2006-11-14 Loth John L Vorticity cancellation at trailing edge for induced drag elimination
IL165233A (en) * 2004-11-16 2013-06-27 Israel Hirshberg Energy conversion facility

Also Published As

Publication number Publication date
DE602006008351D1 (de) 2009-09-17
ATE438560T1 (de) 2009-08-15
EP1966044A2 (en) 2008-09-10
WO2007072259A2 (en) 2007-06-28
EP1966044B1 (en) 2009-08-05
WO2007072259A3 (en) 2007-10-25
RU2008129684A (ru) 2010-01-27
ZA200803980B (en) 2009-03-25
PL1966044T3 (pl) 2010-02-26
US20100270434A1 (en) 2010-10-28
US8251319B2 (en) 2012-08-28

Similar Documents

Publication Publication Date Title
RU2406648C2 (ru) Управление пограничным слоем аэродинамического профиля
KR100435312B1 (ko) 층류 제어 기능을 가진 리딩 에지 고양력 장치
US20200018285A1 (en) Airfoil with a vortex generator pair
US7322547B2 (en) Aerospace vehicle leading edge slat devices and corresponding methods
KR101950862B1 (ko) 윈드 터빈 회전자 블레이드
CN104118557B (zh) 具有多缝道协同射流控制的低雷诺数翼型及控制方法
US20090020652A1 (en) Wing leading edge having vortex generators
US20150183513A1 (en) Flow body, method for manufacturing a flow body and aircraft having such a flow body
WO2004041640A3 (en) Slotted aircraft wing
US10279899B2 (en) Helicopter with anti-torque system, related kit and methods
CN103057691A (zh) 具有波纹形状的前缘部分的飞机尾翼面
CN104210644A (zh) 用于延伸的混合层流控制的设备和方法
CN101932507A (zh) 具有一系列激波凸起的空气动力结构
CN111792022B (zh) 一种抑制旋翼桨-涡干扰噪声的尾缘气流控制方法
CN103332288B (zh) 一种飞机主翼后缘处的边条及其设计方法
Boermans Research on sailplane aerodynamics at Delft University of Technology
CN112977803B (zh) 吹吸协同高升力增强的变形襟翼
CN104192294B (zh) 机翼结构及飞机
US10464682B2 (en) Negative lift evacuation slide
US20200001980A1 (en) Aircraft generating larger thrust and lift by fluid continuity
CN106218886A (zh) 多旋翼机桨叶以及多旋翼机
CN101497371A (zh) 用于飞行器的空气动力学高性能翼型
CN108163184B (zh) 吹气环量自调节飞行器
RU2174484C2 (ru) Самолет вертикального взлета и посадки - "дисколет безрукова-3"
CN104149969A (zh) 一种可实现内部协同射流的螺旋桨布局构型及控制方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181202