RU2404362C2 - Кабельный внутрискважинный газовый хроматограф и способ внутрискважинной газовой хроматографии - Google Patents

Кабельный внутрискважинный газовый хроматограф и способ внутрискважинной газовой хроматографии Download PDF

Info

Publication number
RU2404362C2
RU2404362C2 RU2005141354/03A RU2005141354A RU2404362C2 RU 2404362 C2 RU2404362 C2 RU 2404362C2 RU 2005141354/03 A RU2005141354/03 A RU 2005141354/03A RU 2005141354 A RU2005141354 A RU 2005141354A RU 2404362 C2 RU2404362 C2 RU 2404362C2
Authority
RU
Russia
Prior art keywords
valve
sample
chromatograph
sampling
downhole gas
Prior art date
Application number
RU2005141354/03A
Other languages
English (en)
Inventor
Михаил Николаевич Якимов (RU)
Михаил Николаевич Якимов
Original Assignee
Шлюмбергер Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмбергер Текнолоджи Б.В. filed Critical Шлюмбергер Текнолоджи Б.В.
Priority to RU2005141354/03A priority Critical patent/RU2404362C2/ru
Priority to EP06847423A priority patent/EP1988254A4/en
Priority to PCT/RU2006/000704 priority patent/WO2007078214A2/ru
Priority to US12/159,336 priority patent/US20100018287A1/en
Application granted granted Critical
Publication of RU2404362C2 publication Critical patent/RU2404362C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/10Obtaining fluid samples or testing fluids, in boreholes or wells using side-wall fluid samplers or testers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • G01N2030/8854Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds involving hydrocarbons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8886Analysis of industrial production processes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Изобретение относится к приборам, используемым в нефтегазовой отрасли. Техническим результатом является создание прибора, позволяющего провести газовую хроматографию для определения типа скважинных флюидов в скважине в реальном времени. Газовый хроматограф включает камеру для образцов с датчиком положения поршня, соединенную через клапан отбора пробы образца с трубопроводом, и соединенную через нефтяной насос с резервуаром для компенсации гидравлического давления нефти, электрический термостат с датчиком температуры и расположенной внутри термостата трубкой хроматографа, с одной стороны соединенной последовательно через вращающийся инжектор пробы, цеолитовый фильтр, первый обратный клапан и изолирующий клапан хроматографа с линией соединения клапана отбора пробы образца и камеры для образцов, с другой стороны последовательно соединенной с вторым обратным клапаном, детектором фракции, баллоном с порцией образца и вторым датчиком давления. Причем вращающийся инжектор пробы соединен последовательно с редуктором давления, клапаном для транспортирующей среды, баллоном со сжатым азотом и первым датчиком давления, обводная линия с обводным клапаном соединена в параллель с вращающимся инжектором пробы, трубкой хроматографа и детектором фракции, а контур электронной телеметрии соединен с выходом детектора фракции. Также предлагается способ внутрискважинной газовой хроматографии. 2 н. и 1 з.п. ф-лы, 5 ил.

Description

Изобретение относится к приборам, используемым в нефтегазовой отрасли.
Газовая хроматография является хорошо известным методом измерения, основанным на вводе небольшой порции исследуемого газа в непрерывный поток известного нейтрального газа ("носителя" или "транспортирующей среды"). Затем газы проходят через капиллярную трубку. Вследствие различной подвижности отдельных газов, составляющих пробу, эта проба разделяется на несколько порций, каждая из которых состоит из отдельного газа. На выходе из капиллярной трубки эти отдельные порции в носителе могут быть идентифицированы различными способами. Таким образом, может быть определен полный химический состав пробы. Преимуществом хроматографического метода является то, что детекторы на приемном конце могут быть значительно упрощены, сохраняя высокое разрешение системы в целом.
В нефтегазовой области газовая хроматография широко используется для анализа проб бурового раствора и позволяет определить концентрацию H2S, СН4, С2Н6 и т.д. в газах, смешанных с выходным потоком бурового раствора. При этом в качестве носителя обычно применяются гелий или азот.
При реализации этого метода технику, используемую для извлечения, отбора проб и скважинного анализа пластовых флюидов, можно опускать в нефтяную скважину на канате или на бурильной трубе. Инструменты устанавливаются на стенке ствола скважины, после чего на этой стенке создается гидравлический затвор. Затем в пласт устанавливается зонд, таким образом создается гидравлическая связь с исследуемым пластом. Образцы пластовых флюидов - начиная от нескольких кубических сантиметров до сотен литров, извлекаются из пласта в инструмент для переноски на поверхность и/или анализа на месте. В некоторых случаях образцы после анализа на месте выливаются в скважину. Методы анализа флюидов включают в себя измерения удельного сопротивления, окраски флюидов или поглощения света, плотности флюидов (как функции поглощения γ-излучения), концентрации газа (путем преломления/ отражения газовых пузырьков в тонких трубках) и т.д. Кроме того, проводятся специальные измерения параметров флюидов: при помощи датчиков регистрируются точные значения давления и температуры для различных режимов потока.
Разработка устройства, позволяющего использовать методы скважинного анализа с помощью газового хроматографа, представляет особый интерес. До настоящего времени подобное техническое решение не рассматривалось, поскольку хроматографические трубки очень длинные, и единичный анализ, заключающийся в разделении пробы на интересующие компоненты, требует много времени. Кроме того, для пробы отбирается большое количество газа. Поэтому недостатком конструкции скважинного хроматографа являются большие размеры и вес, что делает его непрактичным и сложным для применения при различных условиях реальной ситуации.
Газовая хроматография, в особенности газожидкостная, исследует образец, который предварительно переводится в паровую фазу и подается в головку хроматографической колонны (Фиг.1), где поз.1 обозначен газ-носитель, 2 - регулирующий клапан, 3 - колонна, 4 - устройство для ввода пробы, 5 - термостат, 6 - детектор, 7 - регистратор. Образец переносится по колонне при помощи потока инертной газовой подвижной фазы. Сама колонна содержит жидкую или твердую неподвижную фазу, которая нанесена на стенки инертного твердого материала. Транспортирующий газ-носитель должен быть химически инертным. Обычно используют такие газы, как азот, гелий, аргон и диоксид углерода. Выбор газа-носителя часто зависит от типа используемого детектора. Система подачи газа-носителя содержит также молекулярное сито для удаления воды и других примесей.
Для оптимально работы хроматографа образец не должен быть слишком большим и должен вводиться в колонну в виде паровой "пробки" - медленный ввод больших образцов приводит к размыванию границ и ухудшению разрешения. Наиболее распространенным методом ввода образца является метод, в котором используется микрошприц для ввода образца через резиновую прокладку в канал быстрого испарителя в головке колонны. Температура канала для образца обычно на 50°С выше точки кипения наименее летучего компонента образца. Для насадочных колонн размер образца находится в диапазоне от десятых долей микролитра до 20 микролитров. Для капиллярных колонн требуются значительно меньшие образцы, обычно около 10-3 микролитров.
Отбор образцов скважинных флюидов производится с середины 1960-х годов. Известны тестер пластовых флюидов, разработанный компанией Schlumberger, под названием Repeat Formation Tester - RFT™, модульный динамический тестер Modular Dynamic Tester - MDT (1992) и SRFT™ (1997). Однако тестер пластовых флюидов RFT не производил анализа флюидов в скважине, он был предназначен для доставки образцов пластовых флюидов при помощи двух баллонов высокого давления, оснащенных клапанами с дистанционным управлением.
В модульном динамическом тестере MDT (Фиг.2), выбранном в качестве прототипа, была впервые реализована идея анализа скважинных флюидов при помощи "Резистивной ячейки" - устройства с четырьмя электродами для измерения электрического сопротивления пластовых флюидов при их прохождении через измерительный трубопровод (Д.Кучук, Journal of Petroleum Science and Engineering 11 (1994), стр.123-135). Это впервые позволило определить самый общий тип флюида (например, "нефть или вода") перед доставкой образца на поверхность. На Фиг.3 показана схема модульного динамического тестера MDT, где поз.10 обозначена резистивная/температурная ячейка, 11 - шарнирный трубопровод, 12 - передний башмак, 13 - фильтр, 14 - пакер, 15 - клапан фильтра, 16 - поршни зонда, 17 - модуль для образцов, 18 - датчик CQG, 19 - изолирующий клапан, 20 - выравнивающий клапан, 21 - трубопроводная линия, 22 - предварительный тест, 23 - измеритель деформации, 24 - задние телескопические поршни, 25 - дроссельный/сальниковый клапан, 26 - камера для образцов.
Определение типа скважинных флюидов получило дальнейшее развитие путем внедрения модуля оптического анализатора флюидов (OFA). Этот модуль вводится в трубопровод и выполняет определение типа флюидов в реальном времени путем пропускания интенсивного светового пучка через флюид и анализа спектральных характеристик прошедшего света. Вследствие различного поглощения света водой и нефтью записанный спектр указывает содержание воды и нефти, а также позволяет определять различные типы нефти. Газ анализируется различными датчиками, которые обнаруживают пузырьки газа в отраженном свете. Типичная запись сигнала при определении типа скважинных флюидов представлена на Фиг.4. Такой же принцип измерения использован компанией Schlumberger в анализаторе флюидов Live Fluid Analyzer (LFA), который является дальнейшим развитием оптического метода OFA и выпускается с 2002 г., а также в модуле Baker-Atlas SampleView.
Однако сложность конструкции модульного динамического тестера и его применения для внутрискважинного использования не позволяли провести процесс внутрискважинной газовой хроматографии.
Целью предложенной разработки было создание прибора, позволяющего провести газовую хроматографию для определения типа скважинных флюидов в скважине в реальном времени.
Предлагаемый кабельный внутрискважинный газовый хроматограф изображен на Фиг.5, где поз.30 обозначен трубопровод, 31 - клапан отбора пробы образца, 32 - камера для образцов, 33 - изолирующий клапан хроматографа, 34 - цеолитовый фильтр, 35 - обводной клапан, 36 - жидкий азот, 37 - вращающийся инжектор пробы, 38 - трубка хроматографа, 39 - детектор фракции, 40 - резервуар для компенсации гидравлического давления нефти, 41 - нефтяной насос, 42 - датчик положения поршня, 43 - обратный клапан, 44 - редуктор давления, 45 - клапан для транспортирующей среды, 46 - датчик давления, 47 - датчик температуры, 48 - порция образца, 49 - электрический термостат, 50 - контур электронной телеметрии.
Трубопровод соединяется с магистральным трубопроводом модулей MDT сверху и снизу, поскольку:
- метод введения хроматографа в инструмент MDT путем присоединения к общему (магистральному) трубопроводу таким образом, чтобы модуль мог быть использован сверху и снизу точки отбора образца, обеспечивает гибкость установки скважинного инструмента;
- метод и устройство для выполнения газовой хроматографии из общего трубопровода позволяет многократно проводить анализ из одного и того же разреза в скважине;
- применение OFA/LFA для подготовки хроматографического анализа позволяет проводить анализ пластовых флюидов так, чтобы они были менее загрязнены буровым раствором и фильтратом бурового раствора.
Кабельный внутрискважинный газовый хроматограф состоит из следующих компонентов, выполняющих следующие функции:
1. Клапан отбора пробы образца 31 соединяет трубопровод MDT 30 с камерой для образцов модуля хроматографа 32;
2. Камера для образцов 32 в хроматографе служит для отбора малых порций из трубопровода 30 для последующего анализа; камера для образцов оснащена датчиком положения поршня 42 и нефтяным насосом 41, позволяющими отбирать образец из трубопровода или помещать образец в трубопровод;
3. Изолирующий клапан хроматографа 33 и обратный клапан 43 позволяют переводить образец в датчиковую секцию инструмента и препятствуют обратному потоку образца;
4. Сменный цеолитовый фильтр 34 обеспечивает чистоту образца;
5. Обводная линия с обводным клапаном 35 служат для удаления нежелательных флюидов из датчиковой секции;
6. Баллон со сжатым азотом 36 оснащен клапаном для транспортирующей среды 45 и редуктором давления 44, которые необходимы для организации потока транспортирующей среды (азота);
7. Вращающийся инжектор пробы 37 позволяет вводить пробу флюидов в поток транспортирующей среды;
8. Трубка хроматографа 38, в которой разделяются фракции пробы; трубка расположена в электрическом термостате 49, который поддерживает необходимую повышенную температуру, контролируемую при помощи датчика температуры 47;
9. Детектор фракции 39, основанный на поглощении света;
10. Баллон с порцией образца 48 для сбора остаточных флюидов после теста; обратный клапан 43 над детектором предотвращает обратный поток транспортирующей среды;
11. Контур электронной телеметрии 50 служит для передачи данных по кабельной системе сбора результатов измерений на поверхность.
Устройство работает по следующему принципу:
1. Модуль хроматографа расположен вместе со штангой для MDT таким образом, чтобы точка отбора пластового образца и модуль LFA находились с одной стороны, а насосный модуль (MRPO) или другое оборудование отбора проб располагались с другой стороны.
2. Инструмент опускается на требуемую глубину скважины, и устанавливается гидравлический контакт с пластовыми флюидами.
3. Пластовые флюида нагнетаются насосом, в это время проводятся в MDT измерения датчиками сопротивления, температуры и давления и снимаются показания LFA. После достижения требуемой чистоты цикл нагнетания заканчивается и начинается хроматографический анализ.
4. Клапан отбора пробы образца в модуле хроматографа открывается и флюид из трубопровода забирается в камеру для образцов.
5. Клапан отбора пробы образца закрывается и открывается изолирующий клапан хроматографа для подачи образца для анализа.
6. Мгновенно открывается обводной клапан (подмешивающий) для промывки содержимого от предыдущих образцов или других нежелательных флюидов.
7. Клапан для транспортирующей среды открывается для создания потока транспортирующей среды.
8. Вращающийся инжектор пробы открывается для ввода пробы флюида, подлежащей анализу.
9. Клапан хроматографа закрывается и открывается клапан отбора пробы образца для подачи флюидов из камеры для образцов в трубопровод. Нефтяной насос используется для перемещения поршня. Нефтяной насос останавливается, и клапан отбора пробы закрывается по сигналу от датчика положения поршня.
10. Затем проба разделяется в хроматографической трубке и анализируется детектором традиционным для газовой хроматографии образом. Остатки транспортирующей среды и пробы поступают в секцию промывки.
11. После завершения анализа закрывается клапан для транспортирующей среды, и инструмент готов к повторению теста на другой глубине скважины, начиная с пункта 2, описанного выше.
Разработанные в Институте катализа Сибирского отделения наук Российской академии наук сверхмалые хроматографические трубки дали возможность сконструировать прибор, позволяющий совместить метод газовой хроматографии с требованиями и условиями нефтегазовой отрасли.
Важнейшим преимуществом заявленного устройства является то, что малые размеры трубок значительно сокращают время обработки пробы, так что анализ, проводимый с помощью заявленного прибора, может быть выполнен за несколько минут вместо нескольких часов, что и позволило спроектировать скважинный газовый анализатор, основанный на принципе хроматографии.
Таким образом, газовая хроматография впервые применена для определения типа скважинных флюидов в скважине в реальном времени.

Claims (3)

1. Кабельный внутрискважинный газовый хроматограф, включающий камеру для образцов с датчиком положения поршня, соединенную через клапан отбора пробы образца с трубопроводом, и соединенную через нефтяной насос с резервуаром для компенсации гидравлического давления нефти, электрический термостат с датчиком температуры и расположенной внутри термостата трубкой хроматографа, с одной стороны соединенной последовательно через вращающийся инжектор пробы, цеолитовый фильтр, первый обратный клапан и изолирующий клапан хроматографа с линией соединения клапана отбора пробы образца и камеры для образцов, с другой стороны последовательно соединенной с вторым обратным клапаном, детектором фракции, баллоном с порцией образца и вторым датчиком давления, причем вращающийся инжектор пробы соединен последовательно с редуктором давления, клапаном для транспортирующей среды, баллоном со сжатым азотом и первым датчиком давления, обводная линия с обводным клапаном соединена в параллель с вращающимся инжектором пробы, трубкой хроматографа и детектором фракции, а контур электронной телеметрии соединен с выходом детектора фракции.
2. Способ внутрискважинной газовой хроматографии, по которому
внутрискважинный газовый хроматограф опускают на требуемую глубину скважины и устанавливается гидравлический контакт с пластовыми флюидами,
нагнетают насосом пластовые флюиды,
заканчивают цикл нагнетания,
открывают клапан отбора пробы образца и забирают флюид из трубопровода в камеру для образцов,
закрывают клапан отбора пробы образца и открывают изолирующий клапан хроматографа для подачи образца на анализ,
в то же время открывается обводной клапан для промывки содержимого от предыдущих образцов или других нежелательных флюидов,
открывают клапан для транспортирующей среды,
открывают вращающийся инжектор пробы для ввода пробы флюида, подлежащей анализу,
закрывают клапан хроматографа и открывают клапан отбора пробы образца для подачи флюидов из камеры для образцов в трубопровод,
перемещают поршень с помощью нефтяного насоса, останавливают нефтяной насос и закрывают клапан отбора пробы по сигналу от датчика положения поршня,
анализируют детектором пробу, разделенную в хроматографической трубке,
остатки транспортирующей среды и пробы направляют в секцию промывки,
после завершения анализа закрывают клапан для транспортирующей среды.
3. Способ по п.2, отличающийся тем, что кабельный внутрискважинный газовый хроматограф располагают вместе со штангой для модульного динамического тестера (МВТ)таким образом, чтобы точка отбора пластового образца и модуль анализатора флюидов (LFA) находились с одной стороны, а насосный модуль (MRPO) или другое оборудование отбора проб располагались с другой стороны, во время нагнетания пластовых флюидов проводятся в MDT измерения датчиками сопротивления, температуры и давления и снимаются показания LFA, цикл нагнетания заканчивается после достижения требуемой чистоты.
RU2005141354/03A 2005-12-29 2005-12-29 Кабельный внутрискважинный газовый хроматограф и способ внутрискважинной газовой хроматографии RU2404362C2 (ru)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2005141354/03A RU2404362C2 (ru) 2005-12-29 2005-12-29 Кабельный внутрискважинный газовый хроматограф и способ внутрискважинной газовой хроматографии
EP06847423A EP1988254A4 (en) 2005-12-29 2006-12-27 CABLE CHROMATOGRAPH INSTALLED IN A WELL AND CABLE CHROMATOGRAPHY METHOD IN A WELL
PCT/RU2006/000704 WO2007078214A2 (fr) 2005-12-29 2006-12-27 Chromatographe a cable installe dans un puits et procede de chromatographie a cable dans un puits
US12/159,336 US20100018287A1 (en) 2005-12-29 2006-12-27 Wirleline downhole gas chromatograph and downhole gas chromatography method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005141354/03A RU2404362C2 (ru) 2005-12-29 2005-12-29 Кабельный внутрискважинный газовый хроматограф и способ внутрискважинной газовой хроматографии

Publications (1)

Publication Number Publication Date
RU2404362C2 true RU2404362C2 (ru) 2010-11-20

Family

ID=38228629

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005141354/03A RU2404362C2 (ru) 2005-12-29 2005-12-29 Кабельный внутрискважинный газовый хроматограф и способ внутрискважинной газовой хроматографии

Country Status (4)

Country Link
US (1) US20100018287A1 (ru)
EP (1) EP1988254A4 (ru)
RU (1) RU2404362C2 (ru)
WO (1) WO2007078214A2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8966969B2 (en) 2010-07-19 2015-03-03 Sgs North America Inc. Automated analysis of pressurized reservoir fluids
RU2674425C2 (ru) * 2014-02-12 2018-12-07 Мустанг Сэмплинг, Ллк Система взятия проб с испарителем с регулировкой давления газоконденсатной жидкости
CN112696188A (zh) * 2020-12-09 2021-04-23 王少斌 一种环形可拆卸橡胶探头推靠器

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7637151B2 (en) * 2006-12-19 2009-12-29 Schlumberger Technology Corporation Enhanced downhole fluid analysis
US8028562B2 (en) 2007-12-17 2011-10-04 Schlumberger Technology Corporation High pressure and high temperature chromatography
US8250904B2 (en) 2007-12-20 2012-08-28 Schlumberger Technology Corporation Multi-stage injector for fluid analysis
US20090158820A1 (en) * 2007-12-20 2009-06-25 Schlumberger Technology Corporation Method and system for downhole analysis
EP2245448A2 (en) * 2008-02-28 2010-11-03 Services Pétroliers Schlumberger Multi-stage injector for fluid analysis
US8964502B2 (en) * 2009-03-27 2015-02-24 Exxonmobil Upstream Research Company Zero offset profile from near-field hydrophones
US8152909B2 (en) * 2009-04-01 2012-04-10 Bruker Chemical Analysis B.V. Gas chromatography check valve and system
CN102052076B (zh) * 2009-10-30 2014-04-02 中国石油化工股份有限公司 一种对含有h2s/co2气田井筒流体成份监测系统及其分析方法
CN102052075B (zh) * 2009-10-30 2014-11-26 中国石油化工股份有限公司 一种进行油田现场取样的系统,方法和应用
CN102003177B (zh) * 2010-09-13 2013-01-02 许进鹏 用于井下单个钻孔的水文地质参数观测仪器
US9638681B2 (en) 2011-09-30 2017-05-02 Schlumberger Technology Corporation Real-time compositional analysis of hydrocarbon based fluid samples
CA2874395A1 (en) 2012-05-24 2013-12-19 Douglas H. Lundy Threat detection system having multi-hop, wifi or cellular network arrangement of wireless detectors, sensors and sub-sensors that report data and location non-compliance, and enable related devices while blanketing a venue
WO2014030789A1 (ko) * 2012-08-24 2014-02-27 (주)백년기술 시료 전처리 장치 및 시료 전처리 방법
US10520623B2 (en) * 2013-05-31 2019-12-31 Westerngeco L.L.C. Methods and systems for marine survey acquisition
US9458715B2 (en) 2014-12-16 2016-10-04 Schlumberger Technology Corporation Determining the plus fraction of a gas chromatogram
US9664665B2 (en) 2014-12-17 2017-05-30 Schlumberger Technology Corporation Fluid composition and reservoir analysis using gas chromatography
US10648328B2 (en) 2016-12-29 2020-05-12 Halliburton Energy Services, Inc. Sample phase quality control
CN107806342B (zh) * 2017-11-18 2024-05-10 武汉三江航天远方科技有限公司 油田井下地层流体智能存取方法及其装置
CN108533959A (zh) * 2018-03-23 2018-09-14 西安长庆科技工程有限责任公司 一种适用于高气油比集输站场的油气混输装置及工艺
AU2019279953B2 (en) 2019-02-12 2023-02-02 Halliburton Energy Services, Inc. Bias correction for a gas extractor and fluid sampling system
CN110082439B (zh) * 2019-04-09 2024-06-11 国网辽宁省电力有限公司电力科学研究院 一种用于现场油色谱在线监测装置检定的智能检验存储装置
CN111781024A (zh) * 2020-07-31 2020-10-16 江苏集萃托普索清洁能源研发有限公司 串联式负压采样分析系统及方法
CN112389812A (zh) * 2020-11-09 2021-02-23 广西电网有限责任公司电力科学研究院 一种应用于现场检测在线色谱装置的小型储油装置
US11846148B2 (en) 2021-09-29 2023-12-19 Saudi Arabian Oil Company Balloon-equipped autonomous downhole logging tool for oil and gas wells
CN114935610B (zh) * 2022-04-05 2023-12-22 陕西长青能源化工有限公司 一种用气相色谱同时测定酸性气中含硫含醇组分含量的方法及其系统
CN118130168A (zh) * 2024-05-07 2024-06-04 杭州申昊科技股份有限公司 一种带电状态油样安全自动采集装置及其方法
CN118130170A (zh) * 2024-05-07 2024-06-04 杭州申昊科技股份有限公司 一种变压器油中气体自动检测机器人及检测方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171274A (en) * 1960-06-03 1965-03-02 Phillips Petroleum Co Sampling method for gas chromatographic analyzer
US3236092A (en) * 1962-02-21 1966-02-22 Monsanto Co Method and apparatus for continuous flow analysis
US3254531A (en) * 1962-05-03 1966-06-07 Halliburton Co Formation fluid sampling method
US3408166A (en) * 1962-09-04 1968-10-29 Scientific Industries Gas extractor and injector for gas chromatography
US3556730A (en) * 1968-10-21 1971-01-19 Phillips Petroleum Co Sampling system
SU1038473A2 (ru) * 1979-06-25 1983-08-30 Всесоюзный научно-исследовательский институт нефтепромысловой геофизики Устройство на кабеле дл исследовани пластов в необсаженных скважинах
US4739654A (en) * 1986-10-08 1988-04-26 Conoco Inc. Method and apparatus for downhole chromatography
FR2675265B1 (fr) * 1991-04-11 1993-07-30 Schlumberger Services Petrol Procede d'analyse de melanges d'huiles hydrocarbonees utilisant la chromatographie par permeation de gel.
US5547497A (en) * 1992-09-30 1996-08-20 Chromatofast, Inc. Apparatus for gas chromatography
GB2359631B (en) * 2000-02-26 2002-03-06 Schlumberger Holdings Hydrogen sulphide detection method and apparatus
AU2001255809A1 (en) * 2000-03-27 2001-10-08 Halliburton Energy Services, Inc. Method and apparatus for the down-hole characterization of formation fluids
GB2377952B (en) * 2001-07-27 2004-01-28 Schlumberger Holdings Receptacle for sampling downhole
US6748328B2 (en) * 2002-06-10 2004-06-08 Halliburton Energy Services, Inc. Determining fluid composition from fluid properties
US7384453B2 (en) * 2005-12-07 2008-06-10 Schlumberger Technology Corporation Self-contained chromatography system
US7458257B2 (en) * 2005-12-19 2008-12-02 Schlumberger Technology Corporation Downhole measurement of formation characteristics while drilling

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8966969B2 (en) 2010-07-19 2015-03-03 Sgs North America Inc. Automated analysis of pressurized reservoir fluids
RU2674425C2 (ru) * 2014-02-12 2018-12-07 Мустанг Сэмплинг, Ллк Система взятия проб с испарителем с регулировкой давления газоконденсатной жидкости
CN112696188A (zh) * 2020-12-09 2021-04-23 王少斌 一种环形可拆卸橡胶探头推靠器
CN112696188B (zh) * 2020-12-09 2023-10-31 王少斌 一种环形可拆卸橡胶探头推靠器

Also Published As

Publication number Publication date
EP1988254A2 (en) 2008-11-05
EP1988254A4 (en) 2010-07-07
WO2007078214A2 (fr) 2007-07-12
WO2007078214A3 (fr) 2008-01-10
US20100018287A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
RU2404362C2 (ru) Кабельный внутрискважинный газовый хроматограф и способ внутрискважинной газовой хроматографии
RU2333357C2 (ru) Скважинный пробоотборник с микропробоотборной камерой и способ его применения
US7581435B2 (en) Method and apparatus for acquiring physical properties of fluid samples at high temperatures and pressures
US8256283B2 (en) Method of downhole characterization of formation fluids, measurement controller for downhole characterization of formation fluids, and apparatus for downhole characterization of formation fluids
RU2707621C2 (ru) Способ для анализа проб
US7461547B2 (en) Methods and apparatus of downhole fluid analysis
US6967322B2 (en) Method and apparatus for performing rapid isotopic analysis via laser spectroscopy
US9416656B2 (en) Assessing reservoir connectivity in hydrocarbon reservoirs
CA2825177C (en) Method and apparatus for evaluating fluid sample contamination by using multi sensors
RU2348806C2 (ru) Устройство непрерывной регистрации данных для скважинного пробоотборного резервуара
US20130071934A1 (en) Method and system for measurement of reservoir fluid properties
EP2574920A1 (en) Real-Time Compositional Analysis of Hydrocarbon Based Fluid Samples
AU2014241262B2 (en) Surface gas correction by group contribution equilibrium model
EP1508794A1 (en) Method and apparatus for performing rapid isotopic analysis via laser spectroscopy
US20200355072A1 (en) System and methodology for determining phase transition properties of native reservoir fluids
EP1865147A1 (en) A method and apparatus for a downhole micro-sampler

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151230