WO2007078214A2 - Chromatographe a cable installe dans un puits et procede de chromatographie a cable dans un puits - Google Patents

Chromatographe a cable installe dans un puits et procede de chromatographie a cable dans un puits Download PDF

Info

Publication number
WO2007078214A2
WO2007078214A2 PCT/RU2006/000704 RU2006000704W WO2007078214A2 WO 2007078214 A2 WO2007078214 A2 WO 2007078214A2 RU 2006000704 W RU2006000704 W RU 2006000704W WO 2007078214 A2 WO2007078214 A2 WO 2007078214A2
Authority
WO
WIPO (PCT)
Prior art keywords
valve
sample
chromatograph
sampling
fluids
Prior art date
Application number
PCT/RU2006/000704
Other languages
English (en)
French (fr)
Other versions
WO2007078214A3 (fr
Inventor
Mikhail Nikolaevich Iakimov
Original Assignee
Schlumberger Canada Limited
Service Petroliers Schlumberger
Schlumberger Holdings Limited
Schlumberger Technology B.V.
Prad Research And Development N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Canada Limited, Service Petroliers Schlumberger, Schlumberger Holdings Limited, Schlumberger Technology B.V., Prad Research And Development N.V. filed Critical Schlumberger Canada Limited
Priority to EP06847423A priority Critical patent/EP1988254A4/en
Priority to US12/159,336 priority patent/US20100018287A1/en
Publication of WO2007078214A2 publication Critical patent/WO2007078214A2/ru
Publication of WO2007078214A3 publication Critical patent/WO2007078214A3/ru

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/10Obtaining fluid samples or testing fluids, in boreholes or wells using side-wall fluid samplers or testers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • G01N2030/8854Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds involving hydrocarbons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8886Analysis of industrial production processes

Definitions

  • the invention relates to devices used in the oil and gas industry.
  • Gas chromatography is a well-known measurement method based on introducing a small portion of the test gas into a continuous stream of known neutral gas (“carrier” or “transport medium”). Then the gases pass through the capillary tube. Due to the different mobility of the individual gases that make up the sample, this sample is divided into several portions, each of which consists of a separate gas. At the exit of the capillary tube, these individual portions in the carrier can be identified in various ways. In this way, the complete chemical composition of the sample can be determined.
  • the advantage of the chromatographic method is that the detectors at the receiving end can be greatly simplified, while maintaining a high resolution of the system as a whole.
  • gas chromatography is widely used to analyze drilling fluid samples and allows you to determine the concentration of H 2 S, CH 4 , C 2 H 6 , etc. in gases mixed with the mud output.
  • helium or nitrogen are usually used as a carrier.
  • the equipment used for extraction, sampling and downhole analysis of formation fluids can be lowered into an oil well on a rope or on a drill pipe.
  • Tools are installed on the wall of the wellbore, after which a hydraulic shutter is created on this wall. Then a probe is installed in the reservoir, thus creating a hydraulic connection with the studied reservoir.
  • Samples of reservoir fluids - from a few cubic centimeters to hundreds of liters, are extracted from formation into a tool for carrying to the surface and / or analysis in place. In some cases, samples after analysis in situ are poured into the well.
  • Fluid analysis methods include resistivity measurements, fluid coloration or light absorption, fluid density (as a function of gamma absorption), gas concentration (by refraction / reflection of gas bubbles in thin tubes), etc.
  • fluid density as a function of gamma absorption
  • gas concentration by refraction / reflection of gas bubbles in thin tubes
  • Gas chromatography in particular gas-liquid chromatography, examines a sample that is previously converted to the vapor phase and fed to the head of the chromatographic column (Fig. 1), where 1 is carrier gas, 2 is a control valve, 3 is a column, 4 is a device for sample inlet, 5 - Thermostat, 6 - Detector, 7 - Recorder.
  • the sample is transferred through the column using an inert gas mobile phase flow.
  • the column itself contains a liquid or solid stationary phase, which is deposited on the walls of an inert solid material. Transporting carrier gas must be chemically inert. Gases such as nitrogen, helium, argon and carbon dioxide are commonly used. The choice of carrier gas often depends on the type of detector used.
  • the carrier gas supply system also contains a molecular sieve to remove water and other impurities.
  • the sample should not be too large and should be introduced into the column in the form of a vapor “plug” - slow entry of large samples leads to blurring of the boundaries and deterioration of resolution.
  • the most common sample injection method is one that uses a microsyringe to inject the sample through a rubber gasket into the quick evaporator channel in the column head.
  • the channel temperature for the sample is usually 5OC above the boiling point of the least volatile component of the sample.
  • the sample size is in the range from tenths of a microliter to 20 microliters. Capillary columns require significantly smaller samples, typically around 10 "3 microliters.
  • Wellbore fluid sampling has been performed since the mid-1960s.
  • the well-known formation fluid tester developed by Schlumbgerger, under the name of Resource Formati Tester - RFT TM, modular dynamic tester Modshar Tomis Tester - MDT (1992) and SRFT TM (1997).
  • RFT formation fluid tester did not perform well fluid analysis; it was designed to deliver reservoir fluid samples using two high-pressure cylinders equipped with remote-controlled valves.
  • FIG. 2 shows a diagram of a MDT modular dynamic tester, where 10 is a resistive / temperature cell, 11 is a hinge pipe, 12 is a front shoe, 13 is a filter, 14 is a packer, 15 is a filter valve, 16 is a probe piston, 17 is a sample module, 18 - CQG sensor, 19 - isolation valve, 20 - balancing valve, 21 - pipeline line, 22 - preliminary test, 23 - strain gauge, 24 - rear telescopic pistons, 25 - throttle / stuffing box valve, 26 - sample chamber.
  • OFA optical fluid analyzer
  • This module is introduced into the pipeline and performs the determination of the type of fluids in real time by passing an intense light beam through the fluid and analyzing the spectral characteristics of the transmitted light. Due to the different absorption of light by water and oil, the recorded spectrum indicates the content of water and oil, and also allows the determination of various types of oil. Gas is analyzed by various sensors that detect gas bubbles in reflected light. The same measurement principle was used by Schlumberger in the fluid analyzer Live FMd Applaser (LFA) 5, which is a further development of the OFA optical method and has been produced since 2002, as well as in the Wacker-Atlas splitmlerView module.
  • LFA Live FMd Applaser
  • the proposed cable downhole gas chromatograph is shown in FIG. 3, where 30 is the pipeline, 31 is the sampling valve, 32 is the sample chamber, 33 is the isolating valve of the chromatograph, 34 is the zeolite filter, 35 is the bypass valve, 36 is liquid nitrogen, 37 is the rotating injector of the sample, 38 is the tube chromatograph, 39 - fraction detector, 40 - reservoir for compensating hydraulic oil pressure, 41 - oil pump, 42 - piston position sensor, 43 - check valve, 44 - pressure reducer, 45 - valve for conveying medium, 46 - pressure sensor, 47 - temperature sensor, 48 - portion of the sample, 49 - electric thermostat, 50 - electronic circuit telemetry.
  • the pipeline is connected to the trunk pipeline of the MDT modules above and below, because:
  • the method of introducing a chromatograph into an MDT instrument by connecting it to a common (main) pipeline so that the module can be used above and below the sampling point, provides the flexibility of installing a downhole tool;
  • the method and device for performing gas chromatography from a common pipeline allows multiple analyzes from the same section in the well;
  • Cable downhole gas chromatograph consists of the following components that perform the following functions:
  • a sampling valve for sample 31 connects the MDT pipe 30 to the sample chamber of the chromatograph module 32;
  • the chamber for samples 32 in the chromatograph is used to take small portions from the pipeline 30 for subsequent analysis;
  • the sample chamber is equipped with a piston position sensor 42 and an oil pump 41, allowing sampling from the pipeline or placing the sample in the pipeline;
  • the isolating valve of the chromatograph 33 and the non-return valve 43 allow the sample to be transferred to the sensor section of the instrument and prevent the sample from returning;
  • Replaceable zeolite filter 34 ensures the purity of the sample
  • a bypass line with a bypass valve 35 are used to remove unwanted fluids from the sensor section
  • the container with compressed nitrogen 36 is equipped with a valve for the transport medium 45 and a pressure reducer 44, which are necessary for organizing the flow of the transport medium (nitrogen);
  • the rotating injector of sample 37 allows the introduction of a sample of fluids into the flow of the conveying medium
  • the chromatograph tube 38 in which the sample fractions are separated; the tube is located in an electric thermostat 49, which maintains the necessary elevated temperature, controlled by a temperature sensor 47;
  • the detector fractions 39 based on the absorption of light
  • the circuit of electronic telemetry 50 is used to transmit data via a cable system for collecting measurement results to the surface.
  • the device works as follows:
  • the chromatograph module is located together with the MDT boom so that the formation sampling point and the LFA module are on one side and the pump module (MRPO) or other sampling equipment are located on the other side.
  • MRPO pump module
  • the tool lowers to the required depth of the well and establishes hydraulic contact with the formation fluids.
  • the formation fluids are pumped by the pump, at which time resistance, temperature and pressure sensors measure the MDT and the LFA readings are taken. After reaching the required purity, the injection cycle ends and the chromatographic analysis begins.
  • the sampling valve in the chromatograph module opens and fluid from the pipeline is drawn into the sample chamber.
  • the sampling valve closes and the isolating valve of the chromatograph opens to supply the sample for analysis.
  • the valve for the transport medium opens to create a flow of the transport medium.
  • the rotating sample injector opens to enter the fluid sample to be analyzed.
  • the chromatograph valve closes and the sampling valve opens to supply fluids from the sample chamber to pipeline.
  • An oil pump is used to move the piston. The oil pump stops and the sampling valve closes at the signal from the piston position sensor.
  • the sample is separated in a chromatographic tube and analyzed by the detector in a manner traditional for gas chromatography. Residues of the conveying medium and samples enter the washing section.
  • valve for the transporting medium closes, and the instrument is ready to repeat the test at a different depth of the well, starting from point 2 described above.
  • the most important advantage of the claimed device is that the small size of the tubes significantly reduces the processing time of the sample, so that the analysis carried out using the claimed device can be performed in a few minutes instead of a few hours, which made it possible to design a downhole gas analyzer based on the principle of chromatography.
  • gas chromatography was first applied to determine the type of well fluid in a well in real time.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

КАБЕЛЬНЫЙ ВНУТРИСКВАЖИННЫЙ ГАЗОВЫЙ ХРОМАТОГРАФ И СПОСОБ ВНУТРИСКВАЖИННОЙ ГАЗОВОЙ ХРОМАТОГРАФИИ
Изобретение относится к приборам, используемым в нефтегазовой отрасли.
Газовая хроматография является хорошо известным методом измерений, основанным на вводе небольшой порции исследуемого газа в непрерывный поток известного нейтрального газа ( "носителя" или "транспортирующей среды"). Затем газы проходят через капиллярную трубку. Вследствие различной подвижности отдельных газов, составляющих пробу, эта проба разделяется на несколько порций, каждая из которых состоит из отдельного газа. На выходе из капиллярной трубки эти отдельные порции в носителе могут быть идентифицированы различными способами. Таким образом может быть определен полный химический состав пробы. Преимуществом хроматографического метода является то, что детекторы на приемном конце могут быть значительно упрощены, сохраняя высокое разрешение системы в целом.
В нефтегазовой области газовая хроматография широко используется для анализа проб бурового раствора и позволяет определить концентрацию H2S, CH4, C2H6 и т.д. в газах, смешанных с выходным потоком бурового раствора. При этом в качестве носителя обычно применяются гелий или азот.
При реализации этого метода технику, используемую для извлечения, отбора проб и скважинного анализа пластовых флюидов, можно опускать в нефтяную скважину на канате или на бурильной трубе. Инструменты устанавливаются на стенке ствола скважины, после чего на этой стенке создается гидравлический затвор. Затем в пласт устанавливается зонд, таким образом создается гидравлическая связь с исследуемым пластом. Образцы пластовых флюидов - начиная от нескольких кубических сантиметров до сотен литров, извлекаются из пласта в инструмент для переноски на поверхность и/или анализа на месте. В некоторых случаях образцы после анализа на месте выливаются в скважину. Методы анализа флюидов включают в себя измерения удельного сопротивления, окраски флюидов или поглощения света, плотности флюидов (как функции поглощения γ-излучения), концентрации газа (путем преломления/ отражения газовых пузырьков в тонких трубках) и т.д. Кроме того, проводятся специальные измерения параметров флюидов: при помощи датчиков регистрируются точные значения давления и температуры для различных режимов потока.
Разработка устройства, позволяющего использовать методы скважинного анализа с помощью газового хроматографа, представляет особый интерес. До настоящего времени подобное техническое решение не рассматривалось, поскольку хроматографические трубки очень длинные, и единичный анализ - заключающийся в разделении пробы на интересующие компоненты, требует много времени. Кроме того, для пробы отбирается большое количество газа. Поэтому, недостатком конструкции скважинного хроматографа являются большие размеры и вес, что делает его непрактичным и сложным для применения при различных условиях реальной ситуации.
Газовая хроматография, в особенности газо-жидкостная, исследует образец, который предварительно переводится в паровую фазу и подается в головку хроматографической колонны (Фиг. 1), где 1 - Газ-носитель , 2 - Регулирующий клапан , 3 - Колонна , 4 - Устройство для ввода пробы , 5 - Термостат , 6 - Детектор ,7 - Регистратор. Образец переносится по колонне при помощи потока инертной газовой подвижной фазы. Сама колонна содержит жидкую или твердую неподвижную фазу, которая нанесена на стенки инертного твердого материала. Транспортирующий газ-носитель должен быть химически инертным. Обычно используют такие газы, как азот, гелий, аргон и диоксид углерода. Выбор газа- носителя часто зависит от типа используемого детектора. Система подачи газа-носителя содержит также молекулярное сито для удаления воды и других примесей.
Для оптимально работы хроматографа образец не должен быть слишком большим и должен вводиться в колонну в виде паровой "пробки" - медленный ввод больших образцов приводит к размыванию границ и ухудшению разрешения. Наиболее распространенным методом ввода образца является метод, в котором используется микрошприц для ввода образца через резиновую прокладку в канал быстрого испарителя в головке колонны. Температура канала для образца обычно на 5OC выше точки кипения наименее летучего компонента образца. Для насадочных колонн размер образца находится в диапазоне от десятых долей микролитра до 20 микролитров. Для капиллярных колонн требуется значительно меньшие образцы, обычно около 10"3 микролитров.
Отбор образцов скважинных флюидов производится с середины 1960-х годов. Известны тестер пластовых флюидов, разработанный компанией Sсhlumbеrgеr, под названием Rереаt Fоrmаtiоп Теstеr - RFT ™ , модульный динамический тестер Моdшаr Dупаmiс Теstеr - MDT ( 1992 ) и SRFТ™ (1997). Однако, тестер пластовых флюидов RFT не производил анализа флюидов в скважине, он был предназначен для доставки образцов пластовых флюидов при помощи двух баллонов высокого давления, оснащенных клапанами с дистанционным управлением.
В модульном динамическом тестере MDT, выбранном в качестве прототипа, была впервые реализована идея анализа скважинных флюидов при помощи "Резистивной ячейки" - устройства с четырьмя электродами для измерения электрического сопротивления пластовых флюидов при их прохождении через измерительный трубопровод ( Д. Кучук, Jоurпаl оf Реtrоlешп Science and Engineering I l (1994), стр. 123-135). Это впервые позволило определить самый общий тип флюида (например, "нефть или вода") перед доставкой образца на поверхность . На Фиг. 2 показана схема модульного динамического тестера MDT, где 10 - резистивная/температурная ячейка, 11 - шарнирный трубопровод, 12 - передний башмак, 13 - фильтр, 14 - пакер, 15 - клапан фильтра, 16 - поршни зонда, 17 - модуль для образцов, 18 - датчик CQG, 19 - изолирующий клапан, 20 - выравнивающий клапан, 21 - трубопроводная линия, 22 - предварительный тест, 23 - измеритель деформации, 24 - задние телескопические поршни, 25 - дроссельный/сальниковый клапан, 26 - камера для образцов.
Определение типа скважинных флюидов получило дальнейшее развитие путем внедрения модуля оптического анализатора флюидов (OFA). Этот модуль вводится в трубопровод и выполняет определение типа флюидов в реальном времени путем пропускания интенсивного светового пучка через флюид и анализа спектральных характеристик прошедшего света. Вследствие различного поглощения света водой и нефтью записанный спектр указывает содержание воды и нефти, а также позволяет определять различные типы нефти. Газ анализируется различными датчиками, которые обнаруживают пузырьки газа в отраженном свете. Такой же принцип измерения использован компанией Sсhlumbеrgеr в анализаторе флюидов Livе FMd Апаlуzеr (LFA)5 который является дальнейшим развитием оптического метода OFA и выпускается с 2002 г., а также в модуле Ваkеr-Аtlаs SаmрlеViеw.
Однако сложность конструкции модульного динамического тестора и его применения для внутрискважинного использования не позволяли провести процесс внутрискважинной газовой хроматографии. Целью предложенной разработки было создание прибора, позволяющего провести газовую хроматографию для определения типа скважинных флюидов в скважине в реальном времени.
Предлагаемый кабельный внутрискважинный газовый хроматограф изображен на Фиг. 3, где 30 - трубопровод , 31 - клапан отбора пробы образца, 32 - камера для образцов, 33 - изолирующий клапан хроматографа , 34 - цеолитовый фильтр, 35 - обводной клапан, 36 - жидкий азот, 37 - вращающийся инжектор пробы, 38 - трубка хроматографа, 39 - детектор фракции, 40 - резервуар для компенсации гидравлического давления нефти, 41 - нефтяной насос, 42 - датчик положения поршня, 43 - обратный клапан, 44 - редуктор давления, 45 - клапан для транспортирующей среды, 46 - датчик давления , 47 - датчик температуры, 48 - порция образца, 49 - электрический термостат, 50 - контур электронной телеметрии.
Трубопровод соединяется с магистральным трубопроводом модулей MDT сверху и снизу, поскольку:
Метод введения хроматографа в инструмент MDT путем присоединения к общему (магистральному) трубопроводу таким образом, чтобы модуль мог быть использован сверху и снизу точки отбора образца, обеспечивает гибкость установки скважинного инструмента;
- Метод и устройство для выполнения газовой хроматографии из общего трубопровода позволяет многократно проводить анализ из одного и того же разреза в скважине;
- Применение ОFА/LFА для подготовки хроматографического анализа позволяет проводить анализ пластовых флюидов так чтобы они были менее загрязнены буровым раствором и фильтратом бурового раствора. Кабельный внутрискважинный газовый хроматограф состоит из следующих компонентов, выполняющих следующие функции:
1. Клапан отбора пробы образца 31 соединяет трубопровод MDT 30 с камерой для образцов модуля хроматографа 32;
2. Камера для образцов 32 в хроматографе служит для отбора малых порций из трубопровода 30 для последующего анализа; камера для образцов оснащена датчиком положения поршня 42 и нефтяным насосом 41, позволяющими отбирать образец из трубопровода или помещать образец в трубопровод;
3. Изолирующий клапан хроматографа 33 и обратный клапан 43 позволяют переводить образец в датчиковую секцию инструмента и препятствуют обратному потоку образца;
4. Сменный цеолитовый фильтр 34 обеспечивает чистоту образца;
5. Обводная линия с обводным клапаном 35 служат для удаления нежелательных флюидов из датчиковой секции;
6. Баллон со сжатым азотом 36 оснащен клапаном для транспортирующей среды 45 и редуктором давления 44, которые необходимы для организации потока транспортирующей среды (азота);
7. Вращающийся инжектор пробы 37 позволяет вводить пробу флюидов в поток транспортирующей среды;
8. Трубка хроматографа 38, в которой разделяются фракции пробы; трубка расположена в электрическом термостате 49, который поддерживает необходимую повышенную температуру, контролируемую при помощи датчика температуры 47;
9. Детектор фракции 39, основанный на поглощении света;
10. Баллон с порцией образца 48 для сбора остаточных флюидов после теста; обратный клапан 43 над детектором предотвращает обратный поток транспортирующей среды;
11. Контур электронной телеметрии 50 служит для передачи данных по кабельной системе сбора результатов измерений на поверхность. Устройство работает по следующему принципу:
1. Модуль хроматографа расположен вместе со штангой для MDT таким образом, чтобы точка отбора пластового образца и модуль LFA находились с одной стороны, а насосный модуль (MRPO) или другое оборудование отбора проб располагаются с другой стороны.
2. Инструмент опускается на требуемую глубину скважины и устанавливается гидравлический контакт с пластовыми флюидами.
3. Пластовые флюида нагнетаются насосом, в это время проводятся в MDT измерения датчиками сопротивления, температуры и давления и снимаются показания LFA. После достижения требуемой чистоты цикл нагнетания заканчивается и начинается хроматографический анализ.
4. Клапан отбора пробы образца в модуле хроматографа открывается и флюид из трубопровода забирается в камеру для образцов.
5. Клапан отбора пробы образца закрывается и открывается изолирующий клапан хроматографа для подачи образца для анализа.
6. Мгновенно открывается обводной клапан (подмешивающий) для промывки содержимого от предыдущих образцов или других нежелательных флюидов.
7. Клапан для транспортирующей среды открывается для создания потока транспортирующей среды.
8. Вращающийся инжектор пробы открывается для ввода пробы флюида, подлежащей анализу.
9. Клапан хроматографа закрывается и открывается клапан отбора пробы образца для подачи флюидов из камеры для образцов в трубопровод. Нефтяной насос используется для перемещения поршня. Нефтяной насос останавливается, и клапан отбора пробы закрывается по сигналу от датчика положения поршня.
10. Затем проба разделяется в хроматографической трубке и анализируется детектором традиционным для газовой хроматографии образом. Остатки транспортирующей среды и пробы поступают в секцию промывки.
11. После завершения анализа закрывается клапан для транспортирующей среды, и инструмент готов к повторению теста на другой глубине скважины, начиная с пункта 2, описанного выше.
Разработанные в Институте катализа Сибирского отделения наук Российской академии наук сверхмалые хроматографические трубки дали возможность сконструировать прибор, позволяющий совместить метод газовой хроматографии с требованиями и условиями нефтегазовой отрасли.
Важнейшим преимуществом заявленного устройства является то, что малые размеры трубок значительно сокращают время обработки пробы, так что анализ, проводимый с помощью заявленного прибора, может быть выполнен за несколько минут вместо нескольких часов, что и позволило спроектировать скважинный газовый анализатор, основанный на принципе хроматографии.
Таким образом , газовая хроматография впервые применена для определения типа скважинных флюидов в скважине в реальном времени.

Claims

Формула изобретения
1. Применение газового хроматографа с высоким разрешением расположенного внутри скважины для определения типа скважинных флюидов в режиме реального времени.
2. Кабельный внутрискважинный газовый хроматограф, включающий камеру для образцов с датчиком положения поршня, соединенную через клапан отбора пробы образца с трубопроводом, и соединенную через нефтяной насос с резервуаром для компенсации гидравлического давления нефти, электрический термостат с датчиком температуры и расположенной внутри термостата трубкой хроматографа, с одной стороны соединенной последовательно через вращающийся инжектор пробы, цеолитовый фильтр, первый обратный клапан и изолирующий клапан хроматографа с линией соединения клапана отбора пробы образца и камеры для образцов, с другой стороны последовательно соединенной с вторым обратным клапаном, детектором фракции, баллоном с порцией образца и вторым датчиком давления, причем вращающийся инжектор пробы соединен последовательно с редуктором давления, клапаном для транспортирующей среды, баллоном со сжатым азотом и первым датчиком давления, обводная линия с обводным клапаном соединена в параллель с вращающимся инжектором пробы, трубкой хроматографа и детектором фракции, а контур электронной телеметрии соединен с выходом детектора фракции.
3. Способ внутрискважинной газовой хроматографии, по которому
- внутрискважинный газовый хроматограф опускают на требуемую глубину скважины и устанавливается гидравлический контакт с пластовыми флюидами,
- нагнетают насосом пластовые флюиды,
- заканчивают цикл нагнетания, - открывают клапан отбора пробы образца и забирают флюид из трубопровода в камеру для образцов,
- закрывают клапан отбора пробы образца и открывают изолирующий клапан хроматографа для подачи образца на анализ,
- в то же время открывается обводной клапан для промывки содержимого от предыдущих образцов или других нежелательных флюидов,
- открывают клапан для транспортирующей среды,
- открывают вращающийся инжектор пробы для ввода пробы флюида, подлежащей анализу,
- закрывают клапан хроматографа и открывают клапан отбора пробы образца для подачи флюидов из камеры для образцов в трубопровод,
- перемещают поршень с помощью нефтяного насоса, останавливают нефтяной насос и закрывают клапан отбора пробы по сигналу от датчика положения поршня,
- анализируют детектором пробу разделенную в хроматографической трубке,
- остатки транспортирующей среды и пробы направляют в секцию промывки, после завершения анализа закрывают клапан для транспортирующей среды.
4. Способ по п. 3, отличающийся тем, что кабельный внутрискважинный газовый хроматограф располагают вместе со штангой для модульного динамического тестера ( MDT )тaким образом, чтобы точка отбора пластового образца и модуль анализатора флюидов ( LFA ) находились с одной стороны, а насосный модуль (MRPO) или другое оборудование отбора проб располагались с другой стороны, во время нагнетания пластовых флюидов проводятся в MDT измерения датчиками сопротивления, температуры и давления и снимаются показания LFA, цикл нагнетания заканчивается после достижения требуемой чистоты.
PCT/RU2006/000704 2005-12-29 2006-12-27 Chromatographe a cable installe dans un puits et procede de chromatographie a cable dans un puits WO2007078214A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06847423A EP1988254A4 (en) 2005-12-29 2006-12-27 CABLE CHROMATOGRAPH INSTALLED IN A WELL AND CABLE CHROMATOGRAPHY METHOD IN A WELL
US12/159,336 US20100018287A1 (en) 2005-12-29 2006-12-27 Wirleline downhole gas chromatograph and downhole gas chromatography method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2005141354 2005-12-29
RU2005141354/03A RU2404362C2 (ru) 2005-12-29 2005-12-29 Кабельный внутрискважинный газовый хроматограф и способ внутрискважинной газовой хроматографии

Publications (2)

Publication Number Publication Date
WO2007078214A2 true WO2007078214A2 (fr) 2007-07-12
WO2007078214A3 WO2007078214A3 (fr) 2008-01-10

Family

ID=38228629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2006/000704 WO2007078214A2 (fr) 2005-12-29 2006-12-27 Chromatographe a cable installe dans un puits et procede de chromatographie a cable dans un puits

Country Status (4)

Country Link
US (1) US20100018287A1 (ru)
EP (1) EP1988254A4 (ru)
RU (1) RU2404362C2 (ru)
WO (1) WO2007078214A2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009079059A1 (en) * 2007-12-17 2009-06-25 Services Petroliers Schlumberger High pressure and high temperature chromatography
WO2009086061A1 (en) * 2007-12-20 2009-07-09 Services Petroliers Schlumberger Method and system for downhole analysis
CN110082439A (zh) * 2019-04-09 2019-08-02 国网辽宁省电力有限公司电力科学研究院 一种用于现场油色谱在线监测装置检定的智能检验存储装置
US11846148B2 (en) 2021-09-29 2023-12-19 Saudi Arabian Oil Company Balloon-equipped autonomous downhole logging tool for oil and gas wells

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7637151B2 (en) * 2006-12-19 2009-12-29 Schlumberger Technology Corporation Enhanced downhole fluid analysis
US8250904B2 (en) 2007-12-20 2012-08-28 Schlumberger Technology Corporation Multi-stage injector for fluid analysis
EP2245448A2 (en) * 2008-02-28 2010-11-03 Services Pétroliers Schlumberger Multi-stage injector for fluid analysis
US8964502B2 (en) * 2009-03-27 2015-02-24 Exxonmobil Upstream Research Company Zero offset profile from near-field hydrophones
US8152909B2 (en) * 2009-04-01 2012-04-10 Bruker Chemical Analysis B.V. Gas chromatography check valve and system
CN102052076B (zh) * 2009-10-30 2014-04-02 中国石油化工股份有限公司 一种对含有h2s/co2气田井筒流体成份监测系统及其分析方法
CN102052075B (zh) * 2009-10-30 2014-11-26 中国石油化工股份有限公司 一种进行油田现场取样的系统,方法和应用
DK2596346T3 (da) 2010-07-19 2020-03-23 Sgs North America Inc Automatiseret analyse af reservoirfluida under tryk
CN102003177B (zh) * 2010-09-13 2013-01-02 许进鹏 用于井下单个钻孔的水文地质参数观测仪器
US9638681B2 (en) 2011-09-30 2017-05-02 Schlumberger Technology Corporation Real-time compositional analysis of hydrocarbon based fluid samples
CA2874395A1 (en) 2012-05-24 2013-12-19 Douglas H. Lundy Threat detection system having multi-hop, wifi or cellular network arrangement of wireless detectors, sensors and sub-sensors that report data and location non-compliance, and enable related devices while blanketing a venue
WO2014030789A1 (ko) * 2012-08-24 2014-02-27 (주)백년기술 시료 전처리 장치 및 시료 전처리 방법
US10520623B2 (en) * 2013-05-31 2019-12-31 Westerngeco L.L.C. Methods and systems for marine survey acquisition
KR102338981B1 (ko) * 2014-02-12 2021-12-13 무스탕 샘플링, 엘엘씨 천연가솔린 압력 조절 기화기 샘플링 시스템
US9458715B2 (en) 2014-12-16 2016-10-04 Schlumberger Technology Corporation Determining the plus fraction of a gas chromatogram
US9664665B2 (en) 2014-12-17 2017-05-30 Schlumberger Technology Corporation Fluid composition and reservoir analysis using gas chromatography
US10648328B2 (en) 2016-12-29 2020-05-12 Halliburton Energy Services, Inc. Sample phase quality control
CN107806342B (zh) * 2017-11-18 2024-05-10 武汉三江航天远方科技有限公司 油田井下地层流体智能存取方法及其装置
CN108533959A (zh) * 2018-03-23 2018-09-14 西安长庆科技工程有限责任公司 一种适用于高气油比集输站场的油气混输装置及工艺
AU2019279953B2 (en) 2019-02-12 2023-02-02 Halliburton Energy Services, Inc. Bias correction for a gas extractor and fluid sampling system
CN111781024A (zh) * 2020-07-31 2020-10-16 江苏集萃托普索清洁能源研发有限公司 串联式负压采样分析系统及方法
CN112389812A (zh) * 2020-11-09 2021-02-23 广西电网有限责任公司电力科学研究院 一种应用于现场检测在线色谱装置的小型储油装置
CN112696188B (zh) * 2020-12-09 2023-10-31 王少斌 一种环形可拆卸橡胶探头推靠器
CN114935610B (zh) * 2022-04-05 2023-12-22 陕西长青能源化工有限公司 一种用气相色谱同时测定酸性气中含硫含醇组分含量的方法及其系统
CN118130168A (zh) * 2024-05-07 2024-06-04 杭州申昊科技股份有限公司 一种带电状态油样安全自动采集装置及其方法
CN118130170A (zh) * 2024-05-07 2024-06-04 杭州申昊科技股份有限公司 一种变压器油中气体自动检测机器人及检测方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171274A (en) * 1960-06-03 1965-03-02 Phillips Petroleum Co Sampling method for gas chromatographic analyzer
US3236092A (en) * 1962-02-21 1966-02-22 Monsanto Co Method and apparatus for continuous flow analysis
US3254531A (en) * 1962-05-03 1966-06-07 Halliburton Co Formation fluid sampling method
US3408166A (en) * 1962-09-04 1968-10-29 Scientific Industries Gas extractor and injector for gas chromatography
US3556730A (en) * 1968-10-21 1971-01-19 Phillips Petroleum Co Sampling system
SU1038473A2 (ru) * 1979-06-25 1983-08-30 Всесоюзный научно-исследовательский институт нефтепромысловой геофизики Устройство на кабеле дл исследовани пластов в необсаженных скважинах
US4739654A (en) * 1986-10-08 1988-04-26 Conoco Inc. Method and apparatus for downhole chromatography
FR2675265B1 (fr) * 1991-04-11 1993-07-30 Schlumberger Services Petrol Procede d'analyse de melanges d'huiles hydrocarbonees utilisant la chromatographie par permeation de gel.
US5547497A (en) * 1992-09-30 1996-08-20 Chromatofast, Inc. Apparatus for gas chromatography
GB2359631B (en) * 2000-02-26 2002-03-06 Schlumberger Holdings Hydrogen sulphide detection method and apparatus
AU2001255809A1 (en) * 2000-03-27 2001-10-08 Halliburton Energy Services, Inc. Method and apparatus for the down-hole characterization of formation fluids
GB2377952B (en) * 2001-07-27 2004-01-28 Schlumberger Holdings Receptacle for sampling downhole
US6748328B2 (en) * 2002-06-10 2004-06-08 Halliburton Energy Services, Inc. Determining fluid composition from fluid properties
US7384453B2 (en) * 2005-12-07 2008-06-10 Schlumberger Technology Corporation Self-contained chromatography system
US7458257B2 (en) * 2005-12-19 2008-12-02 Schlumberger Technology Corporation Downhole measurement of formation characteristics while drilling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D. KUCHUK, JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, vol. 11, 1994, pages 123 - 135

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009079059A1 (en) * 2007-12-17 2009-06-25 Services Petroliers Schlumberger High pressure and high temperature chromatography
US8028562B2 (en) 2007-12-17 2011-10-04 Schlumberger Technology Corporation High pressure and high temperature chromatography
WO2009086061A1 (en) * 2007-12-20 2009-07-09 Services Petroliers Schlumberger Method and system for downhole analysis
CN110082439A (zh) * 2019-04-09 2019-08-02 国网辽宁省电力有限公司电力科学研究院 一种用于现场油色谱在线监测装置检定的智能检验存储装置
US11846148B2 (en) 2021-09-29 2023-12-19 Saudi Arabian Oil Company Balloon-equipped autonomous downhole logging tool for oil and gas wells

Also Published As

Publication number Publication date
EP1988254A2 (en) 2008-11-05
EP1988254A4 (en) 2010-07-07
WO2007078214A3 (fr) 2008-01-10
RU2404362C2 (ru) 2010-11-20
US20100018287A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
RU2404362C2 (ru) Кабельный внутрискважинный газовый хроматограф и способ внутрискважинной газовой хроматографии
US4739654A (en) Method and apparatus for downhole chromatography
US7210343B2 (en) Method and apparatus for obtaining a micro sample downhole
US7581435B2 (en) Method and apparatus for acquiring physical properties of fluid samples at high temperatures and pressures
RU2707621C2 (ru) Способ для анализа проб
EP1877646B1 (en) Methods and apparatus of downhole fluid analysis
US9416656B2 (en) Assessing reservoir connectivity in hydrocarbon reservoirs
US8256283B2 (en) Method of downhole characterization of formation fluids, measurement controller for downhole characterization of formation fluids, and apparatus for downhole characterization of formation fluids
EP2356315B1 (en) Fluid expansion in mud gas logging
AU2009245848B2 (en) Methods and apparatus to evaluate subterranean formations
US20120312530A1 (en) In-Situ Detection and Analysis of Methane in Coal Bed Methane Formations with Spectrometers
US20110257887A1 (en) Utilization of tracers in hydrocarbon wells
EP2574920A1 (en) Real-Time Compositional Analysis of Hydrocarbon Based Fluid Samples
US8342004B2 (en) Gas analyzer
CA2789718A1 (en) Method and system for measurement of reservoir fluid properties
DK225290D0 (da) Fremgangsmaade og apparatur til at udtage og analysere niveaubestemte proever af poregas/-vaeske fra en underjordisk formation
EP2313796A2 (en) Hydrocarbon determination in presence of electron and chemical ionization
EP2028341B1 (en) A device and method for analyzing light chemical compounds
US8360143B2 (en) Method of determining end member concentrations
US20200182750A1 (en) Apparatus and methods for fluid transportation vessels
Pankow et al. A Tube and Cartridge Method for Down‐Hole Sampling for Trace Organic Compounds in Ground Water

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2006847423

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006847423

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12159336

Country of ref document: US