RU2333357C2 - Скважинный пробоотборник с микропробоотборной камерой и способ его применения - Google Patents

Скважинный пробоотборник с микропробоотборной камерой и способ его применения Download PDF

Info

Publication number
RU2333357C2
RU2333357C2 RU2005137357/03A RU2005137357A RU2333357C2 RU 2333357 C2 RU2333357 C2 RU 2333357C2 RU 2005137357/03 A RU2005137357/03 A RU 2005137357/03A RU 2005137357 A RU2005137357 A RU 2005137357A RU 2333357 C2 RU2333357 C2 RU 2333357C2
Authority
RU
Russia
Prior art keywords
sampling chamber
micro
fluid sample
sample
fluid
Prior art date
Application number
RU2005137357/03A
Other languages
English (en)
Other versions
RU2005137357A (ru
Inventor
Хуман М. ШАММАЙ
Роберт Гордон
Франк САНЧЕС
Original Assignee
Бейкер Хьюз Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бейкер Хьюз Инкорпорейтед filed Critical Бейкер Хьюз Инкорпорейтед
Publication of RU2005137357A publication Critical patent/RU2005137357A/ru
Application granted granted Critical
Publication of RU2333357C2 publication Critical patent/RU2333357C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/02Prospecting
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/081Obtaining fluid samples or testing fluids, in boreholes or wells with down-hole means for trapping a fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Oils, i.e. hydrocarbon liquids raw oil, drilling fluid or polyphasic mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/651Cuvettes therefore

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Food Science & Technology (AREA)
  • Hydrology & Water Resources (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geophysics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

Изобретение относится к исследованиям глубинных проб флюидов и, в частности, к получению аликвотных глубинных микропроб пластовых флюидов для проведения ускоренного анализа на месте получения пробы. Техническим результатом является ускоренный анализ проб, повышение точности определения параметров пробы. Скважинное устройство содержит пробоотборный резервуар и несколько микропробоотборных камер. Микропробоотборные камеры могут иметь по меньшей мере по одному окошку для ввода энергии видимого излучения, излучения в ближней и средней областях инфракрасного диапазона и энергии других видов электромагнитного излучения в резервуар для проб, собранных в микропробоотборной камере в скважине или шурфе. Такое окошко может быть выполнено из сапфира или иного материала, способного пропускать электромагнитное излучение. Кроме того, микропробоотборная камера может быть целиком выполнена из сапфира или иного материала, способного пропускать электромагнитное излучение с возможностью визуального контроля или анализа пробы в микропробоотборной камере. Микропробоотборная камера позволяет немедленно исследовать извлеченную пробу на поверхности на месте скважины для определения качества пробы, находящейся в основном пробоотборном резервуаре, или же подвергнуть пробу всестороннему исследованию. 4 н. и 26 з.п. ф-лы, 8 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к исследованиям глубинных проб флюидов и, в частности, к получению аликвотных глубинных микропроб пластовых флюидов для проведения ускоренного анализа на месте получения пробы с целью определения качества глубинной пробы.
Уровень техники
Пластовые флюиды в нефтегазодобывающих скважинах обычно представляют собой смесь нефти, газа и воды. Фазовое соотношение компонентов смеси определяется давлением, температурой и объемом пластовых флюидов. В подземных породах высокое давление скважинных флюидов часто вызывает поглощение газа нефтью с образованием перенасыщенных растворов. При понижении давления поглощенные или растворенные газообразные соединения выделяются из жидкой фазы пробы. Точные измерения давления, температуры и состава пластового флюида из конкретной скважины влияют на оценку экономической целесообразности добычи флюидов из скважины. Эти данные дают также информацию относительно путей достижения максимальной эффективности заканчивания и освоения соответствующего коллектора углеводородов.
Известен ряд методов анализа скважинных флюидов в условиях скважины. В патенте US 6467544 (Brown и др.) описана пробоотборная камера с подвижным поршнем, ограничивающим полость, в которой находится проба, с одной стороны поршня и буферную полость - с другой. В патенте US 5361839 (Griffith и др., 1993) раскрыт измерительный преобразователь для выдачи сигнала, характеризующего свойства пробы флюида в условиях скважины. В патенте US 5329811 (Schultz и др., 1994) описаны устройство и способ оценки данных давления и объема для глубинной пробы скважинного флюида.
Другие методы предусматривают отбор пробы скважинного флюида для ее извлечения на поверхность. В патенте US 4583595 (Czenichow и др., 1986) раскрыт механизм с поршневым приводом для взятия пробы скважинного флюида. В патенте US 4721157 (Berzin, 1988) описана сдвижная клапанная втулка для заключения в камеру пробы скважинного флюида. В патенте US 4766955 (Petermann, 1988) описан поршень, взаимодействующий с распределительным клапаном для взятия пробы скважинного флюида, а в патенте US 4903765 (Zunkel, 1990) - скважинный пробоотборник с выдержкой времени. В патенте US 5009100 (Gruber и др., 1991) описан спускаемый на кабеле пробоотборник для отбора пробы скважинного флюида из скважины на заданной глубине. В патенте US 5240072 (Schultz и др., 1993) описан срабатывающий на затрубное давление пробоотборник многократного действия для отбора глубинных проб скважинных флюидов в разные моменты времени и на разных глубинах, а в патенте US 5322120 (Be и др., 1994) раскрыта электрогидравлическая система для отбора проб скважинного флюида из ствола скважины на больших глубинах.
В глубоких скважинах температуры часто превышают 300°F. При извлечении горячей пробы пластового флюида на поверхность, где температура составляет порядка 70°F, из-за падения температуры проба пластового флюида стремится сократиться в размерах. Если объем пробы остается неизменным, такое сокращение приводит к существенному уменьшению давления пробы. Падение давления приводит к изменениям параметров, присущих пластовому флюиду в естественном (in situ) залегании, что может обусловить фазовое разделение жидкостей и газов, поглощенных пробой пластового флюида. Разделение фаз влечет за собой существенное изменение характеристик пластового флюида и уменьшает реальные возможности оценки реальных свойств пластового флюида.
Для преодоления этого недостатка были разработаны различные методы, направленные на поддержание пробы пластового флюида под давлением. В патенте US 5337822 (Massie и др., 1994) давление в пробе пластового флюида поддерживают при помощи поршня с гидравлическим приводом, приводимым в действие сжатым газом высокого давления. Аналогичным образом в патенте US 5662166 (Shammai, 1997) для сжатия пробы пластового флюида используется газ под давлением. В патентах US 5303775 (1994) и US 5377755 (Michaels и др., 1995) раскрыт поршневой насос двустороннего действия для повышения давления в пробе пластового флюида до значения, превышающего давление насыщения, с тем, чтобы последующее охлаждение не приводило к снижению давления флюида ниже давления насыщения.
Обычно емкости с находящимися в них пробами (отборные емкости) транспортируют в лаборатории, где производят анализ пробы для определения свойств пластового флюида. Обычно пробы приходится перемещать в транспортировочный контейнер, что связано с риском порчи пробы из-за падения давления, сопровождающегося образованием пузырей либо выпадением в пробе асфальтенов. Более того, даже если проба успешно доставлена в лабораторию, обычно на получение результатов ее полного лабораторного анализа уходят недели и даже месяцы. Поэтому существует необходимость в системе ускоренного анализа (экспресс-анализа) проб, который давал бы точные результаты, исключая риск порчи пробы.
Краткое изложение сущности изобретения
Настоящее изобретение направлено на преодоление описанных выше недостатков уровня техники. В соответствии с настоящим изобретением предлагается использовать пробоотборный резервуар, или контейнер, для отбора проб из скважины, а также несколько микропробоотборных камер (под микропробоотборными камерами понимаются миниатюризированные пробоотборные камеры для микропроб). Микропробоотборные камеры могут иметь по меньшей мере по одному окошку для ввода энергии видимого излучения, излучения в ближней и средней областях инфракрасного (ИК-) диапазона и энергии других видов электромагнитного излучения в контейнер для проб, собранных в микропробоотборной камере в скважине или шурфе. Такое окошко может быть выполнено из сапфира или иного материала, способного пропускать электромагнитное излучение. Кроме того, микропробоотборная камера может быть целиком выполнена из сапфира или иного материала, способного пропускать электромагнитное излучение с возможностью визуального контроля или анализа пробы внутри микропробоотборной камеры. Микропробоотборная камера позволяет на поверхности немедленно исследовать извлеченную пробу на месте скважины для определения качества пробы, находящейся в основном пробоотборном резервуаре, или же подвергнуть пробу всестороннему исследованию.
Пробоотборный резервуар и микропробоотборные камеры заполняют, закачивая в них пластовый флюид, при этом с поршня, нагружаемого гидростатическим давлением, создают противодавление. В пробоотборном резервуаре и микропробоотборных камерах создают избыточное давление, используя для этого источник давления, такой как насос или заряд сжатого газа, чтобы поднять давление в пробе до уровня, превышающего давление насыщения, во избежание нежелательного падения давления. Микропробоотборные камеры можно извлечь на поверхности для немедленного исследования целостной пробы, находящейся внутри микропробоотборной камеры, средствами оптического анализа либо закрепить микропробоотборную камеру на испытательном стенде и перекачать пробу из микропробоотборной камеры в испытательный стенд для анализа по методу газовой хроматографии. Чтобы давление в микропробе гарантированно превышало давление насыщения, можно использовать источник давления для нагружения пробы в микропробоотборной камере давлением воды. Вязкость пробы, находящейся внутри микропробоотборного резервуара, можно определить путем взвешивания пустого микропробоотборного резервуара и повторного взвешивания, когда он заполнен пробой, что позволяет определить вес пробы, находящейся внутри микропробоотборной камеры известного объема.
Краткое описание чертежей
Ниже сущность изобретения поясняется на примере его осуществления со ссылкой на прилагаемые чертежи, на которых одинаковые элементы конструкции обозначены аналогичными позициями и на которых показано:
на фиг.1 - схематичный геологический разрез толщи пород, иллюстрирующий среду, в которой предполагается осуществление изобретения,
на фиг.2 - схематичное изображение предлагаемого в изобретении прибора в сборе со вспомогательными инструментами,
на фиг.3 - схематичное изображение варианта выполнения системы для отбора и доставки пробы пластового флюида,
на фиг.4 - изображение варианта выполнения микропробоотборной камеры,
на фиг.5 - более подробное изображение представленного на фиг.4 варианта выполнения микропробоотборной камеры с обратным клапаном и дренажной линией,
на фиг.6 - изображение модуля размещения микропроб, отсоединенного от скважинного прибора для анализа микропробы,
на фиг.7 - иллюстрация известной методики анализа и
на фиг.8 - иллюстрация новой усовершенствованной методики анализа, обеспечиваемой настоящим изобретением.
Описание предпочтительного варианта изобретения
На фиг.1 схематически представлен геологический разрез толщи 10 пород по длине пробуренной в ней скважины 11. Как правило, скважина по меньшей мере частично заполнена смесью жидкостей, включающей воду, буровой раствор и пластовые флюиды, поступающие в скважину из вскрытых скважиной пород. В данном описании такие смеси обозначаются понятием "скважинные флюиды". Понятие же "пластовый флюид" употребляется ниже в отношении флюида из конкретного пласта, не содержащего примесей и не загрязненного жидкостями, которые в данном пласте в естественном виде не встречаются.
В скважину 11 спущен пробоотборник 20, подвешенный на нижнем конце кабеля 12. Кабель 12 обычно пропускают через шкив 13, закрепленный на буровой вышке 14. Спуск и подъем кабеля производят при помощи лебедки, установленной, например, на грузовом автомобиле 15 с оборудованием для технического обслуживания.
На фиг.2 схематически представлен вариант выполнения предлагаемого в изобретении пробоотборника 20. В данном варианте инструментальные средства пробоотборника представляют собой компоновку с несколькими расположенными в ряд секциями, которые соединены на торцах резьбовыми втулками 23 компрессионных соединительных муфт. В состав такой компоновки могут входить гидравлический силовой агрегат 21 и агрегат 22 отбора флюида. Ниже агрегата 22 отбора флюида расположен насосный агрегат 24 объемного типа с большим рабочим объемом, предназначенный для промывки гидравлической линии. Ниже насоса с большим рабочим объемом расположен аналогичный насосный агрегат 25 объемного типа с меньшим рабочим объемом, контролируемым в количественном отношении, как это подробнее поясняется со ссылкой на фиг.3. Обычно под насосом меньшего объема располагаются одна или несколько секций 26 резервуаров-накопителей для отобранных проб флюида. Каждая секция 26 может содержать три и более резервуара-накопителя 30 для проб флюида.
Агрегат 22 отбора флюида содержит выдвижной приемный зонд 27, а с противоположной от него стороны - лапы 28 для упора в стенку скважины. Как приемный зонд 27, так и находящиеся с противоположной стороны лапы 28 выдвигаются с помощью гидропривода, входя в плотный контакт со стенками скважины. Конструкция и принцип работы агрегата 22 для отбора флюида подробнее описаны в патенте US 5303775, содержание которого включено в данное описание.
Как показано на фиг.4, основная пробоотборная камера 414 сообщается с микропробоотборной камерой 510 посредством гидравлической линии 410. Пластовый флюид поступает во входной канал 412 из насоса 25. На поршень 416 с одной стороны действует гидростатическое давление, подводимое через отверстие 420, выходящее в скважину. Соответственно, пробу пластового флюида закачивают в основную пробоотборную камеру и микропробоотборные камеры 510, преодолевая подведенное из скважины гидростатическое давление. По мере увеличения количества флюида, закачиваемого в пробоотборную камеру 414, объем пробоотборной камеры 414, как и объем микропробоотборных камер 510 увеличивается. Камера 418 заряжена азотом, давление которого нагрузит обратную сторону поршня 416, как только этот поршень, двигаясь вниз, упрется в соединительный стержень 449. Заряд газообразного азота нагружает давлением пробу, содержащуюся в основной пробоотборной камере 414 и микропробоотборных камерах 510.
В камеру 422 подводится гидростатическое давление, действующее снизу поршня 416, благодаря чему в процессе закачки пробы флюида в основную пробоотборную камеру и микропробоотборные камеры давление пробы превышает гидростатическое давление. Модули 400 размещения микропроб (далее - микропробоотборники) размещены в корпусе 440, из которого их можно извлечь для осмотра и исследования пробы, находящейся внутри микропробоотборной камеры 510.
На фиг.5 более подробно представлена конструкция микропробоотборника 400. Открытие клапана или крана 516 соединяет основную пробоотборную камеру 414 и микропробоотборные камеры 510. Микропробоотборные камеры 510 снабжены поддавливающими поршнями 441, на которые действует внутрискважинное гидростатическое давление, подводимое через отверстие 522. Таким образом, пластовый флюид закачивается в пробоотборную гидравлическую линию 410 в условиях противодавления со стороны нагруженных гидростатическим давлением поршней 441 в микропробоотборных камерах 510 и поршня 416 в основной пробоотборной камере 414.
Микропробоотборник 400 перед спуском в скважину взвешивают в пустом состоянии и повторно взвешивают после его заполнения пробой флюида для определения веса пробы. Зная объем микропробоотборной камеры 510, можно определить плотность пробы флюида, находящейся внутри микропробоотборной камеры 510, путем деления веса (массы) на объем. По плотности пробы флюида можно определить его вязкость.
Из гидравлической линии 410 пластовый флюид поступает в микропробоотборную камеру 510 через обратный клапан 520. Обратный клапан 520 позволяет пластовому флюиду проходить в пробоотборную камеру, но препятствует его выходу оттуда, если только обратный клапан не открыть стержнем 612, показанным на фиг.6.
Клапан 516 закрывают после того, как проба заполнит микропробоотборные камеры 510 и основную пробоотборную камеру 414, а соответствующие поршни 441 и 416 опустятся до упора, в результате чего объем соответствующих пробоотборных камер станет максимальным. После закрытия клапана 516 открывается дренажная линия 512 для стравливания давления в гидравлической линии 410 между клапаном 516 и обратным клапаном 520. После стравливания давления микропробоотборники 400 можно извлечь, вывинтив резьбовые соединительные 532 из корпуса 518 прибора, что позволяет подвергнуть пробу, содержащуюся в микропробоотборной камере 510 внутри микропробоотборника 400 визуальному контролю и анализу.
Микропробоотборник 400 может быть выполнен металлическим с окошками, выполненными из материала, такого как сапфир, который обеспечивает возможность визуального контроля и оптического анализа содержимого микропробоотборной камеры. Кроме того, микропробоотборник 400 или стенки 401 его корпуса, окружающие микропробоотборную камеру 510, могут быть целиком выполнены из материала, такого как сапфир, который обеспечивает возможность визуального контроля и оптического анализа содержимого микропробоотборной камеры.
Как показано на фиг.6, к отверстию 522 можно подключить водяной насос для подачи давления к обратной стороне поршня 441 микропробоотборника, чтобы создать избыточное давление, действующее на пробу в микропробоотборной камере 510, во время переноса микропробы в испытательный прибор, такой как газовый хроматограф 600. Микропробоотборник ввинчивают в испытательный стенд 600, при этом стержень 612 открывает обратный клапан 520, позволяя пробе, находящейся внутри камеры 510, пройти в испытательный стенд 600. Давление воды, создаваемое насосом 610, удерживает пробу под давлением, предупреждая испарение пробы в микропробоотборной камере 510 во время переноса на испытательный стенд.
В рассматриваемом варианте микропробоотборной камеры предусмотрен один или несколько световодов, которыми в данном варианте являются рассчитанные на высокое давление сапфировые окошки 530, пропускающие электромагнитное излучение в микропробоотборную камеру 510 и выпускающие его оттуда с возможностью проведения оптического анализа пробы пластового флюида для определения интересующих параметров флюида. Микропробоотборная камера может быть целиком выполнена из сапфира или другого материала, способного пропускать электромагнитное излучение, что позволяет осматривать содержимое микропробоотборной камеры и проводить его неразрушающий спектральный анализ или анализ иного типа. Можно использовать окошки, выполненные не только из прозрачного корунда, но и из других материалов.
При проведении работ на поверхности, как показано на фиг.6, микропробоотборник извлекают из корпуса пробоотборника. Для неразрушающего анализа на поверхности используют внешний оптический анализатор 620, содержащий источник излучения в ближней и/или средней области ИК-диапазона, ультрафиолетового диапазона или источник видимого света, а также спектрометры. Оптический анализатор 620 содержит источник излучения в ближней и/или средней области ИК-диапазона, а также соответствующий фотодетектор для анализа пропускания, флуоресценции и нарушенного полного внутреннего отражения (Attenuated Total Reflectance) света. При этом исключаются как вмешательство в пробу флюида, так и необходимость в переносе пробы в другую камеру, аттестованную Министерством транспорта, для доставки в аналитическую лабораторию, находящуюся на удалении от места получения пробы.
В рассматриваемом варианте внешний оптический анализатор 620 сканирует пробу флюида излучением в диапазоне длин волн от 1500 до 2000 нм для определения или оценки с использованием программных методов моделирования, таких искомых параметров, как процентное содержание примесей, газовый фактор, плотность и давление выпадения асфальтенов. Для спектрального анализа пробы флюида аналитический модуль 620 также снабжен перестраиваемым диодным лазером и спектрометром комбинационного (рамановского) рассеяния. Все источники света и датчики размещены внутри самой микропробоотборной камеры 510 либо связаны с внутренним объемом микропробоотборной камеры через оптическое вентиляционное окошко 530 или эквивалентный световод, обеспечивая проход сигналов или электромагнитного излучения внутрь пробоотборного резервуара и содержащейся в нем пробы и их выход обратно.
Некоторые из многочисленных преимуществ настоящего изобретения выявляются при сравнении фиг.7, отражающей уровень техники, и фиг.8, на которой иллюстрируются новый способ и конструктивное решение, положенные в основу перспективного оптического анализатора, реализуемого в настоящем изобретении. Как показано на фиг.8, что результаты вычислений основных параметров, проводимых методами оптических исследований (блок 1114), можно получить немедленно или менее чем через шесть часов, а окончательный отчет о PVT-исследованиях (блок 1132) - менее чем через неделю, а не через шесть-восемь недель, как это показано на фиг.7 для уровня техники. Преимущество рассмотренных выше способа и устройства заключается в отсутствии необходимости переноса проб из одной емкости в другую, поскольку исследования параметров давления, объема, температуры (PVT-свойства) и спектральный анализ для определения условий выпадения асфальтенов, точки насыщения, объемного коэффициента флюида в пластовых условиях и компонентного состава, а также другие рассмотренные выше виды исследований выполняются наземным или глубинным оборудованием неразрушающего анализа во внешнем оборудовании или аппаратуре 620.
В другом варианте предлагаемые в изобретении способ и устройство реализуются в виде набора выполняемых на компьютере команд, записанных на машиночитаемом носителе данных, который может быть представлен постоянным запоминающим устройством (ПЗУ), оперативным запоминающим устройством (ОЗУ), компакт-диском (CD-ROM), флэш-памятью и любым другим машиночитаемым носителем, известным или неизвестным в настоящее время, которые при выполнении на компьютере обеспечивают выполнение компьютером функций, предусмотренных настоящим изобретением.
Осуществление изобретения было рассмотрено выше на примере его конкретных вариантов, однако специалистам должны быть очевидны возможности осуществления изобретения и в других, видоизмененных, вариантах. Предполагается, что любые такие изменения подпадают под патентные притязания, изложенные в прилагаемой формуле изобретения. Примеры наиболее важных признаков изобретения были представлены в довольно обобщенном виде, чтобы можно было оценить их вклад в уровень техники. Существуют, безусловно, и дополнительные особенности изобретения, раскрытые в прилагающейся формуле изобретения.

Claims (31)

1. Скважинный прибор для определения интересующего параметра пробы флюида, содержащий а) основную пробоотборную камеру, б) микропробоотборную камеру, сообщающуюся внутри скважины с основной пробоотборной камерой и пробой флюида, причем основная пробоотборная камера вмещает в себя первую часть пробы флюида, а микропробоотборная камера вмещает в себя вторую часть пробы флюида и выполнена с возможностью перемещения от основной пробоотборной камеры и определения интересующего параметра для второй части пробы флюида в микропробоотборной камере для определения интересующего параметра для первой части пробы флюида в основной пробоотборной камере, и в) анализатор, связанный с микропробоотборной камерой для проведения скважинного анализа пробы флюида.
2. Прибор по п.1, в котором микропробоотборная камера имеет известный вес и объем для определения плотности флюида.
3. Прибор по п.1, в котором микропробоотборная камера целиком выполнена из материала, пропускающего в нее энергию электромагнитного излучения для анализа пробы в микропробоотборной камере.
4. Прибор по п.1, содержащий также источник давления для поддержания давления, действующего на флюид в микропробоотборной камере, во время извлечения прибора из скважины.
5. Прибор по п.1, в котором анализатор содержит, по меньшей мере, одно из средств группы, включающей перестраиваемый диодный лазер, источник инфракрасного излучения и инфракрасный детектор, и спектрометр комбинационного рассеяния для анализа пробы флюида.
6. Прибор по п.5, содержащий поршень микропробоотборной камеры, создающий противодавление, действующее на флюид из насоса для отбора пробы, во время закачивания пробы флюида в микропробоотборную камеру.
7. Прибор по п.1, содержащий средства подачи давления воды для создания избыточного давления, действующего на пробу в микропробоотборной камере, после ее извлечения из скважины.
8. Прибор по п.1, содержащий обратный клапан, пропускающий флюид в микропробоотборную камеру и препятствующий выходу флюида из микропробоотборной камеры, и установленный с возможностью извлечения с микропробоотборной камерой.
9. Прибор по п.8, содержащий клапан для разобщения микропробоотборной камеры и основной пробоотборной камеры.
10. Прибор по п.9, содержащий дренажную линию для стравливания давления между микропробоотборной камерой и основной пробоотборной камерой.
11. Прибор по п.1, в котором микропробоотборная камера в основном целиком выполнена из материала, позволяющего проводить визуальный контроль пробы, находящейся внутри микропробоотборной камеры.
12. Прибор по п.1, в котором микропробоотборная камера выполнена из материала, позволяющего проводить оптический анализ пробы, находящейся внутри микропробоотборной камеры.
13. Прибор по п.1, в котором микропробоотборная камера выполнена с возможностью извлечения из прибора для проведения анализа пробы на поверхности с помощью внешнего аналитического оборудования.
14. Прибор по п.1, в котором микропробоотборная камера выполнена с возможностью извлечения из нее пробы для проведения ее анализа на поверхности.
15. Способ определения интересующего параметра пробы флюида, в котором
а) заполняют основную пробоотборную камеру и микропробоотборную камеру, сообщая их с пробой флюида и размещая первую часть пробы флюида в основной пробоотборной камере и вторую часть пробы флюида в микропробоотборной камере, сообщающейся внутри скважины с основной пробоотборной камерой,
б) перемещают микропробоотборную камеру от основной пробоотборной камеры, и
в) анализируют вторую часть пробы флюида в микропробоотборной камере посредством анализатора, связанного с микропробоотборной камерой для определения интересующего параметра для первой части пробы флюида в основной пробоотборной камере.
16. Способ по п.15, в котором при анализе второй части пробы флюида взвешивают микропробоотборную камеру, содержащую вторую часть пробы флюида, определяют вес второй части пробы флюида в микропробоотборной камере, посредством вычитания веса пустой микропробоотборной камеры из веса микропробоотборной камеры, содержащей вторую часть пробы флюида, и определяют, по меньшей мере, один параметр из группы, включающей плотность и вязкость флюида, на основе веса флюида и объема пробоотборной камеры, содержащей флюид.
17. Способ по п.15, в котором микропробоотборная камера выполнена в основном целиком из материала, пропускающего электромагнитное излучение, для анализа пробы в микропробоотборной камере.
18. Способ по п.15, в котором во время извлечения прибора из скважины посредством источника давления поддерживают давление, действующее на вторую часть пробы флюида в микропробоотборной камере.
19. Способ по п.15, в котором пробу в микропробоотборной камере поддавливают, воздействуя на нее гидростатическим давлением.
20. Способ по п.15, в котором во время закачивания пробы флюида в микропробоотборную камеру создают противодавление, действующее на вторую часть пробы флюида.
21. Способ по п.15, в котором после извлечения из скважины пробу в микропробоотборной камере нагружают избыточным давлением.
22. Способ по п.15, в котором флюид впускают в микропробоотборную камеру через обратный клапан, препятствующий выходу флюида из микропробоотборной камеры и установленный с возможностью извлечения из микропробоотборной камеры.
23. Способ по п.15, в котором микропробоотборную камеру и основную пробоотборную камеру разобщают с помощью клапана.
24. Способ по п.23, в котором стравливают давление между микропробоотборной камерой и основной пробоотборной камерой.
25. Способ по п.15, в котором пробу флюида, находящуюся внутри микропробоотборной камеры, подвергают визуальному контролю.
26. Способ по п.15, в котором вторую часть пробы флюида, находящуюся внутри микропробоотборной камеры, подвергают оптическому анализу.
27. Способ по п.15, в котором извлекают микропробоотборную камеру из прибора и осуществляют анализ второй части пробы флюида внутри микропробоотборной камеры на поверхности с помощью внешнего аналитического оборудования для определения свойства первой части пробы флюида внутри основной пробоотборной камеры.
28. Способ по п.15, в котором извлекают микропробоотборную камеру для анализа второй части пробы флюида на поверхности с помощью внешнего аналитического оборудования для определения интересующего параметра для первой части пробы флюида внутри основной пробоотборной камеры.
29. Скважинный прибор для определения интересующего параметра пробы флюида, содержащий основную пробоотборную камеру внутри прибора для размещения первой части пробы флюида, микропробоотборную камеру для размещения второй части пробы флюида, сообщающуюся внутри скважины с основной пробоотборной камерой и пробой флюида и выполненную с возможностью перемещения от основной пробоотборной камеры, и анализатор, связанный с микропробоотборной камерой для проведения анализа пробы флюида.
30. Скважинный прибор для определения интересующего параметра пробы флюида, содержащий а) основную пробоотборную камеру внутри прибора, принимающую первую часть пробы флюида, б) микропробоотборную камеру, сообщающуюся с основной пробоотборной камерой, принимающую вторую часть пробы флюида практически одновременно с приемом основной пробоотборной камерой первой части пробы флюида и выполненную с возможностью перемещения от основной пробоотборной камеры, причем вторая часть пробы флюида может быть извлечена из микропробоотборной камеры без вмешательства в первую часть пробы флюида в основной пробоотборной камере, и
в) анализатор, связанный с микропробоотборной камерой для проведения анализа пробы флюида.
Приоритет по пунктам:
02.05.2003 - все пункты формулы.
RU2005137357/03A 2003-05-02 2004-05-03 Скважинный пробоотборник с микропробоотборной камерой и способ его применения RU2333357C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US46766803P 2003-05-02 2003-05-02
US60/467,668 2003-05-02

Publications (2)

Publication Number Publication Date
RU2005137357A RU2005137357A (ru) 2007-06-10
RU2333357C2 true RU2333357C2 (ru) 2008-09-10

Family

ID=33435101

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005137357/03A RU2333357C2 (ru) 2003-05-02 2004-05-03 Скважинный пробоотборник с микропробоотборной камерой и способ его применения

Country Status (10)

Country Link
US (2) US7210343B2 (ru)
EP (3) EP2320026B1 (ru)
JP (1) JP2007535655A (ru)
CN (1) CN1784535B (ru)
BR (1) BRPI0410046A (ru)
CA (1) CA2524075A1 (ru)
DE (1) DE602004012554T2 (ru)
NO (1) NO20055319L (ru)
RU (1) RU2333357C2 (ru)
WO (2) WO2004099566A1 (ru)

Families Citing this family (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099567A1 (en) * 2003-05-02 2004-11-18 Baker Hughes Incorporated Continuous data recorder for a downhole sample tank
US7782460B2 (en) * 2003-05-06 2010-08-24 Baker Hughes Incorporated Laser diode array downhole spectrometer
US7196786B2 (en) * 2003-05-06 2007-03-27 Baker Hughes Incorporated Method and apparatus for a tunable diode laser spectrometer for analysis of hydrocarbon samples
US20070081157A1 (en) * 2003-05-06 2007-04-12 Baker Hughes Incorporated Apparatus and method for estimating filtrate contamination in a formation fluid
US7408645B2 (en) 2003-11-10 2008-08-05 Baker Hughes Incorporated Method and apparatus for a downhole spectrometer based on tunable optical filters
US7490664B2 (en) * 2004-11-12 2009-02-17 Halliburton Energy Services, Inc. Drilling, perforating and formation analysis
US7565835B2 (en) 2004-11-17 2009-07-28 Schlumberger Technology Corporation Method and apparatus for balanced pressure sampling
US7546885B2 (en) * 2005-05-19 2009-06-16 Schlumberger Technology Corporation Apparatus and method for obtaining downhole samples
EP1736756A1 (en) 2005-06-20 2006-12-27 Bp Oil International Limited Development of disposable/Sealable tips for near infra-red (NIR) spectroscopic probes
US7475593B2 (en) 2005-06-24 2009-01-13 Precision Energy Services, Inc. High temperature near infrared for measurements and telemetry in well boreholes
US7472589B2 (en) 2005-11-07 2009-01-06 Halliburton Energy Services, Inc. Single phase fluid sampling apparatus and method for use of same
US7874206B2 (en) * 2005-11-07 2011-01-25 Halliburton Energy Services, Inc. Single phase fluid sampling apparatus and method for use of same
US7596995B2 (en) * 2005-11-07 2009-10-06 Halliburton Energy Services, Inc. Single phase fluid sampling apparatus and method for use of same
US8429961B2 (en) 2005-11-07 2013-04-30 Halliburton Energy Services, Inc. Wireline conveyed single phase fluid sampling apparatus and method for use of same
US7428925B2 (en) * 2005-11-21 2008-09-30 Schlumberger Technology Corporation Wellbore formation evaluation system and method
US7681450B2 (en) * 2005-12-09 2010-03-23 Baker Hughes Incorporated Casing resonant radial flexural modes in cement bond evaluation
US7458257B2 (en) * 2005-12-19 2008-12-02 Schlumberger Technology Corporation Downhole measurement of formation characteristics while drilling
US20080087470A1 (en) 2005-12-19 2008-04-17 Schlumberger Technology Corporation Formation Evaluation While Drilling
US7367394B2 (en) * 2005-12-19 2008-05-06 Schlumberger Technology Corporation Formation evaluation while drilling
US7482811B2 (en) * 2006-11-10 2009-01-27 Schlumberger Technology Corporation Magneto-optical method and apparatus for determining properties of reservoir fluids
US20080111064A1 (en) * 2006-11-10 2008-05-15 Schlumberger Technology Corporation Downhole measurement of substances in earth formations
US7586087B2 (en) * 2007-01-24 2009-09-08 Schlumberger Technology Corporation Methods and apparatus to characterize stock-tank oil during fluid composition analysis
US20090066959A1 (en) * 2007-09-07 2009-03-12 Baker Hughes Incorporated Apparatus and Method for Estimating a Property of a Fluid in a Wellbore Using Photonic Crystals
US8028562B2 (en) * 2007-12-17 2011-10-04 Schlumberger Technology Corporation High pressure and high temperature chromatography
US20090159334A1 (en) * 2007-12-19 2009-06-25 Bp Corporation North America, Inc. Method for detecting formation pore pressure by detecting pumps-off gas downhole
US8794350B2 (en) * 2007-12-19 2014-08-05 Bp Corporation North America Inc. Method for detecting formation pore pressure by detecting pumps-off gas downhole
US8297351B2 (en) * 2007-12-27 2012-10-30 Schlumberger Technology Corporation Downhole sensing system using carbon nanotube FET
US7886821B2 (en) * 2008-01-24 2011-02-15 Baker Hughes Incorporated Apparatus and method for determining fluid properties
US8032311B2 (en) 2008-05-22 2011-10-04 Baker Hughes Incorporated Estimating gas-oil ratio from other physical properties
US9360631B2 (en) 2008-08-20 2016-06-07 Foro Energy, Inc. Optics assembly for high power laser tools
US9347271B2 (en) 2008-10-17 2016-05-24 Foro Energy, Inc. Optical fiber cable for transmission of high power laser energy over great distances
US9242309B2 (en) 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US10301912B2 (en) * 2008-08-20 2019-05-28 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
US9244235B2 (en) 2008-10-17 2016-01-26 Foro Energy, Inc. Systems and assemblies for transferring high power laser energy through a rotating junction
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
US8627901B1 (en) 2009-10-01 2014-01-14 Foro Energy, Inc. Laser bottom hole assembly
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US8571368B2 (en) 2010-07-21 2013-10-29 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9138786B2 (en) 2008-10-17 2015-09-22 Foro Energy, Inc. High power laser pipeline tool and methods of use
US9027668B2 (en) 2008-08-20 2015-05-12 Foro Energy, Inc. Control system for high power laser drilling workover and completion unit
AU2009340454A1 (en) 2008-08-20 2010-08-26 Foro Energy Inc. Method and system for advancement of a borehole using a high power laser
US9267330B2 (en) 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
US8379207B2 (en) * 2008-10-15 2013-02-19 Baker Hughes Incorporated Method and apparatus for estimating a fluid property
US7967067B2 (en) 2008-11-13 2011-06-28 Halliburton Energy Services, Inc. Coiled tubing deployed single phase fluid sampling apparatus
US8464794B2 (en) 2009-06-29 2013-06-18 Halliburton Energy Services, Inc. Wellbore laser operations
US20110016962A1 (en) * 2009-07-21 2011-01-27 Baker Hughes Incorporated Detector for Characterizing a Fluid
US8720584B2 (en) 2011-02-24 2014-05-13 Foro Energy, Inc. Laser assisted system for controlling deep water drilling emergency situations
US8783360B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted riser disconnect and method of use
US8684088B2 (en) 2011-02-24 2014-04-01 Foro Energy, Inc. Shear laser module and method of retrofitting and use
US8783361B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted blowout preventer and methods of use
US9091151B2 (en) 2009-11-19 2015-07-28 Halliburton Energy Services, Inc. Downhole optical radiometry tool
US8839871B2 (en) 2010-01-15 2014-09-23 Halliburton Energy Services, Inc. Well tools operable via thermal expansion resulting from reactive materials
US8306762B2 (en) * 2010-01-25 2012-11-06 Baker Hughes Incorporated Systems and methods for analysis of downhole data
US8508741B2 (en) * 2010-04-12 2013-08-13 Baker Hughes Incorporated Fluid sampling and analysis downhole using microconduit system
CN102933950A (zh) * 2010-06-17 2013-02-13 哈里伯顿能源服务公司 对密封腔室中流体试样的非入侵的可压缩性和原位密度测试
EP2591383B1 (en) 2010-07-08 2019-01-16 Halliburton Energy Services, Inc. Method and system of determining constituent components of a fluid sample in a downhole tool
WO2012024285A1 (en) 2010-08-17 2012-02-23 Foro Energy Inc. Systems and conveyance structures for high power long distance laster transmission
US9429014B2 (en) 2010-09-29 2016-08-30 Schlumberger Technology Corporation Formation fluid sample container apparatus
US20120086454A1 (en) * 2010-10-07 2012-04-12 Baker Hughes Incorporated Sampling system based on microconduit lab on chip
US8474533B2 (en) 2010-12-07 2013-07-02 Halliburton Energy Services, Inc. Gas generator for pressurizing downhole samples
US20120145907A1 (en) * 2010-12-14 2012-06-14 Van Groos August F Koster Dynamic environmental chamber and methods of radiation analysis
US8397800B2 (en) 2010-12-17 2013-03-19 Halliburton Energy Services, Inc. Perforating string with longitudinal shock de-coupler
US8393393B2 (en) 2010-12-17 2013-03-12 Halliburton Energy Services, Inc. Coupler compliance tuning for mitigating shock produced by well perforating
MX2013006899A (es) 2010-12-17 2013-07-17 Halliburton Energy Serv Inc Perforacion del pozo con determinacion de caracteristicas del pozo.
US8985200B2 (en) 2010-12-17 2015-03-24 Halliburton Energy Services, Inc. Sensing shock during well perforating
US8397814B2 (en) 2010-12-17 2013-03-19 Halliburton Energy Serivces, Inc. Perforating string with bending shock de-coupler
WO2012116155A1 (en) 2011-02-24 2012-08-30 Foro Energy, Inc. Electric motor for laser-mechanical drilling
WO2012116153A1 (en) 2011-02-24 2012-08-30 Foro Energy, Inc. High power laser-mechanical drilling bit and methods of use
US20120241169A1 (en) 2011-03-22 2012-09-27 Halliburton Energy Services, Inc. Well tool assemblies with quick connectors and shock mitigating capabilities
FR2973828B1 (fr) * 2011-04-11 2014-04-18 Snf Sas Ensemble de materiel de mesure et regulation de viscosite en ligne a haute pression
EP2715887A4 (en) 2011-06-03 2016-11-23 Foro Energy Inc PASSIVELY COOLED HIGH ENERGY LASER FIBER ROBUST OPTICAL CONNECTORS AND METHODS OF USE
US9091152B2 (en) 2011-08-31 2015-07-28 Halliburton Energy Services, Inc. Perforating gun with internal shock mitigation
DE102011086206A1 (de) 2011-11-11 2013-05-16 Carl Zeiss Ag Anordnung zum Bestimmen der optischen Eigenschaften von Bohrlochfluiden
US8547556B2 (en) * 2011-12-14 2013-10-01 Halliburton Energy Services, Inc. Methods of analyzing a reservoir fluid sample using a multivariate optical element calculation device
BR112014007118A2 (pt) * 2011-12-14 2017-04-18 Halliburton Energy Services Inc método de análise de uma amostra de fluido de um reservatório
US9057256B2 (en) * 2012-01-10 2015-06-16 Schlumberger Technology Corporation Submersible pump control
DE102012100794B3 (de) * 2012-01-31 2013-02-28 Airbus Operations Gmbh Vorrichtung und Verfahren zum Erfassen von Kontaminationen in einem Hydrauliksystem
US20130213648A1 (en) * 2012-02-16 2013-08-22 Baker Hughes Incorporated Optical fluid analyzer sampling tool using open beam optical construction
EP2890859A4 (en) 2012-09-01 2016-11-02 Foro Energy Inc REDUCED MECHANICAL ENERGY WELL CONTROL SYSTEMS AND METHODS OF USE
US9169705B2 (en) 2012-10-25 2015-10-27 Halliburton Energy Services, Inc. Pressure relief-assisted packer
US9249656B2 (en) * 2012-11-15 2016-02-02 Baker Hughes Incorporated High precision locked laser operating at elevated temperatures
US9187999B2 (en) * 2012-11-30 2015-11-17 Baker Hughes Incorporated Apparatus and method for obtaining formation fluid samples
US9534494B2 (en) * 2013-02-25 2017-01-03 Schlumberger Technology Corporation Optical window assemblies
US9429013B2 (en) 2013-02-25 2016-08-30 Schlumberger Technology Corporation Optical window assembly for an optical sensor of a downhole tool and method of using same
US9587486B2 (en) 2013-02-28 2017-03-07 Halliburton Energy Services, Inc. Method and apparatus for magnetic pulse signature actuation
MX361245B (es) 2013-03-05 2018-11-30 Halliburton Energy Services Inc Sistema, metodo y producto de programa informatico para fortalecimiento con respecto al entorno y diseño de sistema fotometrico.
US20140262320A1 (en) 2013-03-12 2014-09-18 Halliburton Energy Services, Inc. Wellbore Servicing Tools, Systems and Methods Utilizing Near-Field Communication
US20140268156A1 (en) * 2013-03-13 2014-09-18 Schlumberger Technology Corporation Method and system for determining bubble point pressure
US9284817B2 (en) 2013-03-14 2016-03-15 Halliburton Energy Services, Inc. Dual magnetic sensor actuation assembly
US20150075770A1 (en) 2013-05-31 2015-03-19 Michael Linley Fripp Wireless activation of wellbore tools
US9752414B2 (en) 2013-05-31 2017-09-05 Halliburton Energy Services, Inc. Wellbore servicing tools, systems and methods utilizing downhole wireless switches
US9109434B2 (en) 2013-06-09 2015-08-18 Schlumberger Technology Corporation System and method for estimating oil formation volume factor downhole
AU2013402071B2 (en) * 2013-09-25 2016-08-25 Halliburton Energy Services, Inc. Systems and methods for real time measurement of gas content in drilling fluids
US10415380B2 (en) * 2013-10-01 2019-09-17 Baker Hughes, A Ge Company, Llc Sample tank with integrated fluid separation
CA2929943A1 (en) 2013-11-13 2015-05-21 Schlumberger Canada Limited Automatic pumping system commissioning
MX365729B (es) 2014-03-07 2019-06-12 Halliburton Energy Services Inc Metodos y sistemas de muestreo para el fluido de formacion.
NO342929B1 (no) * 2014-04-16 2018-09-03 Vision Io As Inspeksjonsverktøy
WO2016032437A1 (en) 2014-08-26 2016-03-03 Halliburton Energy Services, Inc. Systems and methods for in situ monitoring of cement slurry locations and setting processes thereof
US10808523B2 (en) 2014-11-25 2020-10-20 Halliburton Energy Services, Inc. Wireless activation of wellbore tools
CN107210786B (zh) * 2015-02-10 2021-01-15 索尼公司 接收器和通信系统
CN105300902A (zh) * 2015-10-26 2016-02-03 北京农业信息技术研究中心 五点法差异深度药剂蒸发高通量信息动态获取方法
US10221687B2 (en) 2015-11-26 2019-03-05 Merger Mines Corporation Method of mining using a laser
US11353422B2 (en) 2016-10-14 2022-06-07 Halliburton Energy Services, Inc. In situ treatment of chemical sensors
CN106770023B (zh) * 2017-01-17 2018-01-16 明光市裕阳新材料有限公司 多腔室的激光检测监测仪及检测方法
US10371633B2 (en) 2017-10-30 2019-08-06 Saudi Arabian Oil Company Determining a specific gravity of a sample
US11598703B2 (en) * 2018-06-08 2023-03-07 Halliburton Energy Services, Inc. Apparatus, system and method for mechanical testing under confined conditions
US11479373B2 (en) * 2018-08-14 2022-10-25 Honeybee Robotics, Llc Sample collection system for interplanetary vehicle
US11262298B2 (en) 2018-08-30 2022-03-01 Caterpillar Inc. System and method for determining fluid origin
US11275022B2 (en) 2018-09-05 2022-03-15 Halliburton Energy Services, Inc. Two frequency comb fourier spectroscopy for chemical sensing
US11352881B2 (en) 2018-11-28 2022-06-07 Halliburton Energy Services, Inc. Downhole sample extractors and downhole sample extraction systems
CN109667579B (zh) * 2018-12-28 2021-07-13 中国科学院武汉岩土力学研究所 一种超低渗地层内深井气液流体取样装置
US11408282B2 (en) * 2019-05-10 2022-08-09 Baker Hughes Oilfield Operations Llc Bi-conical optical sensor for obtaining downhole fluid properties
CN110672550B (zh) * 2019-09-10 2021-11-19 中国科学院上海技术物理研究所 一种微区重要生物资源像谱分析仪
DE102019135595A1 (de) * 2019-12-20 2021-06-24 Endress+Hauser Conducta Gmbh+Co. Kg Wechselarmatur für Eintauch-, Durchfluss- und Anbau-Messsysteme in der analytischen Prozesstechnik
CN113049522B (zh) * 2019-12-26 2023-07-25 中国石油天然气股份有限公司 能够消除气泡的近红外分析装置
US11624722B2 (en) 2020-04-24 2023-04-11 The Boeing Company Method and systems for determining dielectric breakdown voltages of fluid samples using dielectric fluid testers
CN111781019A (zh) * 2020-07-03 2020-10-16 中国海洋石油集团有限公司 一种泵抽模块和流体取样方法
US11662288B2 (en) 2020-09-24 2023-05-30 Saudi Arabian Oil Company Method for measuring API gravity of petroleum crude oils using angle-resolved fluorescence spectra
CN113899727B (zh) * 2021-09-18 2022-11-18 中山大学 检测沉积物孔隙水中目标物浓度垂向变化的设备及方法

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3448611A (en) * 1966-09-29 1969-06-10 Schlumberger Technology Corp Method and apparatus for formation testing
US3611799A (en) * 1969-10-01 1971-10-12 Dresser Ind Multiple chamber earth formation fluid sampler
US3608715A (en) * 1970-02-06 1971-09-28 Brockway Glass Co Inc Method and apparatus for inspecting liquids
US3780575A (en) * 1972-12-08 1973-12-25 Schlumberger Technology Corp Formation-testing tool for obtaining multiple measurements and fluid samples
US3859851A (en) * 1973-12-12 1975-01-14 Schlumberger Technology Corp Methods and apparatus for testing earth formations
JPS55910Y2 (ru) * 1975-03-28 1980-01-11
FR2558522B1 (fr) 1983-12-22 1986-05-02 Schlumberger Prospection Dispositif pour prelever un echantillon representatif du fluide present dans un puits, et procede correspondant
US4721157A (en) 1986-05-12 1988-01-26 Baker Oil Tools, Inc. Fluid sampling apparatus
US4766955A (en) 1987-04-10 1988-08-30 Atlantic Richfield Company Wellbore fluid sampling apparatus
US4787447A (en) * 1987-06-19 1988-11-29 Halliburton Company Well fluid modular sampling apparatus
US4994671A (en) * 1987-12-23 1991-02-19 Schlumberger Technology Corporation Apparatus and method for analyzing the composition of formation fluids
US4936139A (en) * 1988-09-23 1990-06-26 Schlumberger Technology Corporation Down hole method for determination of formation properties
CA1325379C (en) 1988-11-17 1993-12-21 Owen T. Krauss Down hole reservoir fluid sampler
US4903765A (en) 1989-01-06 1990-02-27 Halliburton Company Delayed opening fluid sampler
GB9003467D0 (en) 1990-02-15 1990-04-11 Oilphase Sampling Services Ltd Sampling tool
US5166747A (en) * 1990-06-01 1992-11-24 Schlumberger Technology Corporation Apparatus and method for analyzing the composition of formation fluids
US5077481A (en) * 1990-10-25 1991-12-31 The Perkin-Elmer Corporation Optical probe for measuring light transmission of liquid
US5178178A (en) * 1991-01-07 1993-01-12 Hewlett-Packard Company Valve assembly
NO172863C (no) 1991-05-03 1993-09-15 Norsk Hydro As Elektro-hydraulisk bunnhullsproevetakerutstyr
US5240072A (en) 1991-09-24 1993-08-31 Halliburton Company Multiple sample annulus pressure responsive sampler
US5303775A (en) 1992-11-16 1994-04-19 Western Atlas International, Inc. Method and apparatus for acquiring and processing subsurface samples of connate fluid
US5377755A (en) 1992-11-16 1995-01-03 Western Atlas International, Inc. Method and apparatus for acquiring and processing subsurface samples of connate fluid
US5329811A (en) 1993-02-04 1994-07-19 Halliburton Company Downhole fluid property measurement tool
US5361839A (en) 1993-03-24 1994-11-08 Schlumberger Technology Corporation Full bore sampler including inlet and outlet ports flanking an annular sample chamber and parameter sensor and memory apparatus disposed in said sample chamber
US5662166A (en) 1995-10-23 1997-09-02 Shammai; Houman M. Apparatus for maintaining at least bottom hole pressure of a fluid sample upon retrieval from an earth bore
US5734098A (en) * 1996-03-25 1998-03-31 Nalco/Exxon Energy Chemicals, L.P. Method to monitor and control chemical treatment of petroleum, petrochemical and processes with on-line quartz crystal microbalance sensors
US5741962A (en) * 1996-04-05 1998-04-21 Halliburton Energy Services, Inc. Apparatus and method for analyzing a retrieving formation fluid utilizing acoustic measurements
US5902939A (en) * 1996-06-04 1999-05-11 U.S. Army Corps Of Engineers As Represented By The Secretary Of The Army Penetrometer sampler system for subsurface spectral analysis of contaminated media
US5934374A (en) * 1996-08-01 1999-08-10 Halliburton Energy Services, Inc. Formation tester with improved sample collection system
US5859430A (en) * 1997-04-10 1999-01-12 Schlumberger Technology Corporation Method and apparatus for the downhole compositional analysis of formation gases
US6092416A (en) * 1997-04-16 2000-07-25 Schlumberger Technology Corporation Downholed system and method for determining formation properties
US5939717A (en) * 1998-01-29 1999-08-17 Schlumberger Technology Corporation Methods and apparatus for determining gas-oil ratio in a geological formation through the use of spectroscopy
US6218662B1 (en) * 1998-04-23 2001-04-17 Western Atlas International, Inc. Downhole carbon dioxide gas analyzer
US6178815B1 (en) * 1998-07-30 2001-01-30 Schlumberger Technology Corporation Method to improve the quality of a formation fluid sample
JP3479227B2 (ja) * 1998-12-07 2003-12-15 国際航業株式会社 地中汚染物質の測定方法及び装置
US6350986B1 (en) * 1999-02-23 2002-02-26 Schlumberger Technology Corporation Analysis of downhole OBM-contaminated formation fluid
US6688390B2 (en) * 1999-03-25 2004-02-10 Schlumberger Technology Corporation Formation fluid sampling apparatus and method
US6378364B1 (en) * 2000-01-13 2002-04-30 Halliburton Energy Services, Inc. Downhole densitometer
US6437326B1 (en) * 2000-06-27 2002-08-20 Schlumberger Technology Corporation Permanent optical sensor downhole fluid analysis systems
US6474152B1 (en) * 2000-11-02 2002-11-05 Schlumberger Technology Corporation Methods and apparatus for optically measuring fluid compressibility downhole
US6467544B1 (en) 2000-11-14 2002-10-22 Schlumberger Technology Corporation Sample chamber with dead volume flushing
US6557632B2 (en) * 2001-03-15 2003-05-06 Baker Hughes Incorporated Method and apparatus to provide miniature formation fluid sample
WO2002077613A2 (en) * 2001-03-23 2002-10-03 Services Petroliers Schlumberger Fluid property sensors
US6938470B2 (en) * 2001-05-15 2005-09-06 Baker Hughes Incorporated Method and apparatus for downhole fluid characterization using flexural mechanical resonators
GB2377952B (en) * 2001-07-27 2004-01-28 Schlumberger Holdings Receptacle for sampling downhole
US7246664B2 (en) * 2001-09-19 2007-07-24 Baker Hughes Incorporated Dual piston, single phase sampling mechanism and procedure
US6683681B2 (en) * 2002-04-10 2004-01-27 Baker Hughes Incorporated Method and apparatus for a downhole refractometer and attenuated reflectance spectrometer
US6640625B1 (en) * 2002-05-08 2003-11-04 Anthony R. H. Goodwin Method and apparatus for measuring fluid density downhole
US6907797B2 (en) * 2002-11-12 2005-06-21 Baker Hughes Incorporated Method and apparatus for supercharging downhole sample tanks
US7081615B2 (en) * 2002-12-03 2006-07-25 Schlumberger Technology Corporation Methods and apparatus for the downhole characterization of formation fluids
WO2004099567A1 (en) * 2003-05-02 2004-11-18 Baker Hughes Incorporated Continuous data recorder for a downhole sample tank

Also Published As

Publication number Publication date
WO2004099566A1 (en) 2004-11-18
JP2007535655A (ja) 2007-12-06
EP1631732A1 (en) 2006-03-08
EP2320026A1 (en) 2011-05-11
RU2005137357A (ru) 2007-06-10
US20040244971A1 (en) 2004-12-09
EP1623091B1 (en) 2009-04-01
WO2004099564A2 (en) 2004-11-18
CN1784535B (zh) 2010-09-29
DE602004012554D1 (de) 2008-04-30
WO2004099564A3 (en) 2005-02-10
EP1631732B1 (en) 2008-03-19
BRPI0410046A (pt) 2006-04-25
EP2320026B1 (en) 2013-04-24
US7671983B2 (en) 2010-03-02
NO20055319L (no) 2005-11-11
US20040218176A1 (en) 2004-11-04
CA2524075A1 (en) 2004-11-18
EP1623091A2 (en) 2006-02-08
CN1784535A (zh) 2006-06-07
US7210343B2 (en) 2007-05-01
DE602004012554T2 (de) 2009-04-16

Similar Documents

Publication Publication Date Title
RU2333357C2 (ru) Скважинный пробоотборник с микропробоотборной камерой и способ его применения
RU2404362C2 (ru) Кабельный внутрискважинный газовый хроматограф и способ внутрискважинной газовой хроматографии
US7581435B2 (en) Method and apparatus for acquiring physical properties of fluid samples at high temperatures and pressures
RU2420658C2 (ru) Устройство (варианты) и способ (варианты) получения свойств флюидов скважинных флюидов
RU2348806C2 (ru) Устройство непрерывной регистрации данных для скважинного пробоотборного резервуара
US10280745B2 (en) Method and apparatus for evaluating fluid sample contamination by using multi sensors
US9416656B2 (en) Assessing reservoir connectivity in hydrocarbon reservoirs
US8082780B2 (en) Methods and apparatus for decreasing a density of a downhole fluid
US8434357B2 (en) Clean fluid sample for downhole measurements
AU2009245848B2 (en) Methods and apparatus to evaluate subterranean formations
CA2669434A1 (en) Downhole measurment of substances in earth formations
US20220403737A1 (en) Determining Asphaltene Onset
US9074460B2 (en) Method of analyzing a petroleum reservoir
Zuo et al. Equation-of-state-based downhole fluid characterization
EP1865147A1 (en) A method and apparatus for a downhole micro-sampler

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150504