CN1784535B - 用于井下微型取样器的方法和装置 - Google Patents
用于井下微型取样器的方法和装置 Download PDFInfo
- Publication number
- CN1784535B CN1784535B CN2004800118652A CN200480011865A CN1784535B CN 1784535 B CN1784535 B CN 1784535B CN 2004800118652 A CN2004800118652 A CN 2004800118652A CN 200480011865 A CN200480011865 A CN 200480011865A CN 1784535 B CN1784535 B CN 1784535B
- Authority
- CN
- China
- Prior art keywords
- sample
- micro
- fluid
- sample chamber
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 28
- 238000004458 analytical method Methods 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 14
- 239000012530 fluid Substances 0.000 claims description 108
- 230000015572 biosynthetic process Effects 0.000 claims description 30
- 230000003287 optical effect Effects 0.000 claims description 15
- 230000002706 hydrostatic effect Effects 0.000 claims description 8
- 230000000007 visual effect Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 238000005303 weighing Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000001237 Raman spectrum Methods 0.000 claims description 2
- 238000002955 isolation Methods 0.000 claims 1
- 238000012360 testing method Methods 0.000 abstract description 12
- 229910052594 sapphire Inorganic materials 0.000 abstract description 9
- 239000010980 sapphire Substances 0.000 abstract description 9
- 238000011179 visual inspection Methods 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 140
- 230000000712 assembly Effects 0.000 description 10
- 238000000429 assembly Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 244000248349 Citrus limon Species 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 238000006957 Michael reaction Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000007701 flash-distillation Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011155 quantitative monitoring Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V8/00—Prospecting or detecting by optical means
- G01V8/02—Prospecting
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/08—Obtaining fluid samples or testing fluids, in boreholes or wells
- E21B49/081—Obtaining fluid samples or testing fluids, in boreholes or wells with down-hole means for trapping a fluid sample
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/10—Devices for withdrawing samples in the liquid or fluent state
- G01N1/14—Suction devices, e.g. pumps; Ejector devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/26—Oils; Viscous liquids; Paints; Inks
- G01N33/28—Oils, i.e. hydrocarbon liquids
- G01N33/2823—Raw oil, drilling fluid or polyphasic mixtures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N2021/651—Cuvettes therefore
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Fluid Mechanics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Environmental & Geological Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Hydrology & Water Resources (AREA)
- Geophysics (AREA)
- Geochemistry & Mineralogy (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Measuring Cells (AREA)
Abstract
本发明提供了一个井下样品罐和多个微型样品腔室。为了从地面钻孔或井筒底部采集到微型样品腔室内的样品,该微型样品腔室可具有至少一个将可见光,近红外(NIR),中红外(MIR)以及其他电磁能量引入所述罐的窗口。该窗口可由蓝宝石或其他能够允许电磁能量通过窗口的材料制成。整个微型样品腔室可由蓝宝石或其他允许电磁能量通过能够通过视觉观察或在微型样品腔室内进行样品分析的另一种材料的材料制成。该微型样品腔室在地面能够立即进行现场样品测试以确定主样品罐中样品的质量或能够进行样品的全面测试。
Description
相关申请的交叉引用
本专利申请要求系列号为No.60/467668、申请日为2003年5月2日、由M.Shammai等人提出的、题目为“用于一种高级光学圆柱体的方法和装置”的美国临时专利申请的优先权。
技术领域
本发明主要涉及井下取样分析领域,尤其是获取用于现场快速分析以确定井下样品质量的井下等分(aliquot)地层流体微量样品。
背景技术
在碳氢化合物生产井中的地层流体典型地包括油、气和水的混合物。地层流体的压力、温度和体积控制这些组分的相关系。在地层中,高的井内流体压力通常在高于泡点压力时将气体夹带入油内。当该压力减少时,该夹带入的或溶解的气体化合物从液相样品中分离。对来自一口特定井的压力,温度和地层流体组成的精确测量会影响从该井生产流体的商业可行性。该数据也提供了关于使相应的油气层完井(completion)和生产最大化的程序的信息。
可用某些技术来分析井筒中的井底流体。Brown等人提出的美国专利号为No.6,467,544的专利申请描述了一种样品腔室,其具有一个可滑动设置的活塞以在活塞的一侧限定一个样品腔并在活塞的另一侧限定一个缓冲腔。Griffith等人提出的美国专利号为5,361,839的专利申请(1993)公开了一种能够产生井筒中的井底流体样品性质的输出表示的转换器。Schultz等人(1994)提出的美国专利号为5,329,811的专利申请公开了一种估计井底流体样品压力和体积参数的方法和装置。
其他技术采集井中的流体样品以取回至地面。Czenichow等人(1986)提出的美国专利号为4,583,595的专利申请公开了一种采集井内流体样品的活塞致动机构。Berzin(1988)提出的美国专利号为4,721,157的专利申请公开了一种在一个腔内采集井内流体样品的移动阀套。Petermann(1988)提出的美国专利号为4,766,955的专利申请公开了一种用于采集井内流体样品的与一个控制阀接合的活塞,和Zunkel(1990)提出的美国专利号为4,903,765的专利申请公开了一种时间延迟的井内流体取样器。Gruber等人(1991)提出的美国专利号为5,009,100的专利申请公开了一种从选择的井筒深度采集井内流体样品的缆绳取样器。Schultz等人(1993)年提出的美国专利号为5,240,072的专利申请公开了一种在不同的时间和深度间隔允许井内流体样品采集的多样品环空压力响应取样器,Be等人(1994)提出的美国专利号为5,322,120的专利申请中公开了一种在井筒深处采集井内流体样品的电致动液压系统。
井筒深处的井下温度通常超过300°F。当一个热的地层流体样品取回到70°F的地面时,温度降低导致地层流体样品收缩。如果样品体积不变,这样的收缩实质上减少了样品的压力。压力的降低导致原位置地层流体参数改变,并允许在流体和地层流体样品内夹带的气体之间的相分离。相分离能显著改变地层流体特性,并降低评价地层流体实际特性的能力。
为了克服该限制,发展了各种保持地层流体压力的技术。Massie等人(1994)提出的美国专利号为5,337,822的专利申请中使用由高压气体提供动力的液压驱动的活塞来对地层流体样品增压。相似地,Shammai(1997)提出的美国专利号为5,662,166的专利申请利用一种增压气体来为地层流体样品增压。Michaels等人(1994)提出的美国专利号为5,303,775和(1995)提出的美国专利号为5,377,755的专利申请公开了一种增加地层流体样品压力使其超过泡点以至于随后的冷却不会将流体压力减少至泡点之下的双向容积泵。
典型地,样品罐被送到实验室用于分析以基于样品确定地层流体特性。典型地,样品将不得不被转移到输送罐内,因此,由于压力损失以及形成气泡或样品内的沥青质沉淀,将冒着样品损坏和损失的危险。另外,即使将样品成功转移到实验室,也要花费数周或数月才能得到样品的全部实验室分析。因此需要一种能够提供精确结果并消除样品损失危险的快速样品分析系统。
发明内容
本发明在上面的描述中提出了相关技术的缺点。本发明提供了一种井下样品罐和至少一个可去掉的微型样品腔。微型样品腔配置成在地面上取到样品后,能立即进行分析。在实施例中,为了用于微型样品腔内的从地层钻孔或井筒内采集的样品,该微型样品腔可具有至少一个用于将可见光,近红外(NIR),中红外(MIR)和其他电磁能量引入罐内的窗口。该窗口由蓝宝石或其他能允许电磁能量通过该窗口的材料制成。整个微型样品腔可由蓝宝石或其他能允许电磁能量通过能够对微型样品腔内的样品视觉观察或分析的其他材料的材料制成。因为微型样品腔可从井下样品罐取下,并允许电磁能量通过该样品,该微型样品腔能够在地面对样品进行快速的现场测试以确定主样品罐内样品的质量或能够对样品进行全面测试。
在一个实施例中,样品罐和微型样品腔依靠抵抗借助流体静压力偏移的活塞而泵入地层流体来充满。样品罐和微型样品腔通过泵入或气体加载而增压从而使样品的压力增加至样品泡点压力以上从而防止不利的压力下降。可在地面将微型样品腔取下以便通过对微型样品腔内部未动过的样品进行光学分析而直接测试,或通过将微型样品腔固定在测试模块上以将样品从微型样品腔内泵入到测试模块进行气相色谱测试。可将偏置水压增压施加到微型样品腔以进一步确保微型样品保持在泡点压力以上。可以通过称量空的微型样品罐并在充满样品后再次称量以确定微型样品腔已知体积内的样品重量从而确定微型样品罐内样品的粘度。
附图说明
为了详细理解本发明,参考下面结合附图对示例性实施例的详细描述,其中相同的部件采用相同的附图标记,其中:
图1为示出本发明工作环境的地层剖面示意图;
图2为本发明的操作组件与配合的支持工具的简图;
图3为代表性的地层流体采集和输送系统的简图;
图4为示例性的微型样品腔室的图解;
图5为具有单向阀和清除管线的图4中的微型样品腔室的详细图解;
图6为从测井下工具拆下并正在进行微量样品分析的微型样品组件的图解;
图7为通常已知的样品分析程序的图解;
图8为本发明提供的新改进的程序的图解。
具体实施方式
图1示例性地表示沿井筒11长度的地层10的横截面。通常,井筒将至少部分充满包括水,钻井流体和井筒穿过的地层所固有的地层流体的液体混合物。在下文中,这样的流体混合物称为“井筒流体”。术语“地层流体”在下文中指一种除任何实质的混合物或被非自然存在于特定地层中的流体污染之外的特定地层流体。
地层流体取样工具20在井筒11内悬挂在缆绳12的底端。缆绳12通常由井架14支撑的滑轮13传送。钢缆绳的部署和回收例如由服务车辆15携带的动力绞车进行。
根据本发明,图2示例性地示出了取样工具20的一个示例性的实施例。在该实施例中,取样工具包括由相互压缩的接头23的螺套首尾连接的几个工具段的一系列组件。适于本发明的工具段组件可包括一个液压动力单元21和一个地层流体收集器22。在地层流体收集器22下面,设置一个用于管线清除的大工作容量马达/泵单元24。在该大容量泵下面为一个具有一个较小工作容量的相似的马达/泵单元25,如在图3中进行了更广泛的描述,该马达/泵单元25被定量监测。通常,在该小容积泵的下面组装有一个或多个样品罐仓部分26。每一个仓部分26可具有三个或更多的流体样品罐30。
地层流体收集器22包括一个与井壁支脚28相对的可延伸的吸入探针27。该吸入探头27和相对支脚28都是可液压延伸以与井壁牢固接合。专利号为No.5,303,775的美国专利详细描述了流体收集工具22的结构和操作细节,其说明书将结合在本申请中。
现在参考附图4,主样品腔414通过流动管路410与微型样品腔510流体连通。样品输入部412从泵25接受地层流体。活塞416通过开口于井眼的口420受流体静压而被偏压。因此,来自地层的样品流体克服流体静压力从井筒被泵入到主样品腔和微型样品腔510内。随着更多的流体被泵入到样品腔414中,样品腔414的体积和微型样品腔510的体积一样膨胀。在腔室418内提供一个氮气偏压(bias),当活塞向下移动从而抵接到连杆449时,其能够向活塞416的后侧施加压力。氮气增压向主样品腔414和微型样品腔510中所包含的样品施加压力。
静压腔422在活塞416的下面施加流体静压力,其能使泵入主样品腔和微型样品腔内的样品流体保持高于流体静压力。微型样品组件400容纳在工具主体440内,该微型样品组件400可以从工具主体去掉以对微型样品腔510内的样品进行观察和测试。
现参考图5,其更详细地示出了微型样品组件400。阀516是打开的以在主样品腔414和微型样品腔510之间提供流体连通。微型样品腔510设置有通过口522开口于井筒流体静压力的偏压活塞441。因此,地层流体被泵入到样品流体管路410内,并抵抗微型样品腔室510内的活塞441和主样品腔室414内的活塞416施加的流体静压力。
在操作前称量空微型样品部件400的重量并在充满样品流体后再次称量以确定样品流体的重量。微型样品腔510的容积是已知的,通过样品的重量(质量)除以体积就可以确定微型样品腔室510内流体样品的密度。该样品流体的密度可以用来确定流体的粘度。
流动管路410能够通过单向阀520使地层流体进入到微型样品腔室510中。单向阀520允许地层流体进入样品腔室内,但却不允许流体流出,除非用图6中所示的销612将其打开。
阀516在样品充满微型样品腔510和主样品腔414后关闭以便于活塞441和416分别降至最低点以将各自的样品腔扩张至最大体积。一旦阀516关闭,清除管线512打开以解除阀516和单向阀520之间的流动管路410中的压力。解除该压力使得能够通过从工具主体螺纹518上拧松组件螺纹532将微型样品组件400拆下,这样容纳在微型样品腔510内的微型样品组件400内的样品可以被视觉观察和分析。
具有由能够对微型样品腔室的所含物视觉观察和光学分析的材料(如蓝宝石)制成的窗口的微型样品部件400可以由金属制成。整个微型样品部件400或环绕微型样品腔510的腔壁401可以由能够对微型样品腔的所含物进行视觉观察和光学分析的材料(如蓝宝石)制成。
现在参考图6,可在口522上连接一个水泵以向微型样品组件活塞441后侧施加压力,从而在将微量样品转送至一个测试装置的过程中,如气相色谱仪中,对样品腔510内的样品施加压力。将微型样品组件柠入试验台600并且销612与单向阀520接合以允许样品腔510内的样品进入试验台600内。在将样品转移至试验台的过程中,来自泵610的水压使样品保持在可阻止样品腔510内的样品的闪蒸的压力下。
当前的微型样品腔的例子具有一个或多个光学导管,其在该示例中为高压蓝宝石窗口530,用于电磁能量出入微型样品腔510从而对所关心的地层流体样品510的参数进行光学分析。整个微型样品腔可以由蓝宝石或其他能够使电磁能量通过该材料的材料制成,因此可以对微型样品腔的所含物进行视觉观察和非侵入的光谱以及其他分析。除了蓝宝石外,光学导管也是可以接受的。
如图6所示,在地面操作中,微型样品组件将从样品罐载体上取下。包括NIR/MIR,紫外或可见光源以及光谱计的外部光学分析器用于地面非侵入式分析。光学分析器包括一个NIR/MIR光源以及一个用于分析光的透过率、荧光性和总的衰减反射率的NIR/MIR光传感器。也就是,不必干扰流体样品或不需要将样品转移到另一个运输部(DOT)批准的腔室中以运输至远离现场的实验室进行分析。
在当前的示例中,外部光学分析器利用的波长范围为1500nm至2000nm从而扫描流体样品以通过软模型技术确定或估计所关心的参数,如样品的污染百分比、气油比(GOR)、密度和沥青沉积压力。在分析模块中也可以提供可调谐二极管激光器和拉曼光谱计对流体样品进行光谱分析。每一种光源和传感器都设置在微型样品腔510内或通过光学窗口530或通过提供数据或电磁能量出入样品罐内和其中容纳的样品的等同的光学导管与微型样品腔的内部连通。
通过比较图7,现有技术系统和图8,本发明的AOA提供的新方法和装置设计,本发明诸多优点中的一部分将得到说明。应注意在图8中,通过光学技术1114的主要参数计算可立即或少于6个小时得到,并且最终的PVT报告1132可在一周之内或更少的时间内得到,而不是图7中所示的现有技术系统中的6至8周。由于在外部设备620中不侵入地面或井下设备执行PVT和光谱分析以确定沥青沉积,起泡点,地层体积系数,组成分析和这里描述的其他分析,因此该公开的方法和装置的一个优点为不需要样品转移。
在另一个实施例中,本发明的方法和装置作为在计算机可读介质上的一组计算机可执行的指令被实现,可读介质包括ROM,RAM,CD-ROM,FlashRAM或任何其他的计算机可读介质,当执行时使计算机实现本发明功能的现在已知的或未知的可读介质。
虽然前面的公开涉及本发明的示例性的实施例,但是对于本领域的技术人员来说,对本发明的各种修改都是明显的。这就意味着在所附权利要求范围内的各种修改都包含在前面公开的内容中。为了更好地理解随后的详细描述,和为了可以更清楚其对于本领域的贡献,相当广泛地概括了本发明的更重要特点的实施例。当然,本发明的其他特点将在随后描述并将形成这里所附权利要求的主题。
Claims (28)
1.一种用于确定流体样品的参数的装置,其包括:
主样品腔(414);其特征在于所述装置还包括:
(a)微型样品腔(510),其中,微型样品腔(510)、主样品腔(414)和流体样品在井下流体连通,主样品腔(414)容纳第一部分流体样品,微型样品腔(510)容纳第二部分流体样品,微型样品腔(510)可从主样品腔(414)中去掉,以确定微型样品腔(510)中的第二部分流体的参数,从而确定主样品腔(414)中第一部分流体样品的参数;以及
(b)与微型样品腔(510)相关联以分析流体样品的分析装置。
2.根据权利要求1所述的装置,其特征在于,该微型样品腔具有已知的体积,通过称量的流体样品重量可以确定流体样品的密度。
3.根据权利要求1所述的装置,其特征在于,整个微型样品腔(510)由允许电磁能量通过以对微型样品腔(510)内的流体样品进行分析的材料制成。
4.根据利要求1所述的装置,其特征在于还包括:
在从井筒取出的过程中使微型样品腔(510)中的流体样品保持压力的压力增压装置。
5.根据权利要求1所述的装置,其特征在于,分析装置包括至少一个由可调谐二极管激光器和拉曼光谱计组成的组来分析流体样品。
6.根据权利要求5所述的装置,还包括:在微型样品腔(510)充满流体样品的过程中抵抗样品泵处流体样品的微型样品腔活塞(441)。
7.根据权利要求1所述的装置,还包括:在从井下取出后对微型样品腔(510)内的样品加压的水增压装置。
8.根据权利要求1所述的装置,还包括:允许流体进入微型样品腔(510)并阻止流体离开微型样品腔(510)的单向阀(520),单向阀(520)随着微型样品腔(510)被移开。
9.根据权利要求8所述的装置,还包括:将微型样品腔(510)与主样品腔分离的阀(516)。
10.根据权利要求9所述的装置,还包括:解除微型样品腔(510)与主样品腔(414)之间压力的清除管线(512)。
11.根据权利要求1所述的装置,其特征在于,基本上整个微型样品腔(510)由能够对微型样品腔(510)内的样品视觉观察的材料制成。
12.根据权利要求1所述的装置,其特征在于,该微型样品腔(510)由能够对微型样品腔(510)内的样品进行光学分析的材料制成。
13.根据权利要求1所述的装置,其特征在于,该微型样品腔(510)可从工具上取下以在地面通过外部分析设备对样品进行分析。
14.根据权利要求1所述的装置,其特征在于,该微型样品腔(510)可在地面上取下以分析微型样品腔的流体样品。
15.一种确定流体样品参数的方法,其包括:向主样品腔(414)和微型样品腔(510)注入流体样品,所述主样品腔和微型样品腔与流体样品处于流体连通,从而在主样品腔(414)中容纳第一部分流体样品;在井下与主样品腔(414)流体连通的微型样品腔(510)容纳第二部分地层流体样品,其特征在于:
(a)将微型样品腔从主样品腔(414)取下;并且
(b)用与微型样品腔(510)相关联的分析装置分析微型样品腔(510)中的第二部分流体样品,以确定主样品腔(414)中第一部分流体样品的参数。
16.根据权利要求15所述的方法,其中,分析第二部分流体包括以下步骤:
对容纳第二部分流体样品的微型样品腔(510)称重;
由容纳第二部分流体样品的微型样品腔的重量减去微型样品腔(510)为空时的重量来确定微型样品腔中第二部分流体样品的重量;并由流体样品的重量和容纳流体样品的样品腔的体积来确定流体样品的密度和粘度中的至少一个。
17.根据权利要求15所述的方法,其特征在于,基本上整个微型样品腔(510)由允许电磁能量通过以对微型样品腔(510)内的样品进行分析的材料制成。
18.根据权利要求15所述的方法,还包括:在从井筒取出微型样品腔(510)的过程中利用一个增压装置在微型样品腔(510)的第二部分流体样品上保持压力。
19.根据权利要求15所述的方法,还包括:使用作用在微型样品腔(510)内样品上的流体静压力偏压装置。
20.根据权利要求15所述的方法,还包括:在微型样品腔(510)充满第二部分流体样品的过程中抵抗样品泵。
21.根据权利要求15所述的方法,还包括:在从井底取出后对微型样品腔(510)内的样品增压。
22.根据权利要求15所述的方法,还包括:利用一个单向阀(520)允许流体进入到微型样品腔(510)内并且阻止流体离开微型样品腔(510),单向阀(520)随着微型样品腔(510)被移开。
23.根据权利要求15所述的方法,还包括:将微型样品腔(510)与主样品腔隔离的阀(516)。
24.根据权利要求23所述的方法,还包括:解除微型样品腔(510)和主样品腔(414)之间的压力。
25.根据权利要求15所述的方法,还包括:对微型样品腔(510)内的流体样品进行视觉观察。
26.根据权利要求15所述的方法,还包括:对微型样品腔(510)内的第二部分流体样品进行光学分析。
27.根据权利要求15所述的方法,还包括:将微型样品腔(510)从工具上取下;以及
通过外部分析设备在地面上对微型样品腔(510)内的第二部分流体样品进行分析,以确定主样品腔(414)内第一部分流体样品的质量。
28.根据权利要求15所述的方法,其还包括:
将微型样品腔(510)取下,用来在地面上分析第二部分流体样品,以确定主样品腔(414)内第一部分流体样品的参数。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US46766803P | 2003-05-02 | 2003-05-02 | |
US60/467,668 | 2003-05-02 | ||
PCT/US2004/013552 WO2004099564A2 (en) | 2003-05-02 | 2004-05-03 | A method and apparatus for a downhole micro-sampler |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1784535A CN1784535A (zh) | 2006-06-07 |
CN1784535B true CN1784535B (zh) | 2010-09-29 |
Family
ID=33435101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2004800118652A Expired - Fee Related CN1784535B (zh) | 2003-05-02 | 2004-05-03 | 用于井下微型取样器的方法和装置 |
Country Status (10)
Country | Link |
---|---|
US (2) | US7671983B2 (zh) |
EP (3) | EP2320026B1 (zh) |
JP (1) | JP2007535655A (zh) |
CN (1) | CN1784535B (zh) |
BR (1) | BRPI0410046A (zh) |
CA (1) | CA2524075A1 (zh) |
DE (1) | DE602004012554T2 (zh) |
NO (1) | NO20055319L (zh) |
RU (1) | RU2333357C2 (zh) |
WO (2) | WO2004099566A1 (zh) |
Families Citing this family (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1620631B1 (en) * | 2003-05-02 | 2007-07-11 | Baker Hughes Incorporated | Continuous data recorder for a downhole sample tank |
US20070081157A1 (en) * | 2003-05-06 | 2007-04-12 | Baker Hughes Incorporated | Apparatus and method for estimating filtrate contamination in a formation fluid |
US7782460B2 (en) * | 2003-05-06 | 2010-08-24 | Baker Hughes Incorporated | Laser diode array downhole spectrometer |
US7196786B2 (en) * | 2003-05-06 | 2007-03-27 | Baker Hughes Incorporated | Method and apparatus for a tunable diode laser spectrometer for analysis of hydrocarbon samples |
US7408645B2 (en) | 2003-11-10 | 2008-08-05 | Baker Hughes Incorporated | Method and apparatus for a downhole spectrometer based on tunable optical filters |
US7490664B2 (en) * | 2004-11-12 | 2009-02-17 | Halliburton Energy Services, Inc. | Drilling, perforating and formation analysis |
US7565835B2 (en) | 2004-11-17 | 2009-07-28 | Schlumberger Technology Corporation | Method and apparatus for balanced pressure sampling |
US7546885B2 (en) * | 2005-05-19 | 2009-06-16 | Schlumberger Technology Corporation | Apparatus and method for obtaining downhole samples |
EP1736756A1 (en) * | 2005-06-20 | 2006-12-27 | Bp Oil International Limited | Development of disposable/Sealable tips for near infra-red (NIR) spectroscopic probes |
US7475593B2 (en) | 2005-06-24 | 2009-01-13 | Precision Energy Services, Inc. | High temperature near infrared for measurements and telemetry in well boreholes |
US8429961B2 (en) | 2005-11-07 | 2013-04-30 | Halliburton Energy Services, Inc. | Wireline conveyed single phase fluid sampling apparatus and method for use of same |
US7874206B2 (en) | 2005-11-07 | 2011-01-25 | Halliburton Energy Services, Inc. | Single phase fluid sampling apparatus and method for use of same |
US7472589B2 (en) | 2005-11-07 | 2009-01-06 | Halliburton Energy Services, Inc. | Single phase fluid sampling apparatus and method for use of same |
US7596995B2 (en) * | 2005-11-07 | 2009-10-06 | Halliburton Energy Services, Inc. | Single phase fluid sampling apparatus and method for use of same |
US7428925B2 (en) * | 2005-11-21 | 2008-09-30 | Schlumberger Technology Corporation | Wellbore formation evaluation system and method |
US7681450B2 (en) * | 2005-12-09 | 2010-03-23 | Baker Hughes Incorporated | Casing resonant radial flexural modes in cement bond evaluation |
US7367394B2 (en) * | 2005-12-19 | 2008-05-06 | Schlumberger Technology Corporation | Formation evaluation while drilling |
US20080087470A1 (en) | 2005-12-19 | 2008-04-17 | Schlumberger Technology Corporation | Formation Evaluation While Drilling |
US7458257B2 (en) * | 2005-12-19 | 2008-12-02 | Schlumberger Technology Corporation | Downhole measurement of formation characteristics while drilling |
US7482811B2 (en) * | 2006-11-10 | 2009-01-27 | Schlumberger Technology Corporation | Magneto-optical method and apparatus for determining properties of reservoir fluids |
US20080111064A1 (en) * | 2006-11-10 | 2008-05-15 | Schlumberger Technology Corporation | Downhole measurement of substances in earth formations |
US7586087B2 (en) * | 2007-01-24 | 2009-09-08 | Schlumberger Technology Corporation | Methods and apparatus to characterize stock-tank oil during fluid composition analysis |
US20090066959A1 (en) * | 2007-09-07 | 2009-03-12 | Baker Hughes Incorporated | Apparatus and Method for Estimating a Property of a Fluid in a Wellbore Using Photonic Crystals |
US8028562B2 (en) * | 2007-12-17 | 2011-10-04 | Schlumberger Technology Corporation | High pressure and high temperature chromatography |
US20090159334A1 (en) * | 2007-12-19 | 2009-06-25 | Bp Corporation North America, Inc. | Method for detecting formation pore pressure by detecting pumps-off gas downhole |
US8794350B2 (en) * | 2007-12-19 | 2014-08-05 | Bp Corporation North America Inc. | Method for detecting formation pore pressure by detecting pumps-off gas downhole |
US8297351B2 (en) * | 2007-12-27 | 2012-10-30 | Schlumberger Technology Corporation | Downhole sensing system using carbon nanotube FET |
US7886821B2 (en) * | 2008-01-24 | 2011-02-15 | Baker Hughes Incorporated | Apparatus and method for determining fluid properties |
US8032311B2 (en) | 2008-05-22 | 2011-10-04 | Baker Hughes Incorporated | Estimating gas-oil ratio from other physical properties |
US8571368B2 (en) | 2010-07-21 | 2013-10-29 | Foro Energy, Inc. | Optical fiber configurations for transmission of laser energy over great distances |
EP2315904B1 (en) | 2008-08-20 | 2019-02-06 | Foro Energy Inc. | Method and system for advancement of a borehole using a high power laser |
US9719302B2 (en) | 2008-08-20 | 2017-08-01 | Foro Energy, Inc. | High power laser perforating and laser fracturing tools and methods of use |
US9347271B2 (en) | 2008-10-17 | 2016-05-24 | Foro Energy, Inc. | Optical fiber cable for transmission of high power laser energy over great distances |
US9360631B2 (en) | 2008-08-20 | 2016-06-07 | Foro Energy, Inc. | Optics assembly for high power laser tools |
US9080425B2 (en) | 2008-10-17 | 2015-07-14 | Foro Energy, Inc. | High power laser photo-conversion assemblies, apparatuses and methods of use |
US9074422B2 (en) | 2011-02-24 | 2015-07-07 | Foro Energy, Inc. | Electric motor for laser-mechanical drilling |
US9664012B2 (en) | 2008-08-20 | 2017-05-30 | Foro Energy, Inc. | High power laser decomissioning of multistring and damaged wells |
US10301912B2 (en) * | 2008-08-20 | 2019-05-28 | Foro Energy, Inc. | High power laser flow assurance systems, tools and methods |
US9027668B2 (en) | 2008-08-20 | 2015-05-12 | Foro Energy, Inc. | Control system for high power laser drilling workover and completion unit |
US8627901B1 (en) | 2009-10-01 | 2014-01-14 | Foro Energy, Inc. | Laser bottom hole assembly |
US9669492B2 (en) | 2008-08-20 | 2017-06-06 | Foro Energy, Inc. | High power laser offshore decommissioning tool, system and methods of use |
US9244235B2 (en) | 2008-10-17 | 2016-01-26 | Foro Energy, Inc. | Systems and assemblies for transferring high power laser energy through a rotating junction |
US9242309B2 (en) | 2012-03-01 | 2016-01-26 | Foro Energy Inc. | Total internal reflection laser tools and methods |
US9089928B2 (en) | 2008-08-20 | 2015-07-28 | Foro Energy, Inc. | Laser systems and methods for the removal of structures |
US9267330B2 (en) | 2008-08-20 | 2016-02-23 | Foro Energy, Inc. | Long distance high power optical laser fiber break detection and continuity monitoring systems and methods |
US9138786B2 (en) | 2008-10-17 | 2015-09-22 | Foro Energy, Inc. | High power laser pipeline tool and methods of use |
US8379207B2 (en) * | 2008-10-15 | 2013-02-19 | Baker Hughes Incorporated | Method and apparatus for estimating a fluid property |
US7967067B2 (en) | 2008-11-13 | 2011-06-28 | Halliburton Energy Services, Inc. | Coiled tubing deployed single phase fluid sampling apparatus |
EP2816193A3 (en) | 2009-06-29 | 2015-04-15 | Halliburton Energy Services, Inc. | Wellbore laser operations |
US20110016962A1 (en) * | 2009-07-21 | 2011-01-27 | Baker Hughes Incorporated | Detector for Characterizing a Fluid |
US8783361B2 (en) | 2011-02-24 | 2014-07-22 | Foro Energy, Inc. | Laser assisted blowout preventer and methods of use |
US8783360B2 (en) | 2011-02-24 | 2014-07-22 | Foro Energy, Inc. | Laser assisted riser disconnect and method of use |
US8684088B2 (en) | 2011-02-24 | 2014-04-01 | Foro Energy, Inc. | Shear laser module and method of retrofitting and use |
US8720584B2 (en) | 2011-02-24 | 2014-05-13 | Foro Energy, Inc. | Laser assisted system for controlling deep water drilling emergency situations |
US9091151B2 (en) | 2009-11-19 | 2015-07-28 | Halliburton Energy Services, Inc. | Downhole optical radiometry tool |
US8839871B2 (en) | 2010-01-15 | 2014-09-23 | Halliburton Energy Services, Inc. | Well tools operable via thermal expansion resulting from reactive materials |
US8306762B2 (en) * | 2010-01-25 | 2012-11-06 | Baker Hughes Incorporated | Systems and methods for analysis of downhole data |
US8508741B2 (en) * | 2010-04-12 | 2013-08-13 | Baker Hughes Incorporated | Fluid sampling and analysis downhole using microconduit system |
WO2011159304A1 (en) * | 2010-06-17 | 2011-12-22 | Halliburton Energy Services | Non-invasive compressibility and in situ density testing of a fluid sample in a sealed chamber |
SG186951A1 (en) | 2010-07-08 | 2013-02-28 | Halliburton Energy Serv Inc | Method and system of determining constituent components of a fluid sample |
CA2808214C (en) | 2010-08-17 | 2016-02-23 | Foro Energy Inc. | Systems and conveyance structures for high power long distance laser transmission |
US9429014B2 (en) | 2010-09-29 | 2016-08-30 | Schlumberger Technology Corporation | Formation fluid sample container apparatus |
US20120086454A1 (en) * | 2010-10-07 | 2012-04-12 | Baker Hughes Incorporated | Sampling system based on microconduit lab on chip |
US8474533B2 (en) * | 2010-12-07 | 2013-07-02 | Halliburton Energy Services, Inc. | Gas generator for pressurizing downhole samples |
US20120145907A1 (en) * | 2010-12-14 | 2012-06-14 | Van Groos August F Koster | Dynamic environmental chamber and methods of radiation analysis |
US8985200B2 (en) | 2010-12-17 | 2015-03-24 | Halliburton Energy Services, Inc. | Sensing shock during well perforating |
EP2652264A4 (en) | 2010-12-17 | 2015-05-06 | Halliburton Energy Services Inc | BOHRLOCHPERFORATION WITH DETERMINATION OF BOHRLOCHCHE PROPERTIES |
US8397800B2 (en) | 2010-12-17 | 2013-03-19 | Halliburton Energy Services, Inc. | Perforating string with longitudinal shock de-coupler |
US8393393B2 (en) | 2010-12-17 | 2013-03-12 | Halliburton Energy Services, Inc. | Coupler compliance tuning for mitigating shock produced by well perforating |
US8397814B2 (en) | 2010-12-17 | 2013-03-19 | Halliburton Energy Serivces, Inc. | Perforating string with bending shock de-coupler |
EP2678512A4 (en) | 2011-02-24 | 2017-06-14 | Foro Energy Inc. | Method of high power laser-mechanical drilling |
US20120241169A1 (en) | 2011-03-22 | 2012-09-27 | Halliburton Energy Services, Inc. | Well tool assemblies with quick connectors and shock mitigating capabilities |
FR2973828B1 (fr) * | 2011-04-11 | 2014-04-18 | Snf Sas | Ensemble de materiel de mesure et regulation de viscosite en ligne a haute pression |
WO2012167102A1 (en) | 2011-06-03 | 2012-12-06 | Foro Energy Inc. | Rugged passively cooled high power laser fiber optic connectors and methods of use |
US9091152B2 (en) | 2011-08-31 | 2015-07-28 | Halliburton Energy Services, Inc. | Perforating gun with internal shock mitigation |
DE102011086206A1 (de) | 2011-11-11 | 2013-05-16 | Carl Zeiss Ag | Anordnung zum Bestimmen der optischen Eigenschaften von Bohrlochfluiden |
US8547556B2 (en) * | 2011-12-14 | 2013-10-01 | Halliburton Energy Services, Inc. | Methods of analyzing a reservoir fluid sample using a multivariate optical element calculation device |
BR112014007118A2 (pt) * | 2011-12-14 | 2017-04-18 | Halliburton Energy Services Inc | método de análise de uma amostra de fluido de um reservatório |
US9057256B2 (en) * | 2012-01-10 | 2015-06-16 | Schlumberger Technology Corporation | Submersible pump control |
DE102012100794B3 (de) * | 2012-01-31 | 2013-02-28 | Airbus Operations Gmbh | Vorrichtung und Verfahren zum Erfassen von Kontaminationen in einem Hydrauliksystem |
US20130213648A1 (en) * | 2012-02-16 | 2013-08-22 | Baker Hughes Incorporated | Optical fluid analyzer sampling tool using open beam optical construction |
EP2890859A4 (en) | 2012-09-01 | 2016-11-02 | Foro Energy Inc | REDUCED MECHANICAL ENERGY WELL CONTROL SYSTEMS AND METHODS OF USE |
US9169705B2 (en) | 2012-10-25 | 2015-10-27 | Halliburton Energy Services, Inc. | Pressure relief-assisted packer |
US9249656B2 (en) * | 2012-11-15 | 2016-02-02 | Baker Hughes Incorporated | High precision locked laser operating at elevated temperatures |
US9187999B2 (en) * | 2012-11-30 | 2015-11-17 | Baker Hughes Incorporated | Apparatus and method for obtaining formation fluid samples |
US9429013B2 (en) | 2013-02-25 | 2016-08-30 | Schlumberger Technology Corporation | Optical window assembly for an optical sensor of a downhole tool and method of using same |
US9534494B2 (en) | 2013-02-25 | 2017-01-03 | Schlumberger Technology Corporation | Optical window assemblies |
US9587486B2 (en) | 2013-02-28 | 2017-03-07 | Halliburton Energy Services, Inc. | Method and apparatus for magnetic pulse signature actuation |
EP2946140A4 (en) | 2013-03-05 | 2016-11-16 | Halliburton Energy Services Inc | SYSTEM, METHOD AND COMPUTER PROGRAM PRODUCT FOR PHOTOMETRIC SYSTEM DESIGN AND ECOLOGICAL ROBUSTNESS |
US9726009B2 (en) | 2013-03-12 | 2017-08-08 | Halliburton Energy Services, Inc. | Wellbore servicing tools, systems and methods utilizing near-field communication |
US20140268156A1 (en) * | 2013-03-13 | 2014-09-18 | Schlumberger Technology Corporation | Method and system for determining bubble point pressure |
US9284817B2 (en) | 2013-03-14 | 2016-03-15 | Halliburton Energy Services, Inc. | Dual magnetic sensor actuation assembly |
US20150075770A1 (en) | 2013-05-31 | 2015-03-19 | Michael Linley Fripp | Wireless activation of wellbore tools |
US9752414B2 (en) | 2013-05-31 | 2017-09-05 | Halliburton Energy Services, Inc. | Wellbore servicing tools, systems and methods utilizing downhole wireless switches |
US9109434B2 (en) | 2013-06-09 | 2015-08-18 | Schlumberger Technology Corporation | System and method for estimating oil formation volume factor downhole |
GB2554332B (en) * | 2013-09-25 | 2020-04-15 | Halliburton Energy Services Inc | Systems and methods for real time measurement of gas content in drilling fluids |
US10415380B2 (en) * | 2013-10-01 | 2019-09-17 | Baker Hughes, A Ge Company, Llc | Sample tank with integrated fluid separation |
GB2534797B (en) | 2013-11-13 | 2017-03-01 | Schlumberger Holdings | Automatic pumping system commissioning |
MX365729B (es) | 2014-03-07 | 2019-06-12 | Halliburton Energy Services Inc | Metodos y sistemas de muestreo para el fluido de formacion. |
NO342929B1 (no) * | 2014-04-16 | 2018-09-03 | Vision Io As | Inspeksjonsverktøy |
US10415370B2 (en) | 2014-08-26 | 2019-09-17 | Halliburton Energy Services, Inc. | Systems and methods for in situ monitoring of cement slurry locations and setting processes thereof |
WO2016085465A1 (en) | 2014-11-25 | 2016-06-02 | Halliburton Energy Services, Inc. | Wireless activation of wellbore tools |
JP6593349B2 (ja) * | 2015-02-10 | 2019-10-23 | ソニー株式会社 | 受信装置および通信システム |
CN105300902A (zh) * | 2015-10-26 | 2016-02-03 | 北京农业信息技术研究中心 | 五点法差异深度药剂蒸发高通量信息动态获取方法 |
US10221687B2 (en) | 2015-11-26 | 2019-03-05 | Merger Mines Corporation | Method of mining using a laser |
US11353422B2 (en) | 2016-10-14 | 2022-06-07 | Halliburton Energy Services, Inc. | In situ treatment of chemical sensors |
CN107907503B (zh) * | 2017-01-17 | 2020-06-05 | 合肥中科富华新材料有限公司 | 多腔室的激光检测监测仪 |
US10371633B2 (en) | 2017-10-30 | 2019-08-06 | Saudi Arabian Oil Company | Determining a specific gravity of a sample |
US11598703B2 (en) * | 2018-06-08 | 2023-03-07 | Halliburton Energy Services, Inc. | Apparatus, system and method for mechanical testing under confined conditions |
US11479373B2 (en) * | 2018-08-14 | 2022-10-25 | Honeybee Robotics, Llc | Sample collection system for interplanetary vehicle |
US11262298B2 (en) | 2018-08-30 | 2022-03-01 | Caterpillar Inc. | System and method for determining fluid origin |
US11275022B2 (en) | 2018-09-05 | 2022-03-15 | Halliburton Energy Services, Inc. | Two frequency comb fourier spectroscopy for chemical sensing |
WO2020112106A1 (en) | 2018-11-28 | 2020-06-04 | Halliburton Energy Services, Inc. | Downhole sample extractors and downhole sample extraction systems |
CN109667579B (zh) * | 2018-12-28 | 2021-07-13 | 中国科学院武汉岩土力学研究所 | 一种超低渗地层内深井气液流体取样装置 |
US11408282B2 (en) | 2019-05-10 | 2022-08-09 | Baker Hughes Oilfield Operations Llc | Bi-conical optical sensor for obtaining downhole fluid properties |
CN110672550B (zh) * | 2019-09-10 | 2021-11-19 | 中国科学院上海技术物理研究所 | 一种微区重要生物资源像谱分析仪 |
JP6792749B1 (ja) * | 2019-09-13 | 2020-12-02 | 国立研究開発法人産業技術総合研究所 | 気液混相流の流動様式評価装置、流動様式評価方法、及びガス生産システム |
DE102019135595A1 (de) * | 2019-12-20 | 2021-06-24 | Endress+Hauser Conducta Gmbh+Co. Kg | Wechselarmatur für Eintauch-, Durchfluss- und Anbau-Messsysteme in der analytischen Prozesstechnik |
CN113049522B (zh) * | 2019-12-26 | 2023-07-25 | 中国石油天然气股份有限公司 | 能够消除气泡的近红外分析装置 |
US11624722B2 (en) | 2020-04-24 | 2023-04-11 | The Boeing Company | Method and systems for determining dielectric breakdown voltages of fluid samples using dielectric fluid testers |
CN111781019A (zh) * | 2020-07-03 | 2020-10-16 | 中国海洋石油集团有限公司 | 一种泵抽模块和流体取样方法 |
US11662288B2 (en) | 2020-09-24 | 2023-05-30 | Saudi Arabian Oil Company | Method for measuring API gravity of petroleum crude oils using angle-resolved fluorescence spectra |
CN113899727B (zh) * | 2021-09-18 | 2022-11-18 | 中山大学 | 检测沉积物孔隙水中目标物浓度垂向变化的设备及方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0295923A2 (en) * | 1987-06-19 | 1988-12-21 | Halliburton Company | Well fluid sampling apparatus |
US5859430A (en) * | 1997-04-10 | 1999-01-12 | Schlumberger Technology Corporation | Method and apparatus for the downhole compositional analysis of formation gases |
US5939717A (en) * | 1998-01-29 | 1999-08-17 | Schlumberger Technology Corporation | Methods and apparatus for determining gas-oil ratio in a geological formation through the use of spectroscopy |
US6092416A (en) * | 1997-04-16 | 2000-07-25 | Schlumberger Technology Corporation | Downholed system and method for determining formation properties |
EP1205630A2 (en) * | 2000-11-14 | 2002-05-15 | Services Petroliers Schlumberger | Sample chamber with dead volume flushing |
US20030033866A1 (en) * | 2001-07-27 | 2003-02-20 | Schlumberger Technology Corporation | Receptacle for sampling downhole |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3448611A (en) * | 1966-09-29 | 1969-06-10 | Schlumberger Technology Corp | Method and apparatus for formation testing |
US3611799A (en) | 1969-10-01 | 1971-10-12 | Dresser Ind | Multiple chamber earth formation fluid sampler |
US3608715A (en) * | 1970-02-06 | 1971-09-28 | Brockway Glass Co Inc | Method and apparatus for inspecting liquids |
US3780575A (en) * | 1972-12-08 | 1973-12-25 | Schlumberger Technology Corp | Formation-testing tool for obtaining multiple measurements and fluid samples |
US3859851A (en) * | 1973-12-12 | 1975-01-14 | Schlumberger Technology Corp | Methods and apparatus for testing earth formations |
JPS55910Y2 (zh) * | 1975-03-28 | 1980-01-11 | ||
FR2558522B1 (fr) | 1983-12-22 | 1986-05-02 | Schlumberger Prospection | Dispositif pour prelever un echantillon representatif du fluide present dans un puits, et procede correspondant |
US4721157A (en) | 1986-05-12 | 1988-01-26 | Baker Oil Tools, Inc. | Fluid sampling apparatus |
US4766955A (en) | 1987-04-10 | 1988-08-30 | Atlantic Richfield Company | Wellbore fluid sampling apparatus |
US4994671A (en) * | 1987-12-23 | 1991-02-19 | Schlumberger Technology Corporation | Apparatus and method for analyzing the composition of formation fluids |
US4936139A (en) | 1988-09-23 | 1990-06-26 | Schlumberger Technology Corporation | Down hole method for determination of formation properties |
CA1325379C (en) | 1988-11-17 | 1993-12-21 | Owen T. Krauss | Down hole reservoir fluid sampler |
US4903765A (en) | 1989-01-06 | 1990-02-27 | Halliburton Company | Delayed opening fluid sampler |
GB9003467D0 (en) | 1990-02-15 | 1990-04-11 | Oilphase Sampling Services Ltd | Sampling tool |
US5166747A (en) | 1990-06-01 | 1992-11-24 | Schlumberger Technology Corporation | Apparatus and method for analyzing the composition of formation fluids |
US5077481A (en) * | 1990-10-25 | 1991-12-31 | The Perkin-Elmer Corporation | Optical probe for measuring light transmission of liquid |
US5178178A (en) * | 1991-01-07 | 1993-01-12 | Hewlett-Packard Company | Valve assembly |
NO172863C (no) | 1991-05-03 | 1993-09-15 | Norsk Hydro As | Elektro-hydraulisk bunnhullsproevetakerutstyr |
US5240072A (en) | 1991-09-24 | 1993-08-31 | Halliburton Company | Multiple sample annulus pressure responsive sampler |
US5377755A (en) | 1992-11-16 | 1995-01-03 | Western Atlas International, Inc. | Method and apparatus for acquiring and processing subsurface samples of connate fluid |
US5303775A (en) | 1992-11-16 | 1994-04-19 | Western Atlas International, Inc. | Method and apparatus for acquiring and processing subsurface samples of connate fluid |
US5329811A (en) | 1993-02-04 | 1994-07-19 | Halliburton Company | Downhole fluid property measurement tool |
US5361839A (en) | 1993-03-24 | 1994-11-08 | Schlumberger Technology Corporation | Full bore sampler including inlet and outlet ports flanking an annular sample chamber and parameter sensor and memory apparatus disposed in said sample chamber |
US5662166A (en) | 1995-10-23 | 1997-09-02 | Shammai; Houman M. | Apparatus for maintaining at least bottom hole pressure of a fluid sample upon retrieval from an earth bore |
US5734098A (en) * | 1996-03-25 | 1998-03-31 | Nalco/Exxon Energy Chemicals, L.P. | Method to monitor and control chemical treatment of petroleum, petrochemical and processes with on-line quartz crystal microbalance sensors |
US5741962A (en) * | 1996-04-05 | 1998-04-21 | Halliburton Energy Services, Inc. | Apparatus and method for analyzing a retrieving formation fluid utilizing acoustic measurements |
US5902939A (en) * | 1996-06-04 | 1999-05-11 | U.S. Army Corps Of Engineers As Represented By The Secretary Of The Army | Penetrometer sampler system for subsurface spectral analysis of contaminated media |
US5934374A (en) * | 1996-08-01 | 1999-08-10 | Halliburton Energy Services, Inc. | Formation tester with improved sample collection system |
US6218662B1 (en) * | 1998-04-23 | 2001-04-17 | Western Atlas International, Inc. | Downhole carbon dioxide gas analyzer |
US6178815B1 (en) | 1998-07-30 | 2001-01-30 | Schlumberger Technology Corporation | Method to improve the quality of a formation fluid sample |
JP3479227B2 (ja) * | 1998-12-07 | 2003-12-15 | 国際航業株式会社 | 地中汚染物質の測定方法及び装置 |
US6350986B1 (en) * | 1999-02-23 | 2002-02-26 | Schlumberger Technology Corporation | Analysis of downhole OBM-contaminated formation fluid |
US6688390B2 (en) | 1999-03-25 | 2004-02-10 | Schlumberger Technology Corporation | Formation fluid sampling apparatus and method |
US6378364B1 (en) * | 2000-01-13 | 2002-04-30 | Halliburton Energy Services, Inc. | Downhole densitometer |
US6437326B1 (en) * | 2000-06-27 | 2002-08-20 | Schlumberger Technology Corporation | Permanent optical sensor downhole fluid analysis systems |
US6474152B1 (en) * | 2000-11-02 | 2002-11-05 | Schlumberger Technology Corporation | Methods and apparatus for optically measuring fluid compressibility downhole |
US6557632B2 (en) | 2001-03-15 | 2003-05-06 | Baker Hughes Incorporated | Method and apparatus to provide miniature formation fluid sample |
US7434457B2 (en) | 2001-03-23 | 2008-10-14 | Schlumberger Technology Corporation | Fluid property sensors |
EP1397661B1 (en) * | 2001-05-15 | 2008-09-10 | Baker Hughes Incorporated | Method and apparatus for downhole fluid characterization using flxural mechanical resonators |
US7246664B2 (en) | 2001-09-19 | 2007-07-24 | Baker Hughes Incorporated | Dual piston, single phase sampling mechanism and procedure |
US6683681B2 (en) * | 2002-04-10 | 2004-01-27 | Baker Hughes Incorporated | Method and apparatus for a downhole refractometer and attenuated reflectance spectrometer |
US6640625B1 (en) | 2002-05-08 | 2003-11-04 | Anthony R. H. Goodwin | Method and apparatus for measuring fluid density downhole |
US6907797B2 (en) | 2002-11-12 | 2005-06-21 | Baker Hughes Incorporated | Method and apparatus for supercharging downhole sample tanks |
US7081615B2 (en) | 2002-12-03 | 2006-07-25 | Schlumberger Technology Corporation | Methods and apparatus for the downhole characterization of formation fluids |
EP1620631B1 (en) | 2003-05-02 | 2007-07-11 | Baker Hughes Incorporated | Continuous data recorder for a downhole sample tank |
-
2004
- 2004-04-29 EP EP10175791.2A patent/EP2320026B1/en not_active Expired - Lifetime
- 2004-04-29 WO PCT/US2004/013165 patent/WO2004099566A1/en active Search and Examination
- 2004-04-29 JP JP2006513414A patent/JP2007535655A/ja active Pending
- 2004-04-29 CA CA002524075A patent/CA2524075A1/en not_active Abandoned
- 2004-04-29 EP EP04750868A patent/EP1631732B1/en not_active Expired - Lifetime
- 2004-04-29 DE DE602004012554T patent/DE602004012554T2/de not_active Expired - Lifetime
- 2004-04-30 US US10/837,475 patent/US7671983B2/en active Active
- 2004-04-30 US US10/836,996 patent/US7210343B2/en not_active Expired - Fee Related
- 2004-05-03 CN CN2004800118652A patent/CN1784535B/zh not_active Expired - Fee Related
- 2004-05-03 BR BRPI0410046-8A patent/BRPI0410046A/pt not_active Application Discontinuation
- 2004-05-03 WO PCT/US2004/013552 patent/WO2004099564A2/en active Application Filing
- 2004-05-03 EP EP04751109A patent/EP1623091B1/en not_active Expired - Lifetime
- 2004-05-03 RU RU2005137357/03A patent/RU2333357C2/ru not_active IP Right Cessation
-
2005
- 2005-11-11 NO NO20055319A patent/NO20055319L/no not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0295923A2 (en) * | 1987-06-19 | 1988-12-21 | Halliburton Company | Well fluid sampling apparatus |
US5859430A (en) * | 1997-04-10 | 1999-01-12 | Schlumberger Technology Corporation | Method and apparatus for the downhole compositional analysis of formation gases |
US6092416A (en) * | 1997-04-16 | 2000-07-25 | Schlumberger Technology Corporation | Downholed system and method for determining formation properties |
US5939717A (en) * | 1998-01-29 | 1999-08-17 | Schlumberger Technology Corporation | Methods and apparatus for determining gas-oil ratio in a geological formation through the use of spectroscopy |
EP1205630A2 (en) * | 2000-11-14 | 2002-05-15 | Services Petroliers Schlumberger | Sample chamber with dead volume flushing |
US20030033866A1 (en) * | 2001-07-27 | 2003-02-20 | Schlumberger Technology Corporation | Receptacle for sampling downhole |
Also Published As
Publication number | Publication date |
---|---|
CN1784535A (zh) | 2006-06-07 |
DE602004012554D1 (de) | 2008-04-30 |
US7671983B2 (en) | 2010-03-02 |
EP2320026B1 (en) | 2013-04-24 |
EP1631732A1 (en) | 2006-03-08 |
EP1623091B1 (en) | 2009-04-01 |
EP1631732B1 (en) | 2008-03-19 |
US20040244971A1 (en) | 2004-12-09 |
US20040218176A1 (en) | 2004-11-04 |
BRPI0410046A (pt) | 2006-04-25 |
EP1623091A2 (en) | 2006-02-08 |
US7210343B2 (en) | 2007-05-01 |
WO2004099564A2 (en) | 2004-11-18 |
CA2524075A1 (en) | 2004-11-18 |
EP2320026A1 (en) | 2011-05-11 |
RU2333357C2 (ru) | 2008-09-10 |
DE602004012554T2 (de) | 2009-04-16 |
RU2005137357A (ru) | 2007-06-10 |
WO2004099566A1 (en) | 2004-11-18 |
NO20055319L (no) | 2005-11-11 |
WO2004099564A3 (en) | 2005-02-10 |
JP2007535655A (ja) | 2007-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1784535B (zh) | 用于井下微型取样器的方法和装置 | |
RU2564303C1 (ru) | Оборудование и способ отбора проб в пласте | |
AU2014278444B2 (en) | System and method for estimating oil formation volume factor downhole | |
US11927716B2 (en) | Predicting contamination and clean fluid properties from downhole and wellsite gas chromatograms | |
RU2348806C2 (ru) | Устройство непрерывной регистрации данных для скважинного пробоотборного резервуара | |
US20100018287A1 (en) | Wirleline downhole gas chromatograph and downhole gas chromatography method | |
EP2859186A1 (en) | Assessing reservoir connectivity in hydrocarbon reservoirs | |
US20220403737A1 (en) | Determining Asphaltene Onset | |
WO2009138911A2 (en) | Methods and apparatus for characterization of petroleum fluids contaminated with drilling mud | |
US20200003054A1 (en) | Apparatus and methods for tools for collecting high quality reservoir samples | |
Zuo et al. | Equation-of-state-based downhole fluid characterization | |
EP3548703B1 (en) | Synthetic chromatogram from physical properties | |
US20200182750A1 (en) | Apparatus and methods for fluid transportation vessels | |
EP1865147A1 (en) | A method and apparatus for a downhole micro-sampler | |
Andrews et al. | Quantifying contamination using color of crude and condensate | |
Chen et al. | A New Approach to Obtain In-Situ Live Fluid Compressibility in Formation Testing | |
Radiansyah et al. | Rejuvenation of an Old Field Through Cased Hole Logs, Pressure Measurements and Fluid Scanning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100929 Termination date: 20150503 |
|
EXPY | Termination of patent right or utility model |