RU2404089C1 - Способ контроля количества теплоносителя в жидкостном тракте системы терморегулирования космического аппарата - Google Patents

Способ контроля количества теплоносителя в жидкостном тракте системы терморегулирования космического аппарата Download PDF

Info

Publication number
RU2404089C1
RU2404089C1 RU2009122168/11A RU2009122168A RU2404089C1 RU 2404089 C1 RU2404089 C1 RU 2404089C1 RU 2009122168/11 A RU2009122168/11 A RU 2009122168/11A RU 2009122168 A RU2009122168 A RU 2009122168A RU 2404089 C1 RU2404089 C1 RU 2404089C1
Authority
RU
Russia
Prior art keywords
coolant
volume
gas cavity
reed switch
liquid
Prior art date
Application number
RU2009122168/11A
Other languages
English (en)
Inventor
Владимир Иванович Халиманович (RU)
Владимир Иванович Халиманович
Олег Вячеславович Загар (RU)
Олег Вячеславович Загар
Анатолий Васильевич Леканов (RU)
Анатолий Васильевич Леканов
Анатолий Петрович Колесников (RU)
Анатолий Петрович Колесников
Георгий Владимирович Акчурин (RU)
Георгий Владимирович Акчурин
Михаил Иванович Синиченко (RU)
Михаил Иванович Синиченко
Олег Валентинович Шилкин (RU)
Олег Валентинович Шилкин
Владимир Петрович Акчурин (RU)
Владимир Петрович Акчурин
Владислав Николаевич Никитин (RU)
Владислав Николаевич Никитин
Original Assignee
Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" filed Critical Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева"
Priority to RU2009122168/11A priority Critical patent/RU2404089C1/ru
Application granted granted Critical
Publication of RU2404089C1 publication Critical patent/RU2404089C1/ru

Links

Images

Landscapes

  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

Изобретение относится к космической технике и может быть использовано при изготовлении систем терморегулирования (СТР) космических аппаратов (КА). Способ контроля количества теплоносителя в жидкостном тракте системы терморегулирования КА заключается в том, что в процессе изготовления гидроаккумулятора на его корпусе при различных положениях подвижного днища сильфона напротив конкретному положению магнита на наружной поверхности корпуса гидроаккумулятора наносят пронумерованные риски, соответствующие определенным величинам объемов газовой полости, строят график зависимости величин объемов газовой полости от номеров рисок и данный график прилагают к формуляру на гидроаккумулятор. При контроле количества теплоносителя в жидкостном тракте СТР чувствительный элемент ручного устройства, содержащий геркон, перемещают вблизи над рисками до момента замыкания геркона и по номеру риски, над которой или вблизи которой произошло замыкание геркона. Устанавливают текущую величину объема газовой полости на момент измерения и количество теплоносителя в жидкостном тракте СТР. Достигается обеспечение повышения коэффициента заполнения приборами КА выделенного рабочего объема. 2 ил.

Description

Изобретение, созданное авторами в порядке выполнения служебного задания, относится к космической технике, в частности к способам контроля количества теплоносителя в жидкостных трактах систем терморегулирования (СТР) космических аппаратов (КА).
Известны способы контроля количества теплоносителя в жидкостном тракте системы терморегулирования (СТР) космического аппарата (КА) на основе патентов Российской Федерации №2209750 [1], №2151722 [2] по результатам измерения объема газовой полости компенсатора объема - гидроаккумулятора путем контроля положения магнита, установленного на периферии подвижного сильфона, разделяющего герметизированную газовую полость, заправленную двухфазным рабочим телом, и жидкостную полость, заполненную теплоносителем и сообщенную с остальным жидкостным трактом (периодический контроль количества теплоносителя в жидкостном тракте СТР обязателен, например, после демонтажа съемного оборудования СТР, предназначенного для обеспечения теплового режима КА при наземных испытаниях, при демонтаже которого разъединяют гидроразъемы СТР от гидроразъемов съемного оборудования, и в случае ошибки операторов могут быть недопустимые потери теплоносителя из СТР).
Положение магнита контролируют с помощью устанавливаемого на гидроаккумуляторе съемного технологического устройства, содержащего герконы (например, 7 равномерно установленных на рейке герконов), которое соединено с пультом контроля срабатываний герконов. Следовательно, для обеспечения контроля величины объема газовой полости путем измерения положения вышеуказанного магнита с помощью вышеупомянутого технологического устройства гидроаккумулятор на КА должен быть установлен таким образом, чтобы вокруг него было свободное пространство для установки вышеуказанного съемного технологического устройства, т.е. на КА вокруг гидроаккумулятора необходимо предусмотреть свободный объем за счет выделенного рабочего объема, предназначенного для установки приборов КА.
Таким образом, существенным недостатком известных способов контроля количества теплоносителя в жидкостном тракте СТР КА является то, что при использовании их обеспечивается снижение коэффициента заполнения приборами КА выделенного рабочего объема и для размещения всей предусмотренной массы приборов потребуется увеличение габаритов КА с соответствующим увеличением массы его конструкции.
Анализ источников информации по патентной и научно-технической литературе показал, что наиболее близким по технической сути прототипом предлагаемого технического решения является способ контроля количества теплоносителя в жидкостном тракте СТР КА на основе [1].
Известный способ контроля количества теплоносителя в жидкостном тракте СТР включает в себя следующие основные последовательно выполняемые операции (см. фиг.1):
- изготавливают комплектующие элементы СТР (в том числе гидроаккумулятор 1.1.2: в процессе изготовления его, установив на его корпусе вышеуказанное съемное технологическое устройство 2 с герконами, устанавливают взаимное соответствие конкретной величины объема газовой полости и конкретного номера замкнутого геркона, а также измеряют конструктивно минимально возможный объем газовой полости) и осуществляют монтаж (сборку) СТР на конструкции космического аппарата (1 - космический аппарат; 1.1 - система терморегулирования; 1.1.1 - жидкостный тракт; 1.1.2 - гидроаккумулятор (компенсатор объема) (1.1.2.1 - жидкостная полость с теплоносителем; 1.1.2.2 - газовая полость с двухфазным рабочим телом; 1.1.2.3 - сильфон; 1.1.2.4 - магнит); 1.1.3 - электронасосный агрегат (ЭНА); 1.1.4 - панель, на которой установлены приборы КА; 1.1.5 - радиатор; 1.1.6 - вентиль заправочный; 1.1.7 - датчик давления; 1.1.8 - датчики температуры; 3 - съемное оборудование СТР с гидроразъемами 3.1));
- проводят проверку степени герметичности жидкостного тракта на соответствие требуемой норме и осуществляют полную заправку предварительно вакуумированного жидкостного тракта деаэрированным теплоносителем;
- устанавливают на гидроаккумулятор 1.1.2 (газовая полость 1.1.2.2 гидроаккумулятора частично заполнена двухфазным рабочим телом и разделена от его жидкостной полости 1.1.2.1 сильфоном 1.1.2.3; жидкостная полость соединена с жидкостным трактом 1.1.1) технологическое устройство с герконами 2 и соединяют его с пультом 4 контроля работы устройства;
- измеряют температуры заправленного теплоносителя по нескольким датчикам температуры 1.1.8 (например, по пяти датчикам, установленным на жидкостном тракте на различных уровнях) и определяют среднюю температуру теплоносителя в жидкостном тракте;
- сливают требуемую дозу теплоносителя в емкость заправщика (величина требуемой сливаемой дозы зависит от количества заправленного теплоносителя, его средней температуры, рабочего диапазона температур и требуемого запаса теплоносителя в условиях эксплуатации СТР);
- контролируют с помощью устройства с герконами 2 образовавшуюся действительную величину объема газовой полости 1.1.2.2 гидроаккумулятора 1.1.2 после слива дозы теплоносителя, а затем, например, после снятия съемного оборудования СТР, которая при качественном изготовлении (или эксплуатации) жидкостного тракта должна соответствовать (с учетом погрешностей измерений) требуемой величине, определенной по следующему соотношению:
Figure 00000001
где VГ.П. - требуемый объем газовой полости, дм3;
VГ.П.мин. - минимальный объем газовой полости, измеренный при изготовлении гидроаккумулятора, дм3;
VЖ.К. - максимальный заполняемый теплоносителем объем жидкостного тракта, измеренный при изготовлении его, дм3;
β - коэффициент температурного изменения объема теплоносителя, 1/°C;
tмакс - максимальная температура теплоносителя, при которой объем теплоносителя в жидкостном тракте максимальный, °C;
t - измеренная температура теплоносителя, °C.
Если на всех вышеуказанных этапах изготовления и испытаний измеренный с помощью герконов объем газовой полости гидроаккумулятора соответствует требованию согласно (1), то это означает, что количество теплоносителя в жидкостном тракте соответствует требуемой величине, что СТР изготовлена качественно и допускается к дальнейшим комплексным испытаниям ее совместно с другими системами в составе КА.
Как было указано выше, существенным недостатком известного способа контроля количества теплоносителя в жидкостном тракте СТР является то, что при использовании его обеспечивается снижение коэффициента заполнения приборами КА выделенного рабочего объема из-за ограничительных требований по компоновке гидроаккумулятора на борту КА и повышение массы его (гидроаккумулятор необходимо разметить на КА так, чтобы вокруг него было достаточное свободное пространство для установки съемного технологического устройства).
Целью предлагаемого авторами технического решения является устранение вышеуказанного существенного недостатка.
Поставленная цель достигается тем, что способ контроля количества теплоносителя в жидкостном тракте системы терморегулирования космического аппарата, включающем в себя гидроаккумулятор - компенсатор объема, герметизированная газовая полость которого заправлена двухфазным рабочим телом, а жидкостная полость заполнена теплоносителем и сообщена с полностью заполненным теплоносителем жидкостным трактом, причем на периферии днища сильфона, разделяющего газовую и жидкостную полости, установлен магнит, включает измерения температур теплоносителя в жидкостном тракте и жидкостной полости, текущего объема газовой полости гидроаккумулятора, сравнение измеренного объема газовой полости с требуемой расчетной величиной объема газовой полости и по результатам сравнения установление количества теплоносителя в жидкостном тракте, при этом в процессе изготовления гидроаккумулятора на его корпусе при различных положениях подвижного днища сильфона напротив конкретному положению магнита на наружной поверхности корпуса гидроаккумулятора наносят риски, соответствующие определенным величинам объемов газовой полости, а при контроле количества теплоносителя в жидкостном тракте чувствительный элемент ручного устройства, содержащий геркон, перемещают вблизи над рисками до момента замыкания геркона и по риске, над которой или вблизи которой произошло замыкание геркона, устанавливают текущую величину объема газовой полости на момент измерения, что и является, по мнению авторов, существенными отличительными признаками предлагаемого авторами технического решения.
В результате анализа, проведенного авторами известной патентной и научно-технической литературы, предложенное сочетание существенных отличительных признаков заявляемого технического решения в известных источниках информации не обнаружено, и следовательно, известные технические решения не проявляют тех же свойств, что в заявляемом способе контроля количества теплоносителя в жидкостном тракте СТР КА.
Предложенный способ контроля количества теплоносителя в жидкостном тракте 1.1.1 СТР 1.1 КА 1 включает в себя следующую последовательность выполняемых операций (см. фиг.2):
- изготавливают комплектующие элементы СТР (в том числе гидроаккумулятор 1.1.2 - в процессе изготовления гидроаккумулятора на его корпусе при различных положениях подвижного днища сильфона 1.1.2.3 напротив конкретному положению магнита 1.1.2.4 на наружной поверхности корпуса 1.1.2.5 гидроаккумулятора 1.1.2 наносят, например, пронумерованные риски, соответствующие определенным величинам объемов газовой полости 1.1.2.2, строят график зависимости величин объемов газовой полости 1.1.2.2 от номеров рисок и данный график прилагают к формуляру на гидроаккумулятор 1.1.2, а также измеряют конструктивно минимальный объем газовой полости 1.1.2.2; 1.1.2.1 - жидкостная полость с теплоносителем (1 - КА; 1.1 - СТР; 1.1.1 - жидкостный тракт; 1.1.3 - ЭНА; 1.1.4 - панель, на которой установлены приборы КА; 1.1.5 - радиатор; 1.1.6 - вентиль заправочный; 1.1.7 - датчик давления; 1.1.8 - датчик температуры; 3 - съемное оборудование СТР с гидроразъемами 3.1));
- проводят проверку степени герметичности жидкостного тракта 1.1.1 на соответствие требуемой норме и осуществляют полную заправку предварительно вакуумированного жидкостного тракта 1.1.1 деаэрированным теплоносителем;
- измеряют температуры заправленного теплоносителя по нескольким датчикам температуры 1.1.8 (например, по пяти датчикам, установленным на жидкостном тракте 1.1.1 на различных уровнях) и определяют среднюю температуру теплоносителя в жидкостном тракте 1.1.1;
- сливают требуемую дозу теплоносителя в емкость заправщика (величина требуемой сливаемой дозы зависит от количества заправленного теплоносителя, его средней температуры, рабочего диапазона температур и требуемого запаса теплоносителя в условиях эксплуатации СТР);
- контролируют с помощью ручного устройства 4 с герконом 2 (нет также необходимости иметь пульт контроля с кабелем) образовавшуюся действительную величину объема газовой полости 1.1.2.2 гидроаккумулятора 1.1.2 после слива дозы теплоносителя, а затем, например, после снятия съемного оборудования СТР 3, для чего чувствительный элемент ручного устройства 4, содержащий геркон 2, перемещают вблизи над рисками до момента замыкания геркона 2 и по номеру риски, над которой или вблизи которой произошло замыкание геркона 2, на основании вышеуказанного графика устанавливают текущую величину объема газовой полости 1.1.2.2 на момент измерения, которая при качественном изготовлении (или эксплуатации) жидкостного тракта 1.1.1 должна соответствовать (с учетом погрешностей измерений) требуемой величине, определенной по следующему соотношению:
Figure 00000002
где VГ.П. - требуемый объем газовой полости, дм3;
VГ.П.мин. - минимальный объем газовой полости, измеренный при изготовлении гидроаккумулятора, дм3;
VЖ.К. - максимальный заполняемый теплоносителем объем жидкостного тракта, измеренный при изготовлении его, дм3;
β - коэффициент температурного изменения объема теплоносителя, 1/°C;
tмакс - максимальная температура теплоносителя, при которой объем теплоносителя в жидкостном тракте максимальный, °C;
t - измеренная температура теплоносителя, °C.
Если на всех вышеуказанных этапах изготовления и испытаний измеренный с помощью герконов объем газовой полости гидроаккумулятора соответствует требованию согласно (2), то это означает, что количество теплоносителя в жидкостном тракте соответствует требуемой величине, что СТР изготовлена качественно и допускается к дальнейшим комплексным испытаниям ее совместно с другими системами в составе КА.
Как видно из вышеизложенного, согласно предложенному авторами техническому решению при изготовлении и эксплуатации СТР 1.1 КА 1 без ухудшения результатов контроля количества теплоносителя в жидкостном тракте 1.1.1 ее гидроаккумулятор 1.1.2 возможно установить в наиболее функционально целесообразной для него зоне КА 1 - вблизи оси X и в наиболее удаленной от центра масс КА 1 зоне, и при этом нет необходимости выполнения требования по обеспечению наличия дополнительного свободного объема вокруг гидроаккумулятора 1.1.2 (т.к. при вышеуказанном контроле не применяется известное съемное технологическое устройство с герконами), что обеспечивает повышение коэффициента заполнения приборами КА выделенного рабочего объема и, следовательно, устраняет существенный недостаток известных технических решений, т.е. тем самым достигается цель изобретения.
В настоящее время предложенное авторами вышеуказанное техническое решение отражено в технической документации на изготовление ручного устройства с герконом и по методике контроля количества теплоносителя в жидкостных трактах СТР космических аппаратов.

Claims (1)

  1. Способ контроля количества теплоносителя в жидкостном тракте системы терморегулирования космического аппарата, включающем в себя гидроаккумулятор - компенсатор объема, герметизированная газовая полость которого заправлена двухфазным рабочим телом, а жидкостная полость заполнена теплоносителем и сообщена с полностью заполненным теплоносителем жидкостным трактом, причем на периферии днища сильфона, разделяющего газовую и жидкостную полости, установлен магнит, включающий измерения температур теплоносителя в жидкостном тракте и жидкостной полости, текущего объема газовой полости гидроаккумулятора, сравнение измеренного объема газовой полости с требуемой расчетной величиной объема газовой полости и по результатам сравнения установление количества теплоносителя в жидкостном тракте, отличающийся тем, что в процессе изготовления гидроаккумулятора на его корпусе при различных положениях подвижного днища сильфона напротив конкретного положения магнита на наружной поверхности корпуса гидроаккумулятора наносят риски, соответствующие определенным величинам объемов газовой полости, а при контроле количества теплоносителя в жидкостном тракте чувствительный элемент ручного устройства, содержащий геркон, перемещают вблизи над рисками до момента замыкания геркона и по риске, над которой или вблизи которой произошло замыкание геркона, устанавливают текущую величину объема газовой полости на момент измерения.
RU2009122168/11A 2009-06-09 2009-06-09 Способ контроля количества теплоносителя в жидкостном тракте системы терморегулирования космического аппарата RU2404089C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009122168/11A RU2404089C1 (ru) 2009-06-09 2009-06-09 Способ контроля количества теплоносителя в жидкостном тракте системы терморегулирования космического аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009122168/11A RU2404089C1 (ru) 2009-06-09 2009-06-09 Способ контроля количества теплоносителя в жидкостном тракте системы терморегулирования космического аппарата

Publications (1)

Publication Number Publication Date
RU2404089C1 true RU2404089C1 (ru) 2010-11-20

Family

ID=44058401

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009122168/11A RU2404089C1 (ru) 2009-06-09 2009-06-09 Способ контроля количества теплоносителя в жидкостном тракте системы терморегулирования космического аппарата

Country Status (1)

Country Link
RU (1) RU2404089C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2577926C2 (ru) * 2014-07-03 2016-03-20 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Система терморегулирования космического аппарата

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2577926C2 (ru) * 2014-07-03 2016-03-20 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Система терморегулирования космического аппарата

Similar Documents

Publication Publication Date Title
US10260994B2 (en) Suspension strut servicing
US3850040A (en) Sorption analysis apparatus and method
JP5237261B2 (ja) 少なくとも1つの圧縮ガスタンクに少なくとも1種のガスを充填する方法、圧縮ガスタンクの開口部に連結するための連結器、および圧縮ガスボンベ装置
US7254954B2 (en) Refrigerant charging system and method using cartridges and scale
US9546866B2 (en) Position determination apparatus
RU2596631C1 (ru) Температурная диагностика для монокристаллического датчика давления рабочей жидкости
GB2161607A (en) Automatic volumetric sorption analyzer
WO2006019445A1 (en) System for refrigerant charging with constant volume tank
EP2972174B1 (en) Hydraulic pressure calibrator and calibration method
CN104215290B (zh) 差压式容积检测方法
WO2013192036A1 (en) Linear displacement pump with position sensing and related systems and methods
RU2404089C1 (ru) Способ контроля количества теплоносителя в жидкостном тракте системы терморегулирования космического аппарата
US4909063A (en) Pressure calibration method and apparatus
RU2374149C1 (ru) Способ контроля качества системы терморегулирования космического аппарата
HU186329B (en) Test set for strength testing of plastic tubes under water pressure
KR100973787B1 (ko) 덕트들을 통해 유동하거나 또는 탱크에 있는 유체의 압력을검사하기 위한 장치
US10464804B2 (en) Adapter and method for filling a fluidic circuit
CN104976836A (zh) 用于计算空调系统中的温度的系统和方法
US6782753B1 (en) Thermodynamic pressure/temperature transducer health check
RU2297372C2 (ru) Способ заправки теплоносителем гидравлических систем терморегулирования космических аппаратов, снабженных гидропневматическим компенсатором объемного расширения рабочего тела
CN109916467A (zh) 一种容积测定系统及方法
JP2003166801A (ja) 変位測定装置
EP3165881A1 (en) Method, device and system for estimating a liquid volume and appropriate gas pressure in a membrane expansion vessel
CN111948553B (zh) 电池爆喷检测系统及方法
RU2489330C2 (ru) Способ контроля качества системы терморегулирования космического аппарата

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190610